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Abstract

The number of reported cases with Legionnaires’ disease (LD) is increasing in Belgium.
Previous studies have investigated the associations between LD incidence and meteorological
factors, but the Belgian data remained unexplored. We investigated data collected between
2011 and 2019. Daily exposure data on temperature, relative humidity, precipitation and
wind speed was obtained from the Royal Meteorological Institute for 29 weather stations.
Case data were collected from the national reference centre and through mandatory notifica-
tion. Daily case and exposure data were aggregated by province. We conducted a time-
stratified case-crossover study. The ‘at risk’ period was defined as 10 to 2 days prior to disease
onset. The corresponding days in the other study years were selected as referents. We fitted
separate conditional Poisson models for each day in the ‘at risk’ period and a distributed
lag non-linear model (DLNM) which fitted all data in one model. LD incidence showed a
yearly peak in August and September. A total of 614 cases were included. Given seasonality,
a sequence of precipitation, followed by high relative humidity and low wind speed showed a
statistically significant association with the number of cases 6 to 4 days later. We discussed the
advantages of DLNM in this context.

Introduction

Legionella spp. were first described in 1977 [1]. It is a Gram-negative intracellular pathogen
that can be transmitted to humans via inhalation of aerosols. It can cause legionellosis:
Legionnaires’ disease (LD) and Pontiac fever [2]. LD is a cause of community acquired pneu-
monia, but Legionella also causes nosocomial infections. Almost 96% of LD cases in Europe
are caused by the species Legionella pneumophila. The majority of reported L. pneumophila
cases are linked to serogroup 1 [3].

Several countries have reported an increase in LD incidence in recent years [4]. Because of
known effects of meteorology on Legionella spp., researchers have investigated changing wea-
ther and weather patterns as a possible cause of the increase in LD incidence. Meteorological
variables affect growth and presence in the environment [5,6]. Precipitation and higher tem-
peratures, for example, increase the growth of Legionella and its supporting organisms ( photo-
synthetic primary producers, e.g. algae and cyanobacteria) [7]. Although these effects have
been established, their clinical significance is still under investigation. The presence of
Legionella is a poor predictor of infections [8] and environmental sampling during outbreaks
has delivered mixed results [9,10]. Epidemiological research has tried to link clinical signifi-
cance, LD incidence, to meteorological variables measured in the preceding days and weeks.

This research on short-term associations has not delivered consistent results. Inconsistency
is most remarkable for temperature: non-linear [11-13], negative [14,15] and positive [16-19]
associations have been reported. Similarly, for atmospheric pressure non-linear [12,16], nega-
tive [15] and positive [20] associations have been reported. The reported associations with
relative humidity [5,6,11,13,15-17,21] and precipitation [5,6,11,12,15-18,22,23] have always
been positive. Relative humidity has however also been included in studies without resulting
in significance associations [19,22]. Significant negative associations have been reported for
wind speed [5,15,21]. In addition, studies have added atmospheric stagnation, vapour pressure
and changes in local watershed, the area that catches rain and snow, to the analysis and found
that these showed stronger associations with LD incidence than traditionally reported
meteorological variables [19,20,24].
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Analysis of the effect of transient exposures on the variation in
LD incidence is necessarily complex and some of the conflicting
results can be caused by differences in methodology. Three issues
should be introduced: non-linearity, seasonality and autocorrel-
ation. Non-linearity can cause both high and low temperature
to be associated with an increase in LD incidence. When only lin-
ear effects are allowed in the analysis, any significant association
will be unidirectional [14,15,18,19]. Studies that allowed for non-
linear effects have either categorised the meteorological variables,
included cubic splines [12] or quadratic transformations of the
variables [11].

As seasonality observed in both the LD incidence and in meteoro-
logical trends could be an important confounder, most researchers
have eliminated seasonal variation from their analysis. The case-
crossover design has been a popular design [5,6,15,17,20,22] because
it allows for the elimination of seasonality through referent selection.
Different referent selection strategies have been applied in LD
research, but it is unclear if they completely eliminated time-varying
confounding. If seasonality remains, there is a probability to find
positive associations between LD incidence and temperature when-
ever LD incidence peaks during warmer seasons.

