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The validity of the Oberbeck—Boussinesq (OB) approximation in Rayleigh—Bénard (RB)
convection is studied using the Gray & Giorgini (Intl J. Heat Mass Transfer, vol. 19, 1976,
pp. 545-551) criterion that requires that the residuals, i.e. the terms that distinguish the
full governing equations from their OB approximations, are kept below a certain small
threshold &. This gives constraints on the temperature and pressure variations of the
fluid properties (density, absolute viscosity, specific heat at constant pressure ¢, thermal
expansion coefficient and thermal conductivity) and on the magnitudes of the pressure
work and viscous dissipation terms in the heat equation, which all can be formulated as
bounds regarding the maximum temperature difference in the system, A, and the container
height, L. Thus for any given fluid and &, one can calculate the OB-validity region (in
terms of A and L) and also the maximum achievable Rayleigh number Ra,,, s, and
we did so for fluids water, air, helium and pressurized SFg¢ at room temperature, and
cryogenic helium, for 6 = 5%, 10 % and 20 %. For the most popular fluids in high-Ra
RB measurements, which are cryogenic helium and pressurized SFg, we have identified
the most critical residual, which is associated with the temperature dependence of cp,.
Our direct numerical simulations (DNS) showed, however, that even when the values of
¢p can differ almost twice within the convection cell, this feature alone cannot explain a
sudden and strong enhancement in the heat transport in the system, compared with its OB

analogue.
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1. Introduction

Rayleigh-Bénard (RB) convection serves as a quintessential benchmark in fluid physics,
spanning instabilities, pattern formation (Bodenschatz, Pesch & Ahlers 2000), transition to
turbulence, and fully developed turbulence, including the so-called ultimate regime, which
is characterized by extremely intense driving forces in the system, see Ahlers, Grossmann
& Lohse (2009¢), Lohse & Xia (2010), Chilla & Schumacher (2012), Xia (2013), Shishkina
(2021) and Lohse & Shishkina (2023). In experiments, RB convection is studied in closed
containers, where the top and bottom are kept at constant temperatures, 7 = T4 at the
bottom and T = T_ at the top, T_ < T, and the sidewalls are thermally isolated. The RB
flows are driven by the density differences between the heavier (usually cold) fluid that
tends to sink and lighter (usually hot) fluid that tends to rise. The intensity of the thermal
driving force is characterized by the Rayleigh number Ra = ag AL?/(vi), a dimensionless
measure of the temperature difference in the system, A = T, — T_ (here « denotes the
thermal expansion coefficient and g acceleration coefficient due to gravity). The other
control parameters are the Prandtl number Pr = v/k (the ratio of kinematic viscosity v
and thermal diffusivity x) and the container aspect ratio I" = D/L (the ratio between its
width D and height L).

When defining the control parameters Ra and Pr, we already implicitly assume that
the fluid properties (e.g. v, ¥ and «) do not change throughout the entire volume of
the container. However, material properties of any real fluid depend on its temperature
and pressure. Within the Oberbeck—Boussinesq (OB) approximation (Oberbeck 1879;
Boussinesq 1903), which is usually considered in theories and numerical simulations, the
temperature and pressure dependencies of the fluid properties are not taken into account
(apart from the density in the buoyancy term of the Navier—Stokes equation, where it is
approximated by a linear function of the temperature). This omission might potentially
lead to what is known as non-Oberbeck—Boussinesq (NOB) effects, i.e. to noteworthy
deviations in heat or momentum transport, or global flow structures, compared with
predictions one can draw from the OB equations.

One of the most relevant questions in RB studies is: How do the heat transport (in
dimensionless form, the Nusselt number Nu) and momentum transport (the Reynolds
number Re) depend on the control parameters Ra, Pr and I', especially for extremely
large values of Ra, which are relevant in astro- and geophysical flows? The dependencies
are usually sought as scaling relations, e.g. Nu ~ Ra”, with y being the scaling
exponent. For Ra up to approximately 10!!, the different data sets qualitatively agree
and follow predictions of the Grossmann & Lohse (2000, 2001) theory (with prefactors
from Stevens et al. 2013), but at very large Ra, they show different behaviours. For
instance, heat flux measurements using cryogenic helium that were conducted at the
University of Oregon (Niemela, Skrbek & Donnelly 2000a; Niemela et al. 2000b,c)
show no increase in y for Ra up to 10!7. However, very similar measurements
with helium conducted in Grenoble (Roche er al. 2010; Roche 2020) as well as
measurements conducted in sulfphur hexafluoride (SFg, see Ahlers et al. 2009a; Ahlers,
Funfschilling & Bodenschatz 2009b; Ahlers et al. 2012a,b; He et al. 2012a,b; Ahlers,
Bodenschatz & He 2014; He et al. 2014, 2015; He, Bodenschatz & Ahlers 2016,
2020) show transitions to the ultimate regime with y = 0.4, although at different Ra.
This difference in Ra is recently explained with the non-normal-nonlinear nature of
this transition (Roche 2020; Lohse & Shishkina 2023). Another Oregon experiment
(Niemela & Sreenivasan 2003) and measurements in Brno (Urban er al. 2014, 2019)
also showed a significant increase in Nu, with y > 1/3; however, the authors tend to
explain this phenomenon by NOB effects rather than by the transition to the ultimate
regime.

