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Abstract. We investigate the implications of transverse homoclinic orbits to fixed
points in dissipative diffeomorphisms of the annulus. We first recover a result due
to Aronson et al. [3]: that certain such 'rotary' orbits imply the existence of an
interval of rotation numbers in the rotation set of the diffeomorphism. Our proof
differs from theirs in that we use embeddings of the Smale [61] horseshoe construc-
tion, rather than shadowing and pseudo orbits. The symbolic dynamics associated
with the non-wandering Cantor set of the horseshoe is then used to prove the
existence of uncountably many invariant Cantor sets (Cantori) of each irrational
rotation number in the interval, some of which are shown to be 'dissipative' analogues
of the order preserving Aubry-Mather Cantor sets found by variational methods in
area preserving twist maps. We then apply our results to the Josephson junction
equation, checking the necessary hypotheses via Melnikov's method, and give a
partial characterization of the attracting set of the Poincare map for this equation.
This provides a concrete example of a 'Birkhoff attractor' [10].

1. Introduction: forced oscillations, Poincare maps and Birkhoff attractors
The study of iterated mappings of the annulus or cylinder as dynamical systems
began with Poincare [56], [57], [58] and Birkhoff [7], [8], [9], who were interested
in the three body problem of celestial mechanics and in the motion of a billiard
ball in a simply connected domain D e i 2 with convex boundary dD. Since the
idealised billiard ball moves uniformly between impacts with dD, its state can be
characterized by a succession of impact positions on 3D = S1 and reflection angles
6 e [0, 7T] = /. Thus the motion may be described by a mapping T: S1 x /-> S1 x /.
Here A = Sl x I is the annulus. In the case of perfectly elastic impacts, the system
is conservative and the resulting mapping preserves area: det (DT) = 1. Katok [39]
outlines a number of other examples which lead to area preserving mappings on
annuli.

Birkhoff [10] subsequently generalized the problem somewhat to include dissipa-
tion and considered the case in which the map T takes the annulus into its interior.
Here d e t ( D T ) s c < l and the resulting uniformly bounded contraction, coupled

https://doi.org/10.1017/S0143385700003412 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003412


206 K. Hockett and P. Holmes

with the fact that A is a trapping region, allows one to define the attracting set

H A ) ) , (i.i)
O /

where Cl denotes closure. It is with the structure of such sets, loosely defined as
Birkhoff attractors, that we shall be concerned with in this paper. Precise definitions
will follow in § 3. See [30] for a modern treatment of some of Birkhoff's results.

Dissipative mappings on annuli arise in a number of other contexts. The main
motivating example for the present work is the single point Josephson junction
equation: a periodically forced second order differential equation which models
certain aspects of a superconducting junction ([48], [43]). Suitably non-dimensional-
ized, the equation may be written as

x + &c + s i n x = ^ + /3cos cot, (1.2)
or

<t> = r, j
r =-sin <j> + v-8r + p cosO, I {<j>, r, 6)e S ' x B x S 1 (1.3)

6 = <o. J =AxS\
This equation has a simple mechanical analogue: the simple pendulum subject to
linear damping (S), constant torque {P) and periodically varying torque (;8 cos a>t).
Levi et al. [43] present a complete analysis of the unforced case (/3 = 0) and a
number of more recent studies have addressed aspects of the forced problem; see
[59] and the references therein. Levi [42] has also recently studied the behaviour
of a pair of coupled junctions subject to constant (non-periodic) forcing. A partial
differential equation for the problem also exists: see [31] for studies of perturbations
of this integrable infinite dimensional dynamical system.

For a periodically forced oscillator equation such as (1.3) we define a global cross
section:

Zeo = {(<t>,r,e)eAxSl\6 = eoe[0,2TT/a>)}, (1.4)

and the associated time - 2n/<o or Poincare return map:

PB = P*,s,p,w is obtained by letting solutions of (1.3) based on 2 ^ evolve for one
period 2TT/W of the forcing function. Thus

P(4>,r) = n°<t>27r/A<t>,r,0o), (1-5)
where <£,:(</>, r, 0o)->(<f>(t), r(t), d(t)) is the flow of (1.3) and II denotes projection
onto the first factors (<f>, r). We shall frequently drop the explicit parameter depen-
dence in referring to maps such as P.

Another important motivating example is provided by a modification of the
'standard map' of Chirikov [21]:

f <6-» <b + r
* W \ ( , . ,._,_. (d>,r)eSlxU. (1.7)

[r-> er + (l-e)fi-y cos (4> + r)
Here « e (0,1] is the dissipation parameter, y controls the strength of the non-
linearity and /i the position and frequency of the (smooth) invariant circle r = /J.
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which exists for y = 0. The parameters e, y and \x, play roughly the same roles in
(1.7) as do S, @ and v in the Josephson equation. A map similar to (1.7) describes
the dynamics of a ball bouncing under the influence of gravity on a vertically
vibrating table (cf. [32]). We will return to the Josephson junction equation later
in the paper.

The main purpose of the present work is to study the way in which Smale
horseshoes ([61], [62]) are embedded in the non-wandering and attracting sets of
maps like P and F.

The presence of horseshoes, while not attractors themselves, is known to influence
profoundly the structure of many candidates for strange attractors (cf. [26], [41],
[64], [23], [25]). In the present case, we will show how the invariant Cantor sets
(subshifts of finite type) associated with certain horseshoes, while only being part
of the full attracting set, typically contain uncountably many invariant sets with
specified irrational rotation numbers, along with periodic orbits, homoclinic and
heteroclinic orbits and orbits for which rotation numbers do not exist. Thus we are
able to provide a step towards understanding the global structure of Birkhoff
attractors. Our work is closely related to that of Aubry [4], Aubry and LeDaeron
[5], Mather [45], [46], [47], Katok [38], [39] and Boyland and Hall [13], who have
worked extensively on order preserving orbits in area preserving, monotone twist
maps of annuli. Very recently, LeCalvez [40] and Casdagli [16] have obtained results
on dissipative monotone twist maps to which we refer in § 5.

These authors use a Lagrangian variational formulation of the problem and
concentrate on 'minimum energy' orbits. The Lagrangian ideas were originally
suggested in this context by Percival [55]. Aubry et al. prove that the minimizing
orbits and related minimax orbits are well ordered and that their closures are Cantor
sets. Thus, when projected onto the phase variable (<f> in equation (1.7), for example)
the orbits behave like those of a rigid rotation 0-»0 + a, where a e R \ Q is the
rotation number of the Cantor set in question.

Our methods are rather different in spirit, and although we do find sets of
order-preserving orbits whose closures are Cantor sets, we also show that our
embedding of the horseshoe contains many badly ordered orbits.

Levi [41] and Aronson et al [3] were among the first to bring recent developments
in dynamical systems theory to bear on maps of the annulus, although it was the
earlier work of Cartwright and Littlewood [15] and Levinson [44] on the van der
Pol equation which originally inspired Smale's [61] construction of the horseshoe
(cf. [62], [63]). Zehnder [67] considered the structure of area preserving maps
near an elliptic fixed point in the generic case. Our first results on intervals of
rotation numbers in § 2 are essentially the same as those of Levi and Aronson et
al, although our proofs are different. In §§ 3, 4 we ask more detailed questions on
the structures of certain invariant (Cantor) subsets with specified rotation numbers
suggested by the work of Aubry, Katok and Mather, although in our case we do
not require the map to preserve area nor even that it be a monotone twist map. Our
strategy in these three sections is to show carefully how the non-wandering set of
the horseshoe, which results from the presence of transverse homoclinic orbits to
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a hyperbolic saddle point, is embedded in the annulus and then to work with the
symbol sequences corresponding to certain orbits and collections of orbits. This
bypasses a lot of the delicate analysis which would otherwise be necessary. Finally,
we translate results on symbol sequences back into the corresponding results in the
annular phase space. Although our conclusions are similar to those of Aubry, Katok
and Mather (especially Mather [47]), we have not attempted to prove that our
Cantor sets are the same as theirs in the case where both hypotheses are satisfied.

In § 5 we apply our result to the first example introduced above. Using Melnikov's
[49] method (cf. [23], [25]) we are able to prove that, for certain parameter ranges,
the Poincare map of the Josephson equation (1.2)-(1.3) satisfies the hypotheses
used in §§ 2, 3, 4 and hence we can conclude the existence of non-trivial dynamics
in the Josephson attracting set. Similar results can be obtained for the standard map
(1.7) although we do not include them here. We illustrate our theorems with some
numerical computations. Concluding remarks are given in § 6.

We do not address here the important question of bifurcations: a description of
how various components of the horseshoes (components with specified rotation
numbers, say) appear and disappear as parameters are varied. While there is a
reasonably good theory for maps on the circle (cf. [12], [52], [19], [20]), the case
of annulus maps is still largely open, apart from the recent work of Chenciner [17],
[18] on generalized Hopf bifurcation for maps. We are currently studying this
question.

For a general introduction to the methods of dynamical systems and their applica-
tion to non-linear oscillators and mappings such as (1.2)-(1.3) and (1.7), see [25]
or [2].

2. Homoclinic orbits, horseshoes and rotation numbers
In this section we show how the presence of transverse intersections of stable and
unstable manifolds implies the existence of invariant Cantor sets in which the
dynamics are complicated (Smale horseshoes). Moreover, if the intersecting mani-
folds 'encircle' the annulus in a suitable manner, then the embedded horseshoe and
its symbolic dynamical description can be chosen so as to reflect the rotation
behaviour of orbits. The main result of this section, proposition 2.7, is then used to
prove a theorem due to Aronson et al. [3] on the existence of an interval of rotation
numbers. The embedding of the horseshoe is 'natural' in that some iterate fN off,
restricted to the Cantor set, is conjugate to a full shift on two symbols. In subsequent
sections we shall see that this does not generally yield order preserving (Birkhoff)
orbits and that less usual embeddings will be required.

We start with some definitions and preliminaries:

2.1. Definitions. Let/: A-» A be an orientation preserving (C2-) diffeomorphism of
the annulus A = S1 x[a, b~\, where S1 is the circle of length 2-rr and 0 < a < i < o o .
Let x = (<j>, r) denote a point in A or in A = U x [a, b], its universal cover. Let / be
a lift o f / t o A. Such lifts are unique up to 27r-translations (<£, r)-»(</>+2TT, r). Let
n i : A ^ 5 ] or nx:A^IR denote projection onto the first factor: 11,(0, r) = <£. We
denote a fixed (resp. ^-periodic) point by p (resp. p 0 , . . . , p,-i) and its stable and
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unstable manifolds by W(p), W(p) (resp. {W'(pj)}jZi, { W(pj)}ft). The subscript
'loc1 denotes local manifolds: H7oc(p), etc.