For short-term associations, the ‘at risk’ period of interest typ-
ically includes several days and statistically significant associations
can be obtained for each of these days. To investigate associations
on several consecutive days, researchers have either fitted separate
models by day, selected a specific day by variable or averaged over
several days. The use of values obtained on different days for the
same variable in a model is uncommon because of temporal auto-
correlation. Different meteorological variables are likely also cor-
related on the same day and over days. This issue, known as
multicollinearity is avoided in previous studies by building separ-
ate models for correlated variables or selecting only one of the
correlated variables after a preliminary analysis [15,19], principal
component analysis [11] or by including interactions in the model
[6,12,13,16,18,20]. Interaction terms however will themselves be
correlated with the main effects and require more statistical
power. Adding to the complexity is that effect modification by
quarter and year has been observed for some interactions [6]. A
possible solution for temporal autocorrelation over different
days is distributed lag non-linear models (DLNM). These models
allow for the inclusion of trends over multiple days (lags) and
non-linear effects through splines [25]. To our knowledge they
have not been applied in research on LD.

Some of Belgium’s neighbouring countries (the Netherlands
[11,12], the UK [6,17,21] and Germany [12]) have analysed data
on LD incidence and meteorological variables, but the Belgian
data remain unexplored. The objective of this paper is to investigate
the short-term association (2-10 days prior to diagnosis) between
meteorological variables (temperature, relative humidity, precipita-
tion and wind speed) and LD incidence in Belgium. We explored
the added value of DLNM in combination with case-crossover
designs to overcome difficulties inherent to this analysis.

Methods
Data on LD incidence

LD cases were obtained from the Belgian National Reference
Center and regional mandatory notification system with a date
of disease onset between 1 January 2011 and 31 August 2019
[26]. Data sources were combined and duplicates were removed.
Cases with the same birthdate, same sex, same postal code and
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for who the date of onset was less than 30 days apart were consid-
ered duplicates. We excluded travel-related (domestic or inter-
national travel up to 14 days before diagnosis), nosocomial
cases (admission in a healthcare facility up to 14 days before diag-
nosis) and cases linked to outbreaks. Both confirmed and prob-
able cases of Legionella spp. were included in the analysis. The
laboratory criteria for case confirmation were: (1) the isolation
of Legionella spp. from respiratory secretions or any normally
sterile site [27], (2) detection of L. pneumophila antigen in
urine, (3) a significant rise in the specific antibody level to
L. pneumophila serogroup 1 in paired serum samples. The labora-
tory criteria for a probable case were: (1) detection of L. pneumo-
phila antigen in respiratory secretions or lung tissue e.g. by direct
fluorescent-antibody staining using monoclonal-antibody derived
reagents, (2) detection of Legionella spp. nucleic acid in respira-
tory secretions, lung tissue or any normally sterile site [28,29],
(3) significant rise in specific antibody level to L. pneumophila
other than serogroup 1 or other Legionella spp. in paired serum
samples, single high level of specific antibody to L. pneumophila
serogroup 1 in serum.

Meteorological data

We included average daily temperature (°C), relative humidity
(%), wind speed (m/s) and precipitation (mm) in the analysis.
The data were obtained from the Royal Meteorological Institute
of Belgium for all available weather stations (N = 29). Every prov-
ince contained at least one weather station (Fig. 1).

Data presentation

We fitted linear long-term trends to the meteorological variables.
We described multicollinearity between meteorological variables
by presenting the Pearson’s correlation coefficient between daily
national averages. We further presented seasonality and long-term
trends in our LD-data by plotting the total and smoothed weekly
national number of cases. We also plotted the smoothed and
scaled meteorological variables. We scaled meteorological vari-
ables for presentation purposes by applying the linear transform-
ation (x — mean(x))/S.D.(x).