986 R2-2


https://doi.org/10.1017/jfm.2024.389

https://doi.org/10.1017/jfm.2024.389 Published online by Cambridge University Press

What Ra are achievable under OB conditions?

In this article, we will try to provide more clarity on whether the temperature and/or
pressure variations of the fluid properties can be decisive in a crucial change in the scaling
exponent, from y < 1/3 to y 2 0.4, which is observed in many RB experiments at high
Ra > 101,

2. Oberbeck-Boussinesq approximation

The OB approximation is a simplified model, incorporating buoyancy effects. It assumes
an incompressible flow and introduces two key assumptions. Firstly, it posits that all
fluid properties remain constant, except for density in the buoyancy force term of the
momentum equation, which is assumed to depend linearly on temperature with the isobaric
thermal expansion being the relevant coefficient. Secondly, it disregards the contributions
of pressure work and viscous dissipation in the heat equation (see also Roche et al.
2010, appendix A2). The OB governing equations for the velocity field u(x, 1) (with u;
the velocity components in spatial directions x;), the temperature field 7'(x, t) and the
hydrodynamic pressure p(x, ) include the following continuity equation, and momentum
and heat equations:

V.u=0, 2.1)
du+ (- Vyu+Vp/p =vViu+a(T — To)ge:, (2.2)
T + (u- V)T = kV?T. (2.3)

Here p is the density, v = u/p the kinematic viscosity, k = k/(pcp) the thermal
diffusivity, with p being the dynamic viscosity, k the thermal conductivity, and ¢, the
specific heat at constant pressure, and 9; denotes the partial derivative in time ¢, and e, the
unit vector pointing upwards. The reference temperature Ty is taken at the arithmetic mean
of the top and bottom temperatures, 7o = (T4 + T-)/2.

Starting from the works of Spiegel & Veronis (1960) and Veronis (1962), the validity
of the OB approximation (2.1)—(2.3) has been scrutinized in various theoretical studies,
where the magnitudes of specific terms in the governing equations were examined.
A rigorous mathematical variational approach, employing expansions of fluid properties
as power series, was initially introduced by Mihaljan (1962), who primarily focused on
the temperature dependency of the density. Subsequently, other researchers extended the
method to incorporate pressure and temperature dependencies of other fluid parameters.

When moving beyond the OB approximation, a simple exploration involves considering
a first-order linear dependence on both temperature and pressure, of each material
property @,

© T—-Ty P— Py

%0 P epr—p 1 Teor pogL
including the density (¢ = p), absolute viscosity (¢ = pu), specific heat at constant
pressure (¢ = ¢;), thermal expansion coefficient (¢ = «), and thermal conductivity (¢ =
k), and k = k/(pcp) is a dependent parameter, fully determined by k, o and ¢, (Gray &
Giorgini 1976). Thus the manifestation of non-Oberbeck—Boussinesqness (NOBness) is
determined by different dimensionless factors &, 7 and &, ,. When dealing with a specific
fluid under given operational conditions of reference temperature 7Ty and pressure Py, it
is not immediately evident which among these parameters €, 7 and &, , is most relevant
in inducing NOBness in the experimental set-up. (The fluid properties at the reference
Ty and Py will be denoted in the following with a subscript ‘0’.) Unravelling the diverse
NOB effects is possible in direct numerical simulations (DNS) which allow for the use of
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artificial fluids that exhibit only a single specific source of NOBness. For instance, Ahlers
et al. (2008) conducted such an investigation for ethane. Various studies have explored
NOB effects in RB convection in cryogenic helium and pressurized SF¢ (Roche et al.
2010; Shishkina, Weiss & Bodenschatz 2016; Weiss et al. 2018; Roche 2020; Yik, Valori
& Weiss 2020), as well as in water and glycerol (Manga & Weeraratne 1999; Ahlers et al.
2006; Sugiyama et al. 2009; Horn, Shishkina & Wagner 2013; Horn & Shishkina 2014).

In experiments, the NOB effects are always present (although they can be negligible)
and currently, there is no established method for precisely estimating their influence in
heat transport measurements. However, it is possible to estimate a priori the values of &, 7
and ¢, , and set thresholds for their maximal values in an experiment. Note that in some
studies only the temperature variation of the density («A) is considered as a measure of
NOBness (e.g. Niemela & Sreenivasan 2003); however, it is only one (¢, 7) of in total ten
sources of NOBness (all parameters &y, 7 and &, p).