2.2. Rotation numbers. We define the (forward) rotation number of a point xe A
under/as

p(x)=lim-!-[nio/"(x)-ni(x)], (2.1)
n->oo 2irn

where / is any lift of /, provided that the limit exists. p(x) counts the average
number of circuits of A made by the orbit {/"(x)} for each iteration of/ We also
sometimes use the backward rotation number

p-(x)=lim
2777J

2.3. Order preserving orbits. An orbit {/>(x)}Jl_0o of/ is said to be order preserving
if for any lift, / and any two points y, y'e {/J(x)} we have

The projection {n](/'(x))} of an order preserving orbit onto S1 has the same order
properties as the orbits of the rigid rotation ^-.S^S1 defined by <f> -* </> + a. Thus
order preserving orbits always possess rotation numbers. Order preserving periodic
orbits are also sometimes called (piq-) Birkhoff orbits (cf. [38], [28]).
2.4. Symbolic dynamics. Let 2 = {0,1}Z denote the space of biinfinite sequences of
the two symbols 0,1 and 1+ = {0,1}Z+ denote the space of semi-infinite sequences.
Let cr:1~*1 denote the shift map, operating on a sequence a = {oy}Jl_coeS as
follows:

(o-(B))j = aj+1. (2.2)

We endow 2 with the metric

(2.3)

If the block (a, , . . . , aj+N) is repeated indefinitely in the past (resp. future) we denote
it with a superscript - to the left (resp. + to the right). Thus • • • 000 • 000 • • • =
~(0)+, • • • 001 • 011 • • • = "(0)1 • 0(l)+, etc. The (forward) rotation number of a sym-
bol sequence a e 2 is defined as

R(a) = \im- *i\ (2.4a)
n-»°o n j = o

if the limit exists. Similarly,

R"(a) = l im-Va- , (2.4b)
"-><*> n j = o

is the backward rotation number. £+ is endowed with a metric like that of (2.3);
we just replace the lower limit of summation by 0, and R(&) for a e S+ is also defined
by (2.4a). Of course, R~ is not defined on S+.

2.5. Attracting sets. Suppose that the annulus A = S1x[a, b] contains an annular
trapping region B = S*x[c,d], a<c<d<b. This means that /(£)<= int(B) (int
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denotes interior). Thus the set

(2.5)

is non-empty. We call si the attracting set for the trapping region B. If, as in our
examples, det (DF) < c < 1, then / " decreases areas at least by c" and thus si has
zero area. If si contains transverse homoclinic points, we call it a strange attracting
set, and if it contains a dense orbit we call it a strange attractor. See [25, § 5.4-5]
for more details.

We shall also rather loosely refer to si as a Birkhoff attracting set or Birkhoff
attractor (cf. [10]).

We recall that a set S is minimal if it is invariant under / and closed, and no
proper subset of S has the latter properties. Thus, while an attractor is minimal, a
Birkhoff attracting set may not be.

2.6. Rotary homoclinic points. We suppose that / has a hyperbolic fixed point p
whose stable and unstable manifolds intersect transversely at some point q ¥• p. We
will require the intersecting manifolds to encircle the annulus A To define this
notion, fix a neighbourhood U of p and the local stable and unstable manifolds
WToc(p), WToc(p)- Let k, leZ+ be the smallest integers such that the set W =

/'(W7oc(p)) n / " k ( W,Joc(p)) contains q. Then i f / ( W?oc(p)) uf'k( Ws
loc(p)) u {p} con-

tains a closed curve which encircles the annulus at least once we say that the orbit
{/J(<7)}>=-co is a rotary (transverse) homoclinic orbit. We note that, for such an orbit,

QO

X 111 °fi{(\) = 2TTK for some Ksi,

i.e. rotary homoclinic orbits travel K times around the annulus. If K = 1 we call
the orbit simple or 1-rotary, otherwise it is K-rotary; see figure 1. The term 'rotary'
is borrowed from literature on the Josephson and pendulum equations.

W,"OC(P)

/ ' ( W,oc(p))

(a) a simple rotary homoclinic
orbit

(b) a non-rotary homoclinic
orbit

FIGURE 1. Rotary homoclinic orbits.

Analogous notions hold for homoclinic orbits to periodic points (p0, . . . , p,-i)
having rotation number p/q. However, all we need assume to guarantee rotary
homoclinic orbits in this case is that W"(p0) intersects Ws(pj) transversely at q^ pk
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for some 0< j < q - 1 . This implies that W"(pk) n Ws(p,+k) ^ 0 for all fc and hence
that a rotary homoclinic cycle can be constructed by piecing together q heteroclinic
orbits {fJq(q)}fL-m {/* (*+1)(q)}Jt-=o, etc. Such an orbit will be K-rotary for/".

It is well known that the presence of transverse homoclinic orbits implies compli-
cated dynamics, positive topological entropy and, loosely speaking, chaotic
dynamics. More precisely, the Smale-BirkhofE homoclinic theorem shows that a
map / with a transverse homoclinic point possesses a non-wandering Cantor set A
on which / is conjugate to a subshift of finite type. Equivalently, there is some
integer N < <x> and a subset AN <= A such that / N | A N is conjugate to a full shift on
two symbols (cf. [61], [50], [25]). In proving the following result we pay particular
attention to the geometry of A relative to A and the symbolic dynamics of fN

on A".

2.7. PROPOSITION. Suppose that f: A^> A has a hyperbolic fixed (or periodic) point p
with a K-rotary transverse homoclinic orbit {or cycle). Then there exists a hyperbolic
non-wandering Cantor set A<= A, an integer N<oo, a subset AN c A and a homeo-
morphism h : AN -> 2 such thatfN\A* = h~* ° o~° h. Moreover, A and AN can be chosen
so that the symbol sequences a = h(x) of points x e AN reflect the rotation behaviour,
in fact for xe AN we have p(x) = {K/ N)R(h{x)) if either limit exists and ifp(x) does
not exist then nor does R(h(\)).

Proof. We will only prove the theorem for the case of a fixed point. The construction
for the periodic case is similar in spirit but more involved. We first construct a
Markov partition of N disjoint 'rectangles'; this construction is the one used in [25,
theorem 5.3.5]. Let U denote a neighbourhood of p. Fix a point q ^ p on the
homoclinic orbit and pick the smallest integers k, I for which q e V =/ ' ( U) nf~k{ U).
By adjusting the size of U if necessary, we can ensure that V has only one component,
that the images f'{V), -l<j<k, are disjoint and that /" '(V) and/*( V) lie in U
and intersect in a single component. Moreover, since the orbit of q encircles A
precisely K times, the images fJ( V), 0<j< N make K full circuits of A also.

Let w" and ws denote the pieces of W"(p)n V, W*(p)n V containing q. The
lambda-lemma of Palis [54] (cf. [51]) shows that the iterates f\wu) approach
WToc(p) and iterates f~j(ws) approach Wi"oc(p) as j-»°o; moreover, the tangent
spaces to those curves also approach one another. Thus, by taking U smaller (and
fc, / larger), we can ensure that the images fk(V) and f~'(V) are thin strips in U
almost parallel to W,"oc(p) and Wfoc(p) respectively; see figure 2(a). We pick a further
thin strip V o c[ / bounded on two sides by the local stable and unstable manifolds
of p and thin enough in the Wu(p) direction so that/J(V0)<= U for all 0<7<fe+/
and fk+'(V0) stretches across U along W7oc(p) so that it crosses /" ' (V). Letting
N = k + l and setting H0=fN(V0) and picking V,<=/"'(V), //,<=/*(V), we have
two strips Vh i = 0, 1, each of whose images H, under fN intersect both Vo and V,
in the manner necessary for the horseshoe construction. In particular, the estimates
on DfN necessary for Moser's [50] proof of hyperbolicity will be satisfied if N is
large enough, since DfN is dominated by the linearization of/ near the hyperbolic
fixed point p; see figure 2(b).
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f'(U)
W(p) f(V)

f-'(V)

(a) the sets U and/J(V), -

Ho=/~(VO)

(b) the sets Vo, V,, Ho and W,

FIGURE 2. Rectangles and horseshoes for f:A-* A, shown in covering space.

To conclude the proof of the first part of the theorem, we define the Cantor sets

AN= H fJN(Vou Vj), (2-6)

A= (2.7)

That AN is a Cantor set follows from the nesting property of the images/ nN{ VJ) n Vj
and TN (Ht) n Hj, n = l,2,... (cf. [50, §3]). To each point xeAN we assign a
bi-infinite symbol sequence h(\) by the rule

where h} denotes the jth symbol of h(x). Since the intersections H,=/iV(V;)n VJ
are all non-empty, every symbol sequence a e S is realized by a point h~\a)eAN.
In fact, using the metric (2.3) on 2 and the natural Euclidean metric on AN inherited
from its embedding in A, h is easily seen to be a homeomorphism (see [50, § 3] or
[25, § 5.1]).

We now show that h: AN -> 2 preserves rotation information, thus completing the
proof. First note that if x = p then f'(x)eV0 for all i and thus h{\) =
• • • 000 • 000 • • • = ~(0)+. Thus from equation (2.4) R(x) = 0, and since p is fixed for
/ the result holds trivially. On the other hand, if h{x) = • • • 111 • 111 • • • = "(1)+

then / 'w(x)e V, for all i and fiN+J(x)ef( V,) =/•'"'( V) for 0<j<N. Thus, after
N iterates x has travelled K times around the annulus:

N (2.9)
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This shows that the fixed point r= h '( (1)+) for/N is in fact an N-periodic point
with rotation number p(r) = K/N fo r / Thus the result holds in this case also.
Similarly any sequences a = a_;,• • • a0 • • • ak(0)+ or • • • a_, • • • a0 • • • ak(l)

+ • • •
with common forward asymptotic behaviours correspond to points h~l(a) with
p(x) = 0 or K/N respectively. Such points lie in Ws(p) and WS(T) respectively.
Henceforth we can assume that the right hand part of h(x) contains only finite
(though possibly arbitrarily long) blocks of consecutive O's or l's.

More generally, from figure 2 it is clear that each entry '1 ' in the sequence h(x)
corresponds to an image of x in V, which will travel K times around A in the next
N iterates of / while each entry '0' corresponds to a point in Vo which will mark
time in U for the next N iterates.