‘At risk’ period

We defined our ‘at risk’ period as the period from 10 to 2 days
before disease onset. This period corresponds to the incubation
period [17,30].

Case-crossover analysis

Daily case- and exposure-data were aggregated by province. We
opted for a case-crossover design and fitted the data with condi-
tional Poisson regression models. Referents were selected from the
same province for the corresponding days in the eight other study
years. Referent-selection eliminated day-to-day seasonality from
the analysis. Two different models were used to fit the data. (1)
Single-day models: fitting data for each day in the ‘at risk’ period
with a separate model. In these models we included daily tem-
perature, relative humidity and wind speed as factors after cat-
egorisation into quantiles. Precipitation was categorised in two
categories (<0.2 and >0.2mm). (2) DLNM: fitting data from
the entire ‘at risk’ period with one model. For a DLNM, we
needed to create a cross-basis for each meteorological variable,
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Fig. 1. Overview of the provinces of Belgium, their population totals in 2018 and the location of the weather stations (red dots).

which represent both the lag and the values of the meteorological
variables. For the lag variable, we used a piecewise linear base. For
the wind speed, precipitation and relative humidity variables, we
used a linear base. We used a basic spline for temperature to
allow for non-linearity. The reference values for presenting and
predicting from the cross-bases were the median values of the
meteorological variables over the study period.

All models contained the four meteorological variables, a
‘population by province’-offset and the ‘year of onset’ as a factor.
This ‘year of onset’-factor allowed for the modelling of long-term
trends, also including changes in surveillance, and was included to
avoid confounding as long-term trends were not eliminated
through referent selection.

Software and code

All analyses were performed in R. The gnm-package was used for
conditional Poisson analysis [31]. The DLNM-package was used
for the DLNM analysis [25]. A working example of the code was
made available at https:/zenodo.org/badge/latestdoi/245365464.

Results
Descriptive analysis

We included 614 cases into the analysis. We observed an overall
increase of the reported number of LD cases in Belgium from
55 in 2011 to 78 in 2018. The increase was observed over a sea-
sonal pattern with a yearly peak in August-September (Fig. 2).
There were five dates on which three cases were reported and
28 dates on which two cases were reported from the same prov-
ince. For over 80% of cases, laboratory case confirmation was
based on the detection of Legionella antigens in urine.

Correlation in the exposure and event series
A significant positive linear time trend was detected for the
weekly number of cases (estimate on a national level: 0.0026,
P<0.001). Not all provinces shared this trend. In Brussels,
Namur and Luxembourg provinces, it was not present.

All four meteorological variables had a significant linear time
trend, positive for temperature, negative for wind speed, relative
humidity and precipitation over the time period. The largest
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correlations between exposure variables were observed between
relative humidity and temperature (Pearson’s correlation coeffi-
cient = —0.33, P<0.05).

Case-crossover results

When a model was fitted for each day in the ‘at risk’ period, we
observed multiple statistically significant (P < 0.05) positive asso-
ciations between relative humidity and the number of LD cases.
For certain days, a higher coefficient was estimated for the higher
quantiles compared to the lower quantiles (e.g. 6 days prior to
onset) indicating a unidirectional dose-response effect
(Table 1). Eight and three days before disease onset were the
only lags without a significant association with relative humidity.
From the models for day 7 and 8, we obtained a positive signifi-
cant association between precipitation and the number of LD
cases. A negative association was observed for wind speed on
day 3 and 4. Both a positive (with the quantile 12.4-16.2 °C on
day 4) and negative (with the quantile 4.6-8.5 °C on day 2) asso-
ciation were obtained for temperature (Fig. 3).

The results from the DLNM model were presented by accumu-
lating over the lags (Fig. 4) and by selecting two values, mostly one
above and one under the reference value, of the meteorological
variable (Fig. 5). When accumulating over the ‘at risk’-period, we
only observed a significant positive association with relative humidity.
When analysing by day in the ‘at risk’-period, positive associations
were observed with precipitation on day 6 and relative humidity on
day 5. A negative association with wind speed was observed on day
4. There were no significant associations with temperature.