Now assume that p{x) exists, so that given e > 0 there exists M such that k > M
implies that

2-jrNk'
<e/2. (2.10)

Now II, o fNk{x) = n,(x) + 2irmk + ak for some mk e Z+ and ak e [0, 2TT). Thus k > M
implies that

2nNk

Nk 2-aNk

or

Nk 2 2-irNk

Since 0<ak<27r we can pick M'>M sufficiently large such that, for

mk

(2.11)

(2.12)

Now mk is just the number of full turns of A executed by x in Nk iterates. Thus,
from the remarks above,

k-\

mk = K1Z a,, (2.13)
j=0

and so from (2.12)

Thus we obtain

as required.

Nkj% j

' N

< £ . (2.14)

(2.15)
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Conversely, suppose y = (K/N) Hindoo l/fcZ,=0
 aj exists. Then, reversing the

steps above, we see that y satisfies

lim
fc->0O

= 0, (2.16)
2irNkL ' J v '

i.e. p(x) = y exists.
This argument shows that either both limits exist and are equal or neither limit

exists. •

2.8 THEOREM. (Aronson et al. [3]) Suppose thatf.A^A has a hyperbolic fixed point
with a K-rotary transverse homoclinic orbit. Then there exists a non-trivial closed
interval / c R containing 0 such that for every a+, a' el there are uncountably many
points xeA with forward rotation number p(x) = a+ and uncountably many points
with backward rotation number a~. Moreover there are uncountably many points xeA
for which neither forward nor backward rotation numbers exist, and uncountably many
points xe A whose backward and forward rotation numbers p~(x) = a~, p+(x) = a +

both exist (and a", a+ e I can be chosen arbitrarily).

Proof. In view of proposition 2.7 we need only exhibit symbol sequences with the
correct asymptotic behaviours. We deal with periodic points first. We have already
constructed sequences • • • (0)+ and • • (1)+ with #(a) = 0 and 1, corresponding to
points with p(x) = 0 and K/N respectively.

The interval I of the theorem will be [0, K/N]. Pick a+=p/qe(0, K/N) where
p,qeZ+ and (p, q) = 1. Let a, b be non-negative integers such that

a-0+b-(K/N) a Kq
— = p/q or - = -f--\ (2.17)

a + b b Np

There are countably many solutions to this equation, for pick any beZ+ such that
((Kq/Np)-\)beZ+ and let a = ((Kq/Np)-\)b (recall that p/q<K/N, so
(Kq/Np)-l>0). Form a sequence c by repeating blocks of length a + b each
containing a 0's and b l's. It is clear that R(c) = Np/Kq and p(h~\c))= p/q. (Note
that the resulting orbits {/'(ft~1(c))} generally have periods which are multiples of
q, e.g. h~\~(0l)+) has p = K/2N and is 2N periodic while / T ' n O O l l D and
/i"1(~(010110)+) also have p = K/2N but are 4N and 6iV periodic respectively).
Such orbits have the same forward and backward rotation numbers.

To construct uncountably many orbits with specified forward or backward rotation
number p(x) = p/q we choose a sequence c0 • • • ck of length (a + b) as above and
form sequences • • • (c0 • • • ck)

+ and ~(c0 • • • ck) • • • with arbitrary tails to the left
and right respectively. To construct orbits with different rotation behaviours in the
past and future pick integers p/q, p'/q'e[Q, K/N] and form two distinct sequences
of length a + b and two of length a'+b' (a' = ((Kq'/Np')-l)b') as above, denoting
these sequences by c0, c^ci, c',. Then the set of orbits of the form
h~'(• • • c, 2Cj , • c'ioc'h • • • ) , where i,=0 or 1, will have the desired behaviour. In
particular, there are uncountably many such orbits because the cfj's and Cj.'s can be
chosen arbitrarily from the sets {c0, c,}2+ and {Co, cj}z+ respectively. An arbitrary
finite central block of 0's and l's can also be added.
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To construct an orbit whose rotation number does not exist, we choose a sequence
a which is dense in S. For example, join end to end all possible finite blocks of O's
and l's of length 1,2, There are clearly uncountably many such sequences.

Finally we construct orbits with irrational rotation numbers. Intuitively one just
requires that the 'average' proportion of l's is irrational (cf. [41, pp. 70-72]), but
we must ensure that the limit J?(a) of equation (2.4) exists. To construct sequences
a with specified J?(a) = a e [0,1]\Q we consider the rigid rotation 0*-»rQ(0) = 6 +a
of the circle S1 of length 1. Fix the origin Oe S1 and the point aeS1 and define the
arcs A! = [0, a) and A0 = [a,0) of lengths a and I-a respectively. Choose any
point 0O€ S1 and consider its orbit {ri(0o)}f=o- Define a(0o) by

ifri(0o)eAo, , „ _

Since the orbit of 90 is countably dense in S1, as 0O ranges over S1 uncountably
many distinct sequences are created (in fact there is a 1:1 correspondence between
points 0O e S1 and sequences a(0o)). Now the 'conventional' rotation number of any
point 0O under ra is a and so all we need do is show that /?(a(0o)) =
lim^oo 1/n £ =0 a,- = a, i.e. R is a correct measure of the circular rotation number.
But this is precisely the content of proposition 6.2.1 of [25], where the rotation
number for homeomorphisms of the circle is defined intrinsically rather than using
lifts (also see lemma E, § 3.3, below).

Given such a sequence a = aoai • • • we let a_, = a,- and can thus construct uncount-
ably many sequences with forward and backward rotation numbers a, and hence
uncountably many points x with p(x) = p~(x) = Ka/ N E [0, X / N ] \ Q . To construct
orbits with differing forward and backward rotation numbers we simply piece
together left-going and right-going sequences constructed using rigid rotations ra.
and ra. The central (finite) connecting portion is arbitrary, as in the case of periodic
orbits. •

Remarks. Although here we have only given the theorem for the case of a fixed
point with a homoclinic orbit, an analogue for a g-periodic point of rotation number
p/q exists. In this case the interval / = [p/q,p'/q'] where \p/q-p'/q'\ = €(l/N) is
determined by the number of iterates necessary to ensure hyperbolicity for DfN. In
specific cases N can be estimated, see § 5.

In the next section we will develop the irrational rotation idea used above to
construct orbits with irrational rotation numbers whose closures are Cantor sets.
Some of these correspond to the order preserving (Aubry-Mather) Cantor sets
referred to in § 1. However, this requires a more careful study of the global structure
of the embedded manifolds Wu(f), Ws(p) c A, which we carry out in § 4.

3. Irrational Cantor sets in the horseshoe
We now use the symbolic description of orbits developed in proposition 2.7 to
characterize certain classes of orbits in the non-wandering sets AN and A defined
in (2.7). This section is devoted to the proof of:
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3.1. THEOREM. Suppose that f:A^> A has a K-rotary transverse homoclinic point
qe W"(p) n Ws(p) to a hyperbolic fixed point p. Then there exists an integer N<<x>
such that for any "ye[0, K/N]—Q there exist uncountably many disjoint invariant
Cantor sets Ay such that p(x) = p~(x) = yfor all x € Ar Ay = Ay(fi) can be parameter-
ized (with some redundancy) by fie (0,1].

3.2. Remarks. The sets Ay(fi) are all contained in the Cantor set A of proposition
2.7. In fact each Ay(/x) = 0 ^ ' / ( A ? ( M ) ) , for a set A^(/ i)cAN which we will
construct below. The majority of these Cantor sets are not order preserving, see § 4.
They appear to be analogues of some of the sets for area preserving maps recently
constructed by Mather [47].

To prove the theorem we will further develop Hedlund's [29] construction of
invariant Cantor sets, already alluded to in the proof of theorem 2.8, above. Although
the basic idea is Hedlund's, we divide the circle into four arcs rather than two and
are thus using a construction similar to the double cover suggested by Boyland [12].

3.3. Irrational Cantor sets. We first construct symbol sequences of rotation number
a = yN/K e (0,1) for specified -ye [0, K/N]\Q. Let ra denote the rigid rotation
6>->0 + a defined on the circle S1 of circumference 1. Fix ce(0,1 —a] and divide
the circle into four arcs:

A0(c) = [Q,c); B0(c) = [c,c + ̂ ; A,(c) = [ | fj [ |
(3.1)

To each irrational a e (0,1), each point xeS 1 and real number ce [0 ,1-a) , we
assign a bi-infinite symbol sequence &a(x, c)e1 with entries a'a(x, c) determined by

fO if ri
a(x)eAo(c)uA1(c),

i (3.2)
if r'a(x)eB0(c)uBi(c).

In an analogous fashion we define sequences n'a(x, c) using the partition A'0(c) =

f

We now state and prove several lemmas, which will together imply theorem 3.1.

LEMMA A. x = y<=>aa(x, c) = aa(y, c) (resp. *'a(x, c) = z'a(y, c)).

Proof. (=») immediate, from the definitions.
(<=) Suppose that aa(x, c) = aa(y, c) but x # y, so that | x - j | = e for some e>0.

Pick x'e A0(c)<j Ai(c) and y' = x'+\x-y\e B0(c)uB,(c) such that x' and y' each
lie e/2 from the nearest boundary of A, or Bt. Since the irrational ra-orbit {r" (x)} =̂_oo
is dense in S1 for any xeS1, there exists N<<x> such that | rN(x)-x ' |<e/4 , and,
since the distance \rk

a{x) - r*(,y)| between images of x and y is preserved under rigid
rotation, we also have \r"(y)-y'\<e/4. Thus a"(x, c) = 0 while a"(y, c) = l,
so that »a(x, c)9iaa(y, c), providing a contradiction. The proof for a' is the
same. •

LEMMA B. limx^y+ aa(x, c) = *a(y, c) and l im^,- a^x, c) = z'a(y, c).

Proof. Again we only give the proof for aa since that for a^ is similar. Suppose first
that y^O, c, c + (a/2), 1 -(a/2), i.e. y is not an endpoint of any of the arcs At(c),
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B,(c). Then, given any positive integer k there exists e > 0 such that if |x-_y|<e
and |n|<fc, the image pairs r"a{x), r"a(y) lie in the same arc for each n. Thus
a"(x, c) = al(y, c) for \n\ < k and

j 1 j

1
k-2- (3.3;

This shows that limx^y aa(x, c) = aa(y, c) if ye int (A,(c) u B,(c)), i = 1,2. If y lies
in an endpoint of one of the arcs then, since all points to the right of y and sufficiently
close to y (closer than min(c, a/2, (1 - a) - c)) lie in the same arc as y, for any posi-
tive integer k we can find e e (0, min(a/2, c, (1 - a) - c)) so that the symbols a"a{x, c)
and a"(y, c) agree for all \n\ < k, as above. If c = 1 - a the proof goes through in
the same fashion but with only two intervals [0,1 - a) and [1 - a, 1). •

For a e (0,1)\Q fixed and ce [0,1 - a ) , we define the set

LEMMA C. £la(c)<= £ is minimal under the shift cr and is a Cantor set.

Proof. To show that £la(c) is minimal we must show that it is invariant under a,
closed in 2 and that every orbit {o-k(b)} of a point be£la(c) is dense in ila(c).
Invariance follows directly from our definition of sequences (3.2) and the properties
of the shift cr. To prove that Cla(c) is a closed subset of 2 it suffices to show that
any infinite sequence of points of fta(c) contains a subsequence converging to a
point of ila(c). Let {b(x,, c)}f=0 be such a sequence. Since Sl is compact, the points
x, e S1 from which the symbol sequences are derived must contain a subsequence
{yt} converging to a point y e S1 from either the right or the left. Then lemma B
implies that aa(y,, c)^a«(_y, c) or *.'a(yhC)-*a.'a(y,c). Density of any orbit
{o-h(aa(x, c))} or {crfc(a^(x, c))} in Cta(c) follows directly from density of the orbit
{rk

a(x)} in S\
Finally, to see that ftQ(c) is a Cantor set, we note that, being a subset of 2, it is

totally disconnected, and by lemma A the points aa(x, c) (resp. a^(x, c)) in it are
in 1:1 correspondence with the real numbers x e S1 and hence it is uncountable.
Finally, since the orbit of every point aa is dense in fla(c), each point of ila(c) is
an accumulation point. •

LEMMA D. There exists an uncountable set of real numbers <<? c (0,1 — a ] such that
if c, c'e ^ and c ̂  c', the Cantor sets f l a(c), fla(c') are disjoint.

Proof. Take any pair of points x, x' e S1 and suppose c # ( l - a ) - c ' (for otherwise
the sequences aa(x, c) and aa(x', c') are identical if x' = x + (a/2) + c'). We claim
that, if c ^ c', there exists e > 0 such that d{tjk{na(x, c)), crk'(aa(x', c')))> e for all
fc, fe'eZ. Indeed, suppose that c ' -c = 25>0, so that there is a point d e S 1 with
S-neighbourhood (c, c') = A0(c') n B0(c). Since the orbits r"a{x), r"a{x') are dense in
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S\ each orbit enters this 5-neighbourhood infinitely many times. Let N = N(S)
denote the maximum number of iterates between any two such occurrences. Since
at any such occurrence we have r^(x) s A0(c') n B0(c), the two symbol sequences
differ at least once in every N symbols, so that

d(ak(aa(x, c)), a"'(aa(*', c')))>^e, (3.4)

for any pair k,k'eZ, as claimed. The argument also shows that

d(crk(*'a(x,c)),(r
k(a'a(x',c')))>e

and

d(crk(za(x,c)),<rk(a'a(x',c')))>e.

Now choose c, c'e(0, l - a ] with cV c, (1 -<x)-c. Defining Cla(c) as above, these
inequalities imply that the Cantor sets da(c), tta(c') lie a nonzero distance apart.
Fixing c and letting c' vary, we thus produce uncountably many disjoint Cantor
sets. •

LEMMA E. Let be£la(c). Then R(b) = R~(b) = a.

Proof. This essentially follows directly from our construction of Ott(c) via the rigid
rotation ra(x) = x + a. (cf. [25], § 6.2). To verify that the 'symbolic' rotation number

R(b) = Urn - V bj (3.5)

is indeed equal to a, we consider orbits of rigid rotations rpJq. through the rational
approximants {/>,/<?,} generated by the continued fraction expansion of a. In par-
ticular, applying such a rotation on the circle with the irrational arcs of (3.1), the
^-periodic orbit {rJJ,/,/*)} consists of qt points spaced at intervals 1/qr, around S1

of which [aqt/2]±l fall in B0{c) and [a<j,/2]±l in B,(c), where [ ] denotes the
integer part. Thus the asymptotic proportion of l's in the sequence aa/,./9i(x, c)
obtained from the rotation rPl/q. is bounded between (ag,+2)/9, and (aqi-2)/qi

and so approaches a as qt-> oo. The same argument applies to backward orbits and
thus we also find

R~(b) = lim - V b'J = a. (3.6)

•
3.4. Proof of theorem 3.1. Let fi = c/(l - a) e (0,1] serve as parameter forthe Cantor
sets ila(c). Lemma D guarantees that, after deleting countably many values of fi,
we still have uncountably many sets O«(c) left. Picking a = yN/K, lemma E and
proposition 2.7 show that each point be fla(c) in such a set corresponds to a point
x = /i"1^) € AN with forward and backward rotation numbers p(x) = p~(x) = y. Since
h is a homeomorphism, the set A^(/t) = ^ ' ( ^ ( c W c AN is also a Cantor set, and

thus the collection Ar(/i) = U = 0 /J(^r'(Ai)) of its images is a Cantor set with the
required properties. Letting fi range over the interval (0,1] we obtain our uncount-
able collection. •

3.5. Remarks. (1) In §3.3, we have essentially constructed a one dimensional
continuum of Cantor sets of each irrational rotation number ye[0,K/N]. By
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considering n-fold covers of the circle, rather than the twofold cover (partition into
four disjoint arcs of (3.2)), one can similarly construct n -1-dimensional continua
of Cantor sets of each irrational rotation number. This seems to be related to recent
results of Mather [47] on area preserving monotone twist diffeomorphisms, although
we have not attempted to prove that our sets are the same as Mather's in the case
where the hypotheses of both his and our theorems are simultaneously satisfied.

(2) It is possible, at least in some cases, to give explicit algorithms for the iterative
construction of irrational symbol sequences. In the case of the set £la(l-a), in
which the circle is partitioned into two arcs [0,1 —a), [1 —a, 1), the construction
directly uses the rational approximants generated by the continued fractions
expansion of a. See [65].

4. Order preserving and non-order preserving orbits
We now consider in more detail the construction of invariant sets analogous to
A, AN of § 2.7. In particular, we first specify conditions on the homoclinic orbit
{/"(q)}"=-oo contained in the set t /u(UJ. j l ( /_1 ) / ' (

v )) which will guarantee the
existence in this set of order preserving orbits of all rotation numbers in some interval.
It will turn out that most of these orbits are not invariant sets for fN restricted to
the set \N constructed in § 2.7, although some of the subsets of A = UJ = 0 / '(AN)
with well defined rotation numbers are order preserving.

We remark that a theorem of Hall [28] guarantees that any monotone twist map
which possesses a q-periodic point of rotation number p/q also possesses an order
preserving (Birkhoff) q-periodic orbit of rotation number p/q. A result of Katok
[38] then permits one to construct order preserving orbits of irrational rotation
number by taking limits of sequences of order preserving periodic orbits. Here we
wish to understand more explicitly how the orbits constructed above by 'natural'
embeddings of horseshoes fail to be order preserving and so we proceed indepen-
dently. Also, we do not require that / be a monotone twist map. Our construction
will reduce matters to the study of mappings of the circle.

4.1. Order preserving homoclinic orbits. The condition that the homoclinic orbit
should not 'twist too much' is easily illustrated geometrically, and so we start with
figure 3, suggested by our analysis of the Josephson equation in § 5. We restrict our
discussion to 1-rotary homoclinic orbits. We will require that all the N = k+l iterates
of the 'vertical' strips Vo, V, constructed in § 2.7 project under II, onto S1 with the

Vo D

FIGURE 3. An order preserving 1-rotary transverse homoclinic orbit.
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orientations of their boundaries preserved. This clearly must happen for {/J( V0)}jL0

since all these images are contained in U and their boundaries are parallel to the
local manifolds W"oc(p), W,soc(p), but care must be taken with the images {/-"( V,)}j^7!.
For example, examination of figure 2(a) will reveal that the orientations of the
projected boundaries rotate through IT in that case. A homoclinic orbit {/"(q)}^=-«>
for which the projections of the sets {fJ( Vi)/l0 do not change orientation will be
called an order preserving (1-rotary, transverse) homoclinic orbit.

The existence of such a simple homoclinic orbit will guarantee that any orbit in
its neighbourhood must preserve order as it moves from U around A and back to
U. Thus, if we can take care of the local behaviour in U, the global behaviour will
take care of itself.

Henceforth in this section we assume that {/"(q)}^=-oo is an order-preserving,
1-rotary, transverse homoclinic orbit to a fixed point p and that we have selected
an integer N, a neighbourhood U of p and vertical strips Vo, Vi such that/N( Vo) = Ho

and fN(V1) = H1 stretch 'horizontally' across U and the sets {/'(Vj)}]^ contain
images of q. U is supposed to be small enough (N large enough) that the maps
f\u and/^lv, are uniformly hyperbolic. See figure 3.

4.2. Induced maps. We now show that the sets U, {fJ{Vx)}"=0 associated with the
order preserving homoclinic orbit permit us to construct a map g.S1^*S1 in such
a way that order preserving orbits of g will corresponds order preserving orbits
of / :A-*A This will be done in several steps.

We choose a (i/f, s) coordinate system in U such that W"oc (p) is the t/f-axis and
Wk>c(p) the s-axis. Let FlJ v denote 'projection' along the local stable manifold
onto the local unstable manifold. Let Vo = Unf~\U) and define the induced map

From the construction of § 2.7 it is clear that Vo and Vx are disjoint 'vertical' strips
and their images g(V'o) =/(V'o) =

rH'o and g(V,)=/N(y1) = //, are disjoint
'horizontal' strips which stretch across U and that g is uniformly hyperbolic. Note
that Vo, defined in § 2.7, is contained in Vo: Vo is a bigger strip. The action of g
has the form sketched in figure 4(a).

We set up symbolic dynamics for g just as we did for fN\v in § 2.7. Let A' =
n n = o o g " ( Vou VJ be the (invariant) set of points xe Vou V! which never leave
Vou V, under iteration of g. Assign a symbol sequence a =/(x) = {a;}°L_0Oe2 to
each point x e A' by the rule

O ifgJ(x)eV'o,

which defines the map /:A'-»2. As in (2.4) we also define the (forward) rotation
number

1 k-l def -

i?(a) = lim - I aj = lim ^ (4.3)
k-*oo K j=O k-*oo K

of a symbol sequence a, if the limit exists.
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D

(a) the induced map g: V'0\J V,-> U. Points A • • • H are mapped to
A' • • • / / ' by g.