Discussion

Our main observations were a positive association with relative
humidity (5 days before onset with the DLNM, several days
when fitting days separately) and a negative association with
wind speed (4 days before onset with the DLNM, three and 4
days when fitting days separately). Both methods found positive
associations with precipitation, but with a slightly different lag:
6 days for the DLNM, 7 and 8 days when fitting days separately.
These main observations are consistent with previously published
epidemiological studies and plausible given the biological


https://zenodo.org/badge/latestdoi/245365464
https://zenodo.org/badge/latestdoi/245365464
https://doi.org/10.1017/S0950268820000886

T. Braeye et al.

# Cases/week
B

Temperature

14
0.

Rel. Humidity

0.50 A
0.254

0.00 1 \

Precipitation

-0.254

JIF > o 1y
w1 s ™

LM g ([ e

Wind Speed

01— Mt i T N P N PN

2012 2014

2016 2018

Date

Fig. 2. Smoothed (red) and weekly totals (black) for the reported number of cases. Smoothed (red) and scaled meteorological variables (black) for temperature,
relative humidity, precipitation and wind speed for the central province Flemish Brabant.

characteristics of the species. Precipitation can cause Legionella to
move from its habitat and contaminate surfaces, e.g. transient
puddles on asphalt roads. Legionella in the puddles can be aero-
solised by moving vehicles, increasing the exposure risk [22,32].
Once aerosolised higher relative humidity is associated with
longer survival [30]. Some wind speed is necessary for the dissem-
ination of contaminated aerosols. Garcia-Fulgueiras et al. reported
how an average wind speed of 9 kph gave rise to dispersal of the
aerosols during an outbreak implicating a cooling tower [33]. A
comparable observation was made by Ferré et al. (3.6 kph) [34].
High wind speeds will however result in a decrease of the mean
aerosol mass and mean microbial air concentration and disrupt
the physical integrity of surface microlayers [35].

Previous epidemiological studies have identified fairly compar-
able sequences. For example, Fisman and Dunn et al. found the
largest effects to be higher relative humidity/precipitation on
day 9, but they also detected an effect of wind speed on day 7
[5,21]. With respect to temperature, contradictory results have

https://doi.org/10.1017/50950268820000886 Published online by Cambridge University Press

been reported in the direction of the effect (negative [14,15]
and positive [16-19]) and in the lag. Halsby et al. reported a
high disease risk at high temperatures (up to 9 weeks delay)
with high relative humidity [17]. Beauté (3 weeks), Brandsema
(4 weeks) and Ricketts (10-14 weeks) identified warm weather
followed by heavy rainfall as the most favourable conditions for
community-acquired LD [6,12,16]. Karagiannis identified warm,
humid and showery summer weather as associated with higher
LD incidence during the same week [11]. Although we did not
investigate the period before incubation, we did observe short-
term associations: positive for above average temperatures (quan-
tile 12.4-16.2 °C, day 4) and negative for low temperature (quan-
tile 4.6-8.5 °C, day 2) in the single-day models. We observed no
significant association with temperature in the DLNM. Since
there were likely issues with the type I error and autocorrelation
in the single-day models (see below), a repetition of the DLNM
when more statistical power, a longer time series, is present is
advised.
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Table 1. Overview of the significant coefficients when a separate model was fitted for each lag (in number of days before disease onset) (quantile 1 was the
reference quantile)