(b) the projection g of the induced map g under n+

FIGURE 4. Induced maps of/

Before we state results analogous to proposition 2.7, we construct the one
dimensional map g by projecting down the stable manifolds of A'. In fact, in the
local coordinate system we have chosen, the projection operator 11̂ , identifies orbits
in A' which have the same (forward) asymptotic behaviour. In symbolic terms, orbits
with sequences whose positive entries agree are collapsed together by n^. Letting
W = n*(U), Wo = n<,(Vo), W'O = U^(V'O) and W, = n^( V,), we can represent the
projected induced map g (loosely 'II^ ° g') as in figure 4(b). Strictly, g is only defined
on the Cantor set A = II^(A'). Finally, identifying the endpoints of W, we obtain
g:S1^>S*. There is a natural map /:A-»2+ obtained by using the recipe (4.2) for
7-0 .

Returning to the two dimensional induced diffeomorphism g, as in § 2.7 (cf. [25,
§ 5.2]) we have:

4.3. PROPOSITION. A'<= U is an invariant Cantor set for g and g|A. is topologically
conjugate to the full shift on 2: g|A'= /"' ° cr» I.

Moreover, we also have:

4.4 PROPOSITION. Suppose that i?(a) = ae[0,1] exists for aeS . Then the forward
rotation number p(x) for the point x=/~1(a) exists and is given by y =

Remark. Suitable choices of a€[0,1] yield all ye[0,l/N~\. Indeed a =
y/(l — (N — \)y). A similar result holds for backward rotation numbers.

Proof. Consider the orbit {Xj} = {g'(x)} of the point x=/"'(a). Each '0' in a corre-
sponds to an iterate x, e V'o and each '1 ' in a to an iterate x, e V,. Each of the latter
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therefore lies on an orbit which makes one full turn of A in the next N iterates of
/ (just as in §2.7), and since V'o= Unf~\U), each x,e V'o remains in U for at
least one iterate o f / (But note that such points generally do not lie in Vo =
P) -=of~

J( U) and so can leave U after less than N iterates.) Thus, the finite sequences
with 'running average' rotation number

H%- (4A)

correspond to orbit segments {fJ(\}} for points xe U which describe rk full turns
of A in Nrk + {k-rk) iterations of/ Hence the rotation number (if it exists) will be

But limk̂ oo rk/k = a by hypothesis and thus

»(X) = ( ^ T T (4-6)

as claimed. •

4.5. Order preserving orbits. Since the induced map g: U-* U is conjugate to a full
2-shift, propositions 4.3 and 4.4 guarantee that orbits of all (forward) rotation
numbers yetO, 1/N] for/can be constructed much as in the proof of theorem 2.8.
We will now show that at least one orbit of each rotation number y is order
preserving. These orbits will generally differ from those constructed in § 2.8; in
particular, for typical order preserving orbits {/J(x)} the set {fJ (x)}JL ~co<~^ U will
not be invariant for fN (see § 4.7, below).

Consider the one dimensional map g :A^A(AcS l ) and the associated symbolic
dynamics induced by f:A-»2+ described in §4.2. Suppose that the induced map
g: A'-» A' possesses an orbit which is badly ordered, i.e. there exists x e A' such that
n*(x)<II*(g(x)) but n<,(gJ(x))>n,l,(g

J+i(x)) for somejX). Then it is obvious
from the definition of g that y = U^,(\)e A has an orbit which is badly ordered.
Thus if y e A has an order preserving orbit under g, then there must exist x e U^,l(y)
whose orbit under g is order preserving, for since y has an order preserving orbit,
it cannot be the image of a point with a badly ordered orbit.

In view of the above remark, it is sufficient to construct order preserving orbits
for the one dimensional map g, and we will do this by constructing 'correctly ordered'
symbol sequences, which requires the following elementary result:

LEMMA F: Let <f>u <f>2eA = U.^,(A') and let l((f>i), /(<£2)e2+ denote the semi-infinite
symbol sequences associated with these points. Then (j>l < <f>2<=> l(<t>\) ^ l{<j>2), where
< denotes lexicographic ordering.
Proof. Suppose <£, < <f>2 and </>u <f>2 lie in the same subinterval W'o or W,, for if they
do not then {l{<t>i))\^(l{<j>2))i and there is nothing to prove. Since glv^v, is
uniformly hyperbolic, we have g ' s o 1 on W'ou Wt. Thus there exists an integer
7>0 such that gJ(<f>i), gJ(<f>2) lie in different subintervals; let / be the smallest such,
so that both members of the pair g'{<t>\), g'(4>2) He in the same subinterval (W'o or
W,) for each Os i<J. Thus gJ~l{<f>l)<gJ~\<t>2) and gy(<£,)e W'o, gJ(<f>2)e W, (cf.

https://doi.org/10.1017/S0143385700003412 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003412


Josephson''s junction 223

figure 4(b)) and so (/*(</),)), = (f(4>2)), for 0 < i < / and (f(</>,)), =0, (t(4>2)h = l,
implying that l(<f>\) •< l((p2) as required.

Now suppose l(<f>\) ^ l{<f>2) and that the sequences differ first at the Jth symbol:
(h<t>i)h = O, (I(f2)h = l. This implies that g'i^e W'o, g

J(<t>2)e W, and hence
that gJ~1(<f>i)<gJ~\ft>2) and both points lie in the same subinterval. Therefore
§'(<t>i)<g'((t>2) for all 0< i < J and in particular 4>i< 4>2- D

We recall from § 3 the construction of the Cantor set Ha(c). In particular, when
c=\-a, the partition of the circle degenerates into two arcs A = [Q,l-a), B =
[1 - a, 1). We will show that the image of the Cantor set ila(l - a) under l~x is a
well ordered subset of A and, as a consequence, also well ordered for /

A - A

LEMMA G. Let a s fla(l — a), a e [0,1]. Then y = / (a) e A has an order preserving
orbit under g with p(y) = a. Hence there exists xe n^'(y) whose orbit is well-ordered
under g.
Proof. That a and its shifts are properly ordered is essentially obvious from the
construction of fta(l — a) of § 3.3. All that remains to be shown is that a = l(y) for
some ye A, i.e. that a actually represents the dynamics under g of some y e A. But
this follows from proposition 4.3 and the definitions of g and A. The last statement
follows from the remarks preceding lemma F. •

To conclude the construction of order preserving orbits for / we need:

LEMMA H. Let xe A'<= U. If the orbit of x is order preserving for g: U -> U then it is
also order preserving for f:A^> A.

Proof. Since g=f on V'oc U we need only consider the /-orbits of points xe Vt.
But our assumption of an order preserving homoclinic orbit (§4.1) implies that the
images /J(x), fJ(y), 0<j< N, of any pair of points x, y€ V] retain the same order
as these points are mapped around A by f Thus fN(\), fN(y) land in U in the
same order in which they left U and order is preserved for / as well as for
g=/ N |V, . •

We have now proved the following.

4.6. PROPOSITION. Iff:A->A has an order preserving homoclinic orbit near which
there is an orbit of rotation number y then f has an order preserving orbit of rotation
number y.

Remark. The conclusion of this result is similar to that of Hall [28] and Boyland
and Hall [13]. In fact one can probably weaken our hypotheses, since in topologically
'reasonable' situations, the existence of a non-order preserving homoclinic orbit
seems to imply the existence of an order preserving one.

4.7. Some examples. Here we use the algorithm described in § 3.3 and the results
of §§ 4.1-6 to construct some order preserving orbits for / We also demonstrate
that orbits constructed from the 'natural' embedding of the horseshoe for fN

described in § 2 are not generally order preserving.
We briefly summarize the procedure. To construct an order preserving invariant

set for/ of rotation number y e [0,1/ N] we let a = y/(l -(N- l)-y) and construct
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a(x, 1 -a ) , where xe[0,1] is arbitrary, by eq. (3.2). We interpret a(x, 1-a) as
arising from the symbolic dynamics induced by the projected induced map g.
Lexicographical ordering of a(x, 1-a) and its shifts*gives the ordering of the iterates
gk(y) of the corresponding point y = l~\z(x, 1-a)) in W = n+(U). Choosing a
particular xeH~j,l(y) gives a point whose orbit under the induced map g is order
preserving and has rotation numbers a for g and y for / The actual invariant set
for / i s then obtained by following the TV —1 images under / of those points gfc(x)
which lie in V, (noting that g=f on V'o).

Example (a). Let TV = 3 and y = \. Then a = | / ( l - ( 3 - l ) •§)=§. Letting x=\ we
find a( i |) = "(01001)+. If we let cJ = o-^(a(i f)), 0<> < 4, then the points <f>j = f~V)
are ordered in W = Uj,(U) as indicated in figure 5(a), where <j>J+1 = g(<f>j), 0<y<3,

The projection of the corresponding orbit fo r / is shown in figure 5(b).

Example (b). Let TV = 2 and y = (V5-l)/(V5 + l). Then a = (V5-l)/2, the golden
mean.

Again taking x = \, we find that the first 20 elements of a(x, 1 - a) = a( i (3 -V5)/2)
are 01101011011010110101. There is enough information here to order lexico-
graphically <rJ(z(x, 1 - a ) ) =*V for 0<7<9, and hence to determine the relative
position in W of <f>j = r1(<rJ(a(x, 1-a))) for 0 < j < 9 . See figures 5(c), (d).

j

0
1
2
3
4
5
6
7
8
9

cJ (first 11 symbols)

01101011011
11010110110
10101101101
01011011010
10110110101
01101101011
11011010110
10110101101
01101011010
11010110101

Lexicographic postion

3
9
5
1
7
4
10
6
2
8

Example (c). Let TV = 3 and y = \, so that a=fj- We will construct two disjoint
orbits of rotation number f for f3\v using the embeddings of AN and A<= A of
§2.7-8. Consider the pre-images x=/i"1(a), j» = ft~I(b) for a = "(00101)+, b =
"(00011)+ e 2. We observe that a(0,0.6) = (00101)+, using the construction of § 3.3,
and that (00011)+ # a(x, 0.6) for any x e [0,1]. The reader can check that the orbit
{/3j(x)}°l_co is order preserving for/3^, while {/3j(y)}j°l-oo is not. Moreover, neither
{/'(y)}Ji-oo nor {/^(x)}"!.^ are order preserving for/ : A-> A. See figures 5(e), (f).
For x = h'1^) this occurs despite the fact that a can be generated using the same
symbolic recipe that led to order preserving orbits in examples (a) and (b). Thus
the 'natural' embedding of the horseshoes of § 2 does not, in general, yield order
preserving orbits, either for / or fN.
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2 >I
h-1 1 1 1 M (01001)

02 00 03 <t>\ 04
(a) An order preserving orbit of rotation number a =f for g. The indices reflect

the order of visitation under the action of g, starting at 0O.