Lag Quantile number Quantile Estimate Std. error P-value
Temperature 2 2 4.6-8.5°C —0.615 0.196 0.002
Rel. humidity 2 3 78.6-84.4% 0.475 0.151 0.002
Rel. humidity 2 4 84.4-90% 0.568 0.168 0.001
Wind speed 3 4 3.7-4.95m/s —0.322 0.159 0.042
Temperature 4 4 12.4-16.2°C 0.537 0.271 0.048
Rel. humidity 4 2 71.1-78.6% 0.361 0.136 0.008
Rel. humidity 4 3 78.6-84.4% 0.355 0.154 0.021
Rel. humidity 4 4 84.4-90% 0.376 0.173 0.030
Wind speed 4 4 3.7-4.95m/s —0.364 0.155 0.019
Rel. humidity 5 2 71.1-78.6% 0.315 0.137 0.021
Rel. humidity 5 3 78.6-84.4% 0.455 0.152 0.003
Rel. humidity 5 4 84.4-90% 0.378 0.172 0.029
Rel. humidity 5 5 90-100% 0.541 0.199 0.007
Rel. humidity 6 2 71.1-78.6% 0.279 0.135 0.038
Rel. humidity 6 4 84.4-90% 0.349 0.168 0.038
Rel. humidity 6 5 90-100% 0.442 0.191 0.021
Rel. humidity 7 2 71.1-78.6% 0.321 0.134 0.017
Precipitation 2 >0.2 mm 0.285 0.105 0.006
Precipitation 8 2 >0.2mm 0.248 0.104 0.017

Std. error =standard error.
Reference quantiles (temperature = —15-4.6 °C; rel. humidity =20.6-71.1%, wind speed = 0-2.15 (m/s), precipitation <0.2 mm).

Statistically significant coefficients
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Fig. 3. Statistically significant coefficients and their 95% confidence interval obtained by fitting model all days in the ‘at risk’-period separately.
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Fig. 4. Relative risk (RR) and 95% confidence interval accumulated over the ‘at risk’-period (10 to 2 days prior to disease onset) from the DLNM for temperature (A),

precipitation (B), relative humidity (C) and wind speed (D).

DLNM

In the introduction, we presented three challenges to research on
weather effects on LD incidence: non-linearity, seasonality and
autocorrelation. To overcome the challenge of autocorrelation
we proposed the use of DLNM. We however also used a standard
case-crossover design in which several models where fitted for
data collected on different days in the ‘at risk’ period. Since
DLNMs had not been used previously in case-crossover studies
on LD, a comparison to a more standard approach allowed us
to better introduce the method.

In general, we observed more significant associations with the
single-day models: significant associations with temperature, mul-
tiple days with significant associations with wind speed, precipita-
tion and relative humidity. There are two methodological reasons
for this observation. (i) Since we did not correct for multiple test-
ing, the probability of a type I error over the complete ‘at risk’-
period, nine separate ‘single-day’ models, was higher than 5%.
With the DLNM, the probability for a type I error remained at
5%. (ii) There was autocorrelation between consecutive days
and between variables. Therefore, if a significant effect was
detected at day x for a variable, separate models at days x—1
and x + 1 were likely to detect significant effects for the same vari-
able but also for correlated variables. Single-day models however
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also come with the risk of missing significant effects. Consider for
example that precipitation increases the change of LD 6 days later,
but precipitation is typically followed by above average wind
speed, which decreases the risk. Since we generally observe a
sequence of effects that cancel each other out, the single-day mod-
els will be under powered to detect any of the effects. From a
‘single-day’ point of view, it is hard to detect the increased risk
associated with precipitation as precipitation typically is not fol-
lowed by an increased number of cases. The DLNM however is
able to include observations over the entire period when consid-
ering the effects at a certain day as it models a trend. As expressed
by Karagiannis et al. and given the correlations between delay per-
iods and meteorological variables, it makes sense to interpret indi-
vidual coefficients as parts of weather types and patterns [11].
Given the need to explore sequences and exposures at different
delays, we believe that a DLNM is particularly suitable for
research on meteorological variables and LD incidence and
should be preferred over fitting several single-day models.
Although a DLNM has the advantage of fitting the entire ‘at
risk’-period with the same model, additional design choices
have to be made on how the lag and covariate effects are to be
included in the cross-basis [25]. A piecewise linear model for
the lag dimension will estimate a separate coefficient at each of
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and wind speed (D).