H 1 1 1 1 1 1 1 1 1
02 0O 03 0, 04 / ( 0 l ) /(04> Pitx) f\<t>*)

(b) The projection of the order preserving orbit for / obtained from (a). Note
that <t>2=fi(<t>i), 0o = / 3 (04) ar>d that the rotation number for this orbit is y = §.

W'o W,

-I 1 1 1—I
03 08 0O 05 02 07 04 <t>9 01 06

(c) The first 9 iterates under g of a point 0O belonging to an order preserving
Cantor set of rotation number a = ( V J - l ) /2 .

. W'o W, , /(W.)

I I I I I I 1—I—I—I—I—I-
03080005 02 07 04^9 0106 /(02) /(0e) ' ' '

(d) The projection of part of the order preserving Cantor set of rotation number
y = (v/5-l)/(V5+l)for/

FIGURE 5(i). Order preserving orbits for g and /

h-l 1 1 1 1—(
00 03 01 04 02

(e) An order preserving orbit for / 3 ^ (00101).

Vo V, /(V,) /2(V,)

/(0oh0, ^(*
i i f f11 f i^r i

t>2 /(04) /(02)

/2(0o) " f(4>J)

(f) The same orbit as in (e) is not order preserving for/ Note that /3(0i) = 0j+i.

FIGURE 5(ii). Non order preserving orbits for /

5. Application to the Josephson junction equation
We now turn to the single degree of freedom Josephson equation

(<t>,r,t)eAxS\ (5.1)
r = —sin <f>+ v — Sr + (3 cos tot)

and the associate Poincare map Pe = PVis,^,a,' A^> A denned in § 1. We first show
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that (5.1) has a Birkhoff attracting set by finding a trapping region for P. We then
use the Melnikov [49] perturbation method (cf. [23], [25], §§ 4.5-7] and [22]) to
prove that the attracting set contains transverse homoclinic orbits. In fact the
perturbation theory shows that one of these orbits is order preserving and 1-rotary,
so that the results of §§ 2-4 above can be used to obtain detailed information on
subsets of orbits within the attracting set. We also estimate the integer N of § 2.7
in terms of the parameters v, S, ft, w of (5.1) and end the section with some conjectures
and examples of 'pathological' Birkhoff attracting sets.

5.1. PROPOSITION. Let B = {(</>, r)e A|re[A,, A2]}. / / A 1 < ( r - / 3 - l ) / 5 , A2>
(i> + B + l)/8, and v, )8>0, 8>0 , then the set sd = (~X=0P"E(B) is an attracting set
for the Josephson Poincare map. M has zero Lesbesgue measure and hence empty interior.

Proof. We show that the (time dependent) vector field of (5.1) is directed inwards
on the boundary components r = A12 of B for all t:

r = A2: f = —sin <f>+ v — 8A2 + /3 cos a>t

<0, it k2>{v +

r = Ai: f= - s i n <f> + v - 5 A , + /3 cos a>t

>0 if ^<(v-B

Thus B is a trapping region for PE: A -» A and si is its associated attracting set
(cf. § 2.5).

To see that si has zero area, we note that the divergence of the vector field (5.1)

is constant and strictly negative, and hence, via standard linear analysis, that
det (DP.) = e-

8-2"/«'d=if£< i for 5>0 . Thus the areas of the images P"(B) decrease
geometrically at the rate C and since f" -» 0 as n -> oo, si has zero area. •

5.2. Melnikov's Method. We recall the basic features of the Melnikov perturbation
method for two dimensional time periodic vector fields of the form

=("jx=f(x) + eg(x, f;ji); x = ( " j € M 2 ( = 51xR here) (5.2)

with O s e « 1 and g T-periodic in t and also depending on parameters (lelR*1. We
suppose that

. / dF/dv\
\-dF/du)

is Hamiltonian and has a homoclinic orbit y°(t) to a hyperbolic saddle point p and
moreover that y°(t) is the limit of a continuous family yh(t) of periodic orbits whose
periods r{h) -> oo monotonically as h -> h0. Here h can be taken to be the Hamiltonian
energy ^(7*) of the orbit and h0 is the energy ^(7°) of the homoclinic orbit. We
also assume that dT/dh > 0, at least for h near h0.
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We define the A-product of 2-vectors a,b as aAb = axb2-a2bx. The Melnikov
functions are then defined for the homoclinic loop y° and for T-resonant members
7Mm-n) of period r(h{m, n)) = mT'/n, (m, n) = l, of the periodic family {yh} as
follows:

M'°(to;v.)=\ (fAg)(y°(O,*+'o;|i)* (5.3)

( m - ' 1 > ( O , / + fo;»t)^ (5.4)
Jo

The basic results are as follows:

5.3. THEOREM. If M°° (resp. Mm/n) has a simple zero as a function of t0 for fixed p.
then, for e ^ 0 sufficiently small, the Poincare map of (5.2) has a hyperbolic fixed point
pe=p+C(e) whose stable and unstable manifolds intersect transversely (resp. the
Poincare map of (5.2) has an isolated m-periodic subharmonic orbit).

For a proof see §§ 4.5-6 (theorems 4.5.3 and 4.6.2) of [25]. Bifurcation theorems
with hypotheses involving degenerate (quadratic) zeros of M are also available, but
they will not be used explicitly in this paper. However, the fact that regular
perturbation expansions are used implies that the perturbed homoclinic and periodic
orbits inherit important aspects of the geometric structure of the unperturbed orbits
xo(0 of (5.2) with e=0 . This allows us to draw conclusions on order preserving
orbits, as in the following subsections.

5.4. The Josephson equation. To put (5.1) into the form (5.2) we assume that the
damping (8), constant (f) and periodic ()3) driving amplitudes are uniformly small
and write 8 = e8, v = ev, /3 = e/3 to obtain

<j> = r
_ _ (5.5)

r = -sin <f> + e(v- 8r + @ cos cot).
Thus the unperturbed system has Hamiltonian

cos0) = h, (5.6)

with the well known pendulum phase portrait containing two seperatrix or homo-
clinic loop solutions (cf. figure 8(a)):

7°( f) = (±2 arctan (sinh t),±2 sech t), (5.7)

with energy h° = 2, and a family of rotary periodic solutions

t (5.8)

with energies h > 2. Here sn and dn are the Jacobi elliptic functions. There are also
oscillatory periodic solutions with energies h e (0,2), but we will not use these in
the computations below. The periods of the rotary family (5.8) satisfy

( 5-9 )

where K is the complete elliptic integral of the first kind.
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We shall concentrate on a particular parameter region in which v, f}, 8 are all
positive and the time independent perturbations v and -8r balance near the upper
(+) unperturbed homoclinic loop y°(t). We will-find embedded horseshoes and
complicated rotational behaviour in the neighbourhood of this orbit. Let Po denote
the Poincare map of the unperturbed (e = 0) Hamiltonian system of (5.1) and Pe

or PVip,s,w denote the perturbed map.
Before proceeding, we note several earlier studies of the Josephson system (5.1)

and relatives of it. Levi et al. [43] and Sanders and Cushman [60] consider the
autonomous (/3 =0) case and Belykh et al. [6], Abidi and Chua [1], Odyniec and
Chua [53] and Salam and Sastry [59] consider the periodically forced case. Some
of the Melnikov computations used in the proof of theorem 5.6 appeared in these
earlier papers. There are also several numerical studies, including those of Huberman
et al. [35], Jensen et al. [37], and Bohr et al. [11], the latter two addressing the
question of rotation numbers and the conjectural reduction of the Poincare map to
a circle map. As our results show, this is clearly not generally globally possible,
although individual order preserving invariant subsets can be projected in a 1:1
fashion onto a circle.

We start with an elementary remark on the unperturbed Poincare map.

5.5. PROPOSITION. All orbits of the unperturbed Poincare map Po of (5.1) which lie
on level sets F~1(h), /i > 2, are order preserving. Moreover, the unperturbed homoclinic
orbits are I-rotary.
Proof. From (5.6), each h > 2 level set of F is a simple closed curve encircling the
phase cylinder S1 x |R in the $ direction. Moreover, the curves are graphs over (f>.
Such a curve is invariant for the e = 0 flow and hence also an invariant manifold
for Po, since Po is obtained simply by integrating the unperturbed flow for time
T = 2TT/Q). The map P0|*=const. restricted to any such manifold is a diffeomorphism
of the circle and hence all orbits are automatically order preserving: in a suitable
(action angle) coordinate system each such restricted map is simply a rigid rotation.
Letting /i-»2+ and limiting on the homoclinic orbit y°(t) we still have an invariant
manifold F~'(2)u{p = (±ir, 0)} homotopic to the circles F~\h), h>2, and thus
the homoclinic orbit is also order preserving. It is also clearly 1-rotary since <t>(t)
changes by 2TT (from —v to IT) as t runs from -oo to +oo (eqn. (5.7)). •

We now give our main perturbation results.
5.6. THEOREM. Assume that v,p,8>Q are sufficiently small and all of the same order.
If P>/?<„= 1(7^-45)/^sech(77w/2)| then the Poincare map Pe for (5.1) has an
order preserving, 1 -rotary, transverse homoclinic orbit to a hyperbolic saddle point
pE = (TT, 0) + C(e). Furthermore, if

iri>-48y/(h/T)E(2/h)

I

H Hm nsech[a>V(2/hJK'(2/h)] '

where h = h{m) solves -J(2/h)K{2/h) = irm/<o, then the Poincare map Pe for (5.1)
has precisely two order preserving m-periodic orbits of rotation number l/m.

Remark. Here K and E are the complete elliptic integrals of the first and second
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kinds respectively and K' is the complementary complete elliptic integral of the
first kind. See [14].