the time points. Alternatively, with a basic cubic spline for the lag
dimension, covariate effects will be smoothed over the time points
between knots. This is true for covariates with and without tem-
poral autocorrelation. This can be an interesting strategy, espe-
cially when the underlying mechanism allows for the
accumulation of risk over time. Whenever separate days are to
be discussed it might be preferable to include a piecewise linear
effect. With LD we can assume that infection will occur on a sin-
gle day. Risk however might still accumulate over longer time per-
iods. Both modelling choices thus are defendable and this is
reflected in previous research as both single days [5,6,22] and
values averaged over longer time periods have been used
[15,17]. With respect to the covariate dimension of the cross-
bases we also opted for linear bases, with the exception of the
base for temperature which was a basic spline. Given the array
of flexible splines available, this is a conservative choice. Our
‘single-day’ models however did not indicate non-linear effects
and previous research has only regularly reported non-linearity
(if methods allowed for it) for temperature. Linear effects in a
DLNM do however allow for the reference point to differ from
zero. Values below and above the reference point have different
associations with the outcome. Our choice for relatively simple
cross-bases is further motivated by a potential disadvantage of
DLNM: they allow for very flexible modelling and, as such, are
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vulnerable to confounding. This might especially be a concern
when high degree splines with multiple knots are used in a context
of unmodelled confounding seasonality as it is likely that part of
the seasonality will be captured by covariate bases. We have tried
to prevent this by using linear bases and the elimination of
day-to-day seasonality with a case-crossover design. Future research
should investigate the risk of overfitting with DLNM.

Strengths

The time-stratified referent selection used for the case-crossover
study has been discussed by us in a separate paper. In this
paper, a simulation study, we reported the elimination of all time-
varying confounding with our referent selection strategy given the
inclusion of an extra term for long-term trends in the model. The
case-crossover model benefits from its underlying intuitive set-up
and can easily be combined with a DLNM.

In addition to how the data were fitted, we also tried to
improve our analysis during data preparation. Even though
Belgium is a small country, we aggregated both case and exposure
data by province. Since certain trends were not shared between
provinces, this approach has the benefit of less potential con-
founding. The estimated provincial exposures should also
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represent the individual exposure better as compared to national
estimates.

Limitations

Seasonality in LD incidence is not investigated in this research as
it was eliminated by design. What drives seasonality in LD inci-
dence thus remains unexplored and all our results should be
interpreted as ‘out of season’ results. We observed a positive asso-
ciation between relative humidity and LD incidence given season-
ality. High relative humidity in itself is not associated to an
increase in LD incidence, but high relative humidity in compari-
son to the corresponding days in the other study years is.

We combined different surveillance sources to include the
maximum amount of case information. There was no information
on undiagnosed cases and on diagnosed cases not reported to any
of the surveillance systems. In this analysis we therefore had to
make the assumption that there were no structural differences
with respect to the date of onset between reported cases and
those not reported or undiagnosed. Our analysis allowed for
yearly and provincial differences in the completeness of surveil-
lance and in testing behaviour. Testing behaviour possibly has
changed during the study period as the urinary antigen test has
been reimbursed from 2016 onwards.

Information on the source of infection was limited and we
were only partly able to identify cases with a possibly common
source of infection. We could only identify 12 outbreak-related
cases. An additional sensitivity analysis from which all outbreak-
related cases were removed and one in which they were included,
thus could not be performed. An additional reason to include the
possible source of infection into the analysis would be to investi-
gate how different sources are affected by meteorology. We aggre-
gated over different L. pneumophila genotypes. Different
genotypes have different temperature-dependent growth kinetics
and serogroups have different survival rates in aerosols.
Serogroup 1 is known to survive longer in aerosols than other
subtypes [36]. Because the L. pneumophila serogroup 1 pathogen
likely accounted for over 80% of LD cases, our results mainly
reflected the association between meteorological variables and
serogroup 1 LD incidence. Differentiating between L. pneumo-
phila serogroups and sources seems an interesting topic for future
research [37].
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