Proof. We compute the Melnikov functions for (5.5) and use theorem 5.3. Starting
with the homoclinic orbit, we have

to;i>,p,8,a>)= IM°°{t0;v,p,8,o))= I (r(0,-sin^(O)A(O, v-8r{t) + Pcos u>(t+to))dt

(?r(0-5r2(0 + /3r(0cosw(f+f0))^- (5.10)

Using r(t) dt = d<f> and F(<f>, r) = 2 in (5.6) on the homoclinic orbit y°, (5.10) can
be rewritten

(•" _ _ f°°
M°°{t0; v,p,8, w)= [v-SV2(l + cos<£)]d<£ + 2j8 sech f cos w((+t0) df

J-ir J-oo

f * - ^ ~ f°°
= [ ? - 28 cos —] d<f> + 2p [sech f cos «f ] dt cos <ot0,

J ~n ^ J — oo

(5.11)
where we have substituted the unperturbed '+' solution (5.7), expanded using
trigonometrical identities, and used the fact that the integral of the odd function
sech t sin <ot = 0. Finally, (5.11) yields

Af°°(fo; v> ft £ «) = 27r?-85 + 27r/3 sech (TTW/2) COS <ot0. (5.12)

Now (5.12) has precisely two simple zeros in each T = 2TT/O> fo-interval if p>
1(277^-88)7277 sech (T7«/2)|, or, returning to v, p, 8 by multiplying v, p~, 8 by e, if

def •nv — 48

77 sech ( W 2 ) ' (5"13)

Theorem 5.3 then implies that, for v, p, 8 all of €(e) and e ̂  0 sufficiently small,
the unperturbed '+' homoclinic loop y°(0 to the saddle p = (77,0) breaks to give
transverse homoclinic orbits to the perturbed saddle pt = p+€(e). We remark that,
for v, 8>0 and P<\(ITV + 48)/TT sech(ira>/2)\, the lower (-) homoclinic loop is
broken completely and no homoclinic orbits with r s 0 survive. To see this, replace
r(t) by -2 sech t in (5.10) and (5.11) and recompute to obtain

M°°(f0; v,P, S,&>)~ = -277i>-85-277/3sech(77«/2)cos/o- (5.14)

To see that the transverse homoclinic points corresponding to the zeros of M°° are
1-rotary, we must examine the perturbation method more closely. As Greenspan
and Holmes [23] show (cf. [25, §§ 4.5-6]), g-power series expansions are valid in
the intervals t e (-oo, t0] if \ t e Wu(po) and t e [t0, oo) if xe € W"(po), where W", W
denote the two dimensional unstable and stable manifolds of the periodic orbit
po(t) = p+C(e) of the suspended flow (1.3). This just expresses the fact that
perturbed homoclinic orbits must remain close to their unperturbed 'parents' for
all t e (-oo, oo). Thus any such orbit corresponding to a zero of M°° must remain in
an e- neighbourhood of the 1-rotary orbit y°(0 and consequently must be 1-rotary
itself for small e.
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We now show that one member of the pair of zeros of M00 in t0e[0,2ir/<o)
corresponds to an order preserving homoclinic orbit (its partner is not order preserv-
ing, but rather twists neighbouring points through 180° as they move once around
A, cf. figure 2(a)). As shown in [25, § 4.5], the geometry associated with the Melnikov
measure of homoclinic splitting is as shown in figure 6. If the oriented distance
function d(to)>0, W(pe) lies above Ws(pB) at x(0) on the section 1h, while if
^('o)<0, W"(pE) lies below Ws(pE): figure 6(a). Thus the homoclinic orbits corre-
sponding to neighbouring zeros of M°° at fo=T,, T2G[0, 2TI-/W) involve opposite
orientations of the tangent spaces of the intersecting manifolds. Figure 6(b) (cf.
figures 2(a) and 3) should make it clear that one (and only one) of these orbits is
order preserving in the sense of § 4.1.

W"(pe)

\

(a) d(to)>O and <0. (b) order preserving and
non order preserving orbits.

FIGURE 6. Homoclinic geometry.

To deal with the periodic (subharmonic) orbits, we perturb from resonant orbits

with energies h = h(m,n) determined uniquely for each m,neZ+ and (m, n ) = l

from the resonance relation

2nm

(on
(5.15)

Substituting h(m, n) into the '+' rotary orbits (5.8) and substituting the result into
the Melnikov integral (5.4), we obtain

Mm/n(t0; v, 0, 8, a) = [v- 8sf2h-2(1-cos 4>)] d<t>
J — IT

7\~ Jcos a (t+10) dt, (5.16)+ V2hp I

where h = h(m,n) and we have used the same change of variables rdt = d(f> as in
(5.10). (5.16) simplifies to

Mm/n(t0;i>JJ,co)=\

+ V2T/3 \dniyl~t - j cos ml dt cos (otQ, (5.17)
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which can be evaluated to yield

Mm/n(t0; v, /3, 5, w) = 2TTv-88\lzE\r )+2TT/3 sech | —,,, . ' . . \ | cos,

for n = 1 and
2-rrv-l

for n> 1. Here the Fourier series representation of the elliptic function

, . , - 2\ 7T fl
dn

(5.18a)

(5.18b)

has been used with ft = h(m, n). Note that, as m->» with n = 1, (5.18a) converges
on M°° (5.12), cf. theorem 4.6.4 of [25] and [22]. To see this more easily, we remark
that the argument of the sech term of (5.18a) can be re-expressed, using (5.15) with
« = 1, as [<oy/{2/h)K'(2/h)], and that K'(2/h)^> ir+/2 as h^2+'. Application of
theorem 5.3 then yields the 'wedges'

•nv-AS-/(hJT)E(2/h)
(5.20)

(which, after multiplication through by e, are those of theorem 5.6) in which (5.18a)
has 2m simple zeros in the interval toe [0,2vm/o>), and hence in which there exist
precisely 2 distinct 27rm/w periodic orbits.

As above, we note that, for sufficiently small e, these n = 1 periodic orbits lie
close to the order preserving parent orbits of rotation number 1/m (period
T(h(m, 1)) = 2-nmlw) and hence that they are also order preserving. •

Remark. An extension of the analysis above (cf. [23]) shows that one of each pair
of m-periodic orbits is of saddle-type and that the other (for sufficiently small e,
depending on m) is a sink. For larger m the sink typically bifurcates to a saddle
with negative eigenvalues, throwing off a period 2m sink, and this initiates a cascade
of period doubling bifurcations leading ultimately to the creation of a full shift
(horseshoe) for P™. See [25, § 6.6] and [66]. Such shifts, for m>N, lie in the set
A of § 2.

In figure 7 we show computations of the 'resonant wedges' in v, (Z parameter
space for cu, S fixed. This graph makes it clear that there exist open sets (within the

5 - \ \ s

- ft \ 00

V

// ' /
F )\
'2/ ^

1

1

\ /

V 1

1 /

/ (o = 2.7
8 = 0.1

1

0.1 0.2 0.3 0.4

FIGURE 7. The 'wedges' /3 = pm for m = 1,2,3 and the homoclinic 'wedge' 13 = /}^ for the case 5 = 0.1,
a) = 2.7.

https://doi.org/10.1017/S0143385700003412 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003412


232 K. Hockett and P. Holmes

'homoclinic wedge' P = \(ITI>-48)/IT sech (irto/2)\) in which there exist order pre-
serving m-periodic orbits for all m> 1 along with order preserving 1-rotary, trans-
verse homoclinic orbits.

We remark that the boundaries p = pm of the parameter wedges within which
m-periodic orbits exist accumulate on the homoclinic wedge p = px at a geometric
rate determined by the expanding eigenvalue of the saddle point pe. This rate,
exp (2TT/io)(l -(eS)/2 + O(e2)), is specific to the problem and is not a universal
constant, cf. [25, § 6.6]. In figure 8 we show typical computations of stable and

(a)

F I G U R E 8(a). The unperturbed Poincare map Po.

(b)

F I G U R E 8(b). The stable and unstable manifolds of the fixed point p, of the Poincare map Pe in the
case /3 = 0, 8 = ir/10, v = 0.39025 and u> = 2, for 0, S, o> fixed, v was chosen so that the upper homoclinic
connection was preserved. Compare with the value v = 0.4 predicted by the Melnikov function M°°

(eq. 5.12).

(c)

F I G U R E 8(C). The stable and unstable manifolds of the fixed point p , of the Poincare map P,. Here
v = 0.396, 8 = IT/10, /3 = 0.1 and u> = 2.
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unstable manifolds for Pe. These numerical results were obtained using a 4th order
Runge-Kutta algorithm with fixed step size h = 0.01.

5.7. Estimates on the number N of iterates of Pe necessary to guarantee hyperbolicity
for P"\w In proving the Smale-BirkhofI homoclinic theorem and related results,
we select neighbourhoods U and integers N such that the map fN\u is uniformly
hyperbolic on certain strips (Vo, V, in § 2.7). The usual proofs just establish hyper-
bolicity for N < oo 'large enough'. In this section we show how the Melnikov function
(5.3) permits us to estimate N in terms of the parameters p. ({v, /8, 5, w) here). The
following argument is summarized from [33, Appendix B].

Since d(t0) = eM0O(t0;it.)/\\f(x(0))\\ + €(e2), and ||/(x(O))|| = 0 ( l ) , the angle
between the tangent spaces of the manifolds VVu(pe), W

s(pe) at a transversal
intersection point q corresponding to a simple zero to = T is of €(BM'{T, ft)), where
( )' denotes d( )/dt0. As in § 2.7, we choose a neighbourhood U of pe and integers
fc,, /, and let Vcf''(U)nf~\U) be a neighbourhood of q. For fixed U, fc,, /,, it
follows that the angles between the tangent spaces of the manifolds at /fel(<l) and
/~''(q) are also C(eM') (albeit now multiplied by fc, and /, dependent constants).
To ensure hyperbolicity of/N |AJV, we 'shrink U and increase fc,, /,'. More precisely,
we pick a smaller neighbourhood t / c \j and integers fc2» fc,, 12» h such that the
tangent spaces of the manifolds at / ^ ^ ( q ) and f~('1+'2\q) lie at a large angle (say
>TT/4) . Then the disjoint invariant conefields necessary for the establishment of a
hyperbolic structure can be found (cf. [50, § 3], [25, § 5.2]). The integers fc2 and l2

are estimated from the linearization Df(\) of the map, which is close to the constant
matrix D/(p) for xe U. In fact, if the eigenvalues of D/(p) are 0 < A2< 1< A,, the
estimate

W,+i Lo A

shows that a tangent vector I l I will be mapped to a vector in the I I

direction in fc2
 = [In (l/M'C(fc,)]/[ln (A,/A2)] iterates. A similar estimate holds for

/,. The final estimate of the number of iterations necessary to obtain a hyperbolic
structure is therefore:

' - ) ) . (5.22,

For the Josephson problem, a standard computation using the unperturbed flow
shows that the eigenvalues of the Poincare map DPe(pe), linearized at the perturbed
saddle point, are A1>2 = e±<2w/") + C(e). Using this in (5.22) we obtain

\ 2 M

From (5.12), the zeros to = T of M°° are given by

r -).
'(T; it)/

(5.23)

48 — TTV
cos <ot0 = —= — — (5.24)

TTJS sech (TT(O/2)

and using eM' = -e2v(o0 sech (TTW/2) sin (ot0 and dividing out e, via e/8=/3, etc.
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we find

EM'(T, p.) = 2WJTT2B2 sech2 (mo/2) -(TTV-48)2. (5.25)

Thus the final estimate we obtain is

N = C, + (<o/2ir) In [\/(2moC2 sech (TTW/2)V//32-)32
O)], (5.26)

where 8^= B^v, 8, w) = \(irv — 48)/ir sech (mo/2)\ is the critical value which the
periodic force amplitude B must exceed to guarantee transverse homoclinic points,
and Ci and C2 are constants independent of the perturbation parameters v, B, 8, <o.

The next result returns explicitly to our characterization of the attracting set and
provides a summary of what we have found so far.

5.8. THEOREM. For B> BX = \(TTV-48)/IT sech (ma/2)\ and v,B,8 all positive,
sufficiently small, and of the same order, the attracting set ̂  = Pln=0 P?(B) for the
Poincare map of the Josephson equation (5.1) satisfies the following:

(i) si contains an invariant Cantor set ft on which PE is conjugate to a subshift of
finite type.

(ii) ft contains orbits having all rotation numbers in the closed interval [0,1/JV],
where N = C(ln [l/(sech (iro)/2)y/B2-B00)]).

(iii) ft contains uncountably many disjoint invariant Cantor sets composed of orbits
having rotation number a for each a e [0, 1/ N] \Q.

(iv) ft <= si can be chosen so that, for each such irrational a, at least one of these
Cantor sets is order preserving (a 'dissipative' Aubry-Mather set). Moreover, at least
one periodic orbit of each rotation number p/qe[0,1/ JV] is likewise order preserving
(a Birkhoff orbit).

(v) ft contains uncountably many points for which rotation numbers do not exist.
In any neighbourhood of a point in ft there are points with all rotation numbers in
[0,1/ N] along with points whose rotation numbers do not exist.

Proof Most of the assertions above follow directly from the results of §§ 2-4 and
the Melnikov computations of § 5.6. In particular, the hypotheses imply (via theorem
5.6) that the Poincare map Pe has an order preserving 1-rotary transverse homoclinic
orbit. This orbit clearly lies within the trapping region B, and hence is contained
in si (proposition 5.1). For conclusions (i), (ii), (iii) and (v), ft can be taken to be
the Cantor set A of proposition 2.7 and theorems 2.8 and 3.1. In 2.7 we actually
proved that P^L" is conjugate to a full shift on two symbols, but a subshift for
PE\A is easily demonstrated as in [25, § 5.3]. For conclusion (iv) we take ft to be
theCantorset A" = A'u (U =1 PJ

e(A'n V,)), i.e. the Cantor set for Pe corresponding
to that for the induced map

g\v =

of § 4.2. Then, since our homoclinic orbit is order preserving, proposition 4.6 yields
order preserving Cantor sets. •

Remarks. Although it provides information about large collections of orbits lying
within the attracting set si, theorem 5.8 is far from a complete global description

https://doi.org/10.1017/S0143385700003412 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003412


Josephson' s junction 23 5

of si, for the sets U and { / ( V , ) } ^ 1 with which the Cantor sets AN, A, A' (and
hence fl) are constructed are carefully chosen small neighbourhoods of certain
special fixed and homoclinic points. However, extensions of Melnikov theory
described in [23], [24] and [34] and applied there to Duffing's equation, permit one
to obtain a somewhat more complete characterization of the attracting set. It is
possible to prove, for example, that open sets of (v, fi, 8) values near (0,0,0) exist
such that the attracting set contains at least M stable periodic orbits of periods
N,...,N + M-1, where N, M are pre-assigned positive integers. In such cases,
the attracting set is not indecomposable and so we do not have a strange attractor;
cf. theorem 4.9 of [24]. One can also show that the attracting set is the closure of
the unstable manifold of one of the periodic saddle points contained in it.

We end this section with examples which illustrate that the rotation set for a
dissipative diffeomorphism of the annulus can be rather complicated, in contrast
to the cases of maps of the circle and area preserving monotone twist maps of a
(closed) annular region. In both these cases it is known that the rotation set - the
collection {p(x) |xe S1 (resp. A)} of all rotation numbers of points in the circle or
the annulus respectively - is a closed interval ([52], [36], [38]). One might conjecture
that the same holds true, under appropriate conditions, for a Birkhoff attracting set.
(Birkhoff's [10] original example only showed that the attracting set can contain
orbits with two different rotation numbers.) However, the following examples
demonstrate that this conjecture is false although it is true for (indecomposable)
Birkhoff attractors.

5.9. PROPOSITION. For V>48/TT, )3 = 0 and v,8>0 uniformly small, the attracting
set si of the Josephson junction has a rotation set {0} u {a}, where a = a(v, 5) -» 0 as
v-*48/n; i.e. the rotation set has empty interior.

Sketch of proof. We apply conventional phase plane and linearization techniques,
together with the Melnikov perturbation method, to the autonomous system (5.1)
with /3 = 0. We conclude that, under the hypotheses above, the w-limit set consists
of three disjoint components: a sink and a saddle point at (s, 0) and (p, 0) whose s
and p are the two roots of (f> = sin"1 (v), and an attracting closed curve (limit cycle)
near the level set F~l(h) of the unperturbed Hamiltonian system, where h = h(v,8)
solves

F h J * -' (5.27)

(cf. equation (5.18) with )3=0). The rotation number a{v, 8) is close to the
unperturbed rotation number

<*(/,) = - ^ - > 0 , (5.28)

where r(h) = 2\/(2//i)K(2//i)|h=h(l/?5) is the period of unperturbed orbits in the level
set F~\h). Since all points in A eventually enter B and approach a component of
the w-limit set, a point has (forward) rotation number either 0 (if it approaches
either fixed point) or a (if it approaches the limit cycle). In this case the rotation
number is defined for all points xeA. •
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5.10. PROPOSITION. Suppose that v, B, 8 > 0 are all small and of the same order and
that

B > min
TTV — 45

77 sech (ir<o/2)

iri>-48V(hT2)E(2/h)
Trsech(<oV(2/TJK'(2/h))

where h = h{m) solves \/2/hK(2/h) = irm/a>. Then the rotation set of the Josephson
attractor is contained in the interval [0,1/m] and contains the interval [0,1/N],
where N~ln (l/V/32-)8^). It also contains finitely many isolated points {l/(m+j)},
0 < y < / with J<N-m.

Sketch of proof. Melnikov theory and the averaging theorem ([27]), as in [23], permit
us to prove the existence of one sink and one saddle of each period m +j in some
interval je[0,/], provided that min (8^,, Bm)<B<Bm+l and B,p,8 are all
sufficiently small. We remark that, to guarantee stability types of the m +j periodic
points and not merely existence, one must take e<e(J) small enough, depending
explicitly on /. A phase plane analysis of the averaged equation (cf. [23, §§ 10.3.3,
10.6.1 and figs. 10.12-13]) then reveals that the stable and unstable manifolds of
each m +y-periodic saddle do not mutually intersect (except at the saddle points
themselves), and that the w-limit set in the neighbourhood of each resonant unpertur-
bed level curve F~*(h{m+j)) consists of the m+^-periodic saddle and sink alone.
Thus there exist points in A asymptotic to periodic orbits of periods 0 (the fixed
points near (0,0) and (TT, 0)), and m,...,m + J, but there are no orbits of periods
/e(0, m). Finally, since all these periodic orbits are small perturbations of order
preserving orbits lying in the level sets F~l{h{m+j)) with rotation numbers
l/m,...,l/m + J, we obtain the isolated points {l/m}u • • -u{l/(m+J)} of the
rotation set. The interval [0,1/ TV] is just the interval of theorem 5.8. •

We remark that generally one must take N» m+J and that the perturbation and
averaging methods cannot determine the complete structure of the Poincare map
and the rotation set between the sets [0,1/iV] and {l/(m + /)}u • • • u{l/m}. For
example, there might be several disjoint closed intervals in the rotation set.

5.11. 77ie core of the attracting set. The above examples illustrate the importance of
the notion of the core of the attractor ([10]). Let xe B be a point in the trapping
region and apply the inverse map. If f~k(x)g B for some k and lies below B we
say xe V,, if f~k(x) lies above B we say xe V2. Letting x range over B and taking
k arbitrarily large (if necessary) we thus define two disjoint open sets Vi, V2 bounded
by pieces of the attracting set si and the boundaries of B. The core <€ s si is defined
as

« = Cl(V1)nCl(V2), (5.29)
and 9? is generally smaller than si. (In proposition 5.9 *€ is the closed curve alone,
while si = (closed curve) u (Cl (W"(p)).) Le Calvez [40] and Casdagli [16] have
recently (independently) proved that the rotation set of the core is a closed interval.

We remark that the difficulties of multiple attractors (sinks which lie in s4\c&)
of proposition 5.10 arise in the 'almost area preserving' limit. We expect that strongly
contracting 'almost one dimensional' annulus maps will often have coincident cores
and attractors.
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6. Conclusions
In this paper we have attempted to relate several different areas of dynamical systems
theory. We have shown how transversal homoclinic orbits in dissipative diffeomorph-
isms of the annulus imply the existence of Smale horseshoes which can be constructed
in such a way that their symbolic dynamical description preserves information on
rotation numbers. A more subtle embedding permits one to construct order preserv-
ing orbits and Cantor sets which are the 'dissipative' analogue of the Aubry-Mather
invariant sets of area preserving monotone twist, maps along with uncountable sets
of badly ordered Cantor sets. We have applied our general theorems on annulus
maps to a specific example of a Poincare map arising in a forced non-linear oscillator:
the Josephson junction equation. Using Melnikov perturbation methods, we have
checked the hypotheses of our theorems and thus provided a partial characterization
of the structure of the Birkhoff attracting set for the Josephson problem. In doing
so, we point out that the orbit structure and consequently the structure of the rotation
set for a dissipative diffeomorphism of the annulus can be considerably more
complex than those for circle maps or area preserving monotone twist maps.
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