To study the validity of the OB approximation, we follow a comprehensive variational
approach suggested by Gray & Giorgini (1976). We start with the governing equations for
a flow of a Newtonian fluid of variable properties (§ 15, Chapter II of Landau & Lifshitz
1987):

Dip +pV -u=0, (2.5)
pDu+ VP =V - (1uS) — pge; +V(n 'V - u), (2.6)
pcpDiT =V « (kVT) + aTDP + @, (2.7)

where P =p — pogze; is the (full) pressure, S the deformation rate tensor
with components, S; = dju; + dju; — (28;/3) kg, P = (S;5/2)(0ju; + d;u;) the viscous
dissipation function, D; = ; +u -V denotes the full (material) derivative, §; the
Kronecker symbol, and 7 the second viscosity. As it has been shown by Spiegel & Veronis
(1960), the last term in (2.6) can be neglected if pressure fluctuations are smaller then static
variation, which is the case for relatively slow convective flows. Therefore, we assume that
the last term in (2.6), which is associated with the second viscosity 7, vanishes.

Substituting the linear representations (2.4) of the fluid properties ¢ = p, u, c¢p, @
and k into (2.5)—(2.7), one requires that the residuals, i.e. the terms that distinguish the
resulting equations from their OB approximation (2.1)-(2.3), are negligibly small. The
OB requirements are fulfilled if not only all &y 7 and &, p are negligibly small, but also
the magnitudes of the pressure work term (a7 D;P) and of the dissipation term (u®)
in (2.7) are negligibly small compared with the magnitudes of the other terms in (2.7).
Comparing pc,D,T with oT D,P in (2.7), we conclude that the pressure work is negligible
if pocp,0A > agTopogL (here we estimate the pressure magnitude as P ~ pogL and the
magnitudes of the temperature variation as A and of the absolute value of the temperature
as Tp). Comparing V - (k VT) with @, we conclude that the dissipation term is negligible
if koA > poapgAL (here the velocity magnitude is estimated as the free-fall velocity
JaogLA). The last two inequalities can be reformulated, respectively, as bTy/A <« 1 and
bPry < 1, where Pro = vg/kq is the reference Prandtl number, «o = ko/(po ¢p,0) is the
reference thermal diffusivity and b = apgL/c) 0.

Introducing a certain small threshold on the degree of NOBness 6,0 < ¢ <« 1, we say
that the OB approximation is valid with the accuracy &, if requirements (2.8)—(2.9) are
fulfilled:

€oT <0, €pp<0, foro=p,u,cpk, (2.8)
bTy/A < &6, bPry < 6. (2.9)
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Relations (2.8)—(2.9) are derived by substituting (2.4) for all fluid properties ¢ into
(2.5)—(2.7) and requiring that the terms, which are not present in the OB approximation
(2.1)-(2.3), become negligibly small when the measure of the NOBness & becomes
infinitesimal, & — 0.

3. The validity of the Oberbeck-Boussinesq approximation for different set-ups

For any given fluid and threshold & for the residuals, from (2.8)—(2.9) one can derive the
OB-validity region in terms of the maximally possible temperature difference A in the
system and height L of the container. Here, to capture the NOB effects, we confine our
examination to the lowest order, (2.4), focusing solely on a linear term in the temperature
and pressure expansions of the fluid properties. This is sufficient, as shown in a recent
study by Macek er al. (2023) for the case of cryogenic helium.

In figure 1 the OB-regions are calculated for operational conditions typically employed
in RB experiments and some fluids, namely, for water, air, ethane, helium, pressurized gas
sulphur hexafluoride (SFg) at room temperatures, and cryogenic helium, using REFPROP
(2013). For any given fluid and reference temperature 7y and pressure Py, the OB-validity
regions depend on the OB threshold 6. The choices 6 = 5%, 6 = 10% and 6 =20%
give the embedded OB-validity domains coloured, respectively, green, blue and red in
figure 1 (see also sketch in figure 4(a) in Ecke & Shishkina 2023). There, each triangularly
shaped OB-validity domain is bounded from the right and left by maximum admissible
variations of the fluid properties with the temperature (vertical line) and by maximum
admissible pressure work term in the heat equation (inclined line), respectively. The lower
boundary is determined by the onset of convection, which is calculated in figure 1 for an
infinite horizontally extended fluid layer, such that Ra, ~ 1708. For any laterally bounded
domain, this boundary moves up, since the critical Ra, for the onset of convection scales
as ~ I'~* for I’ — 0 (Shishkina 2021; Ahlers et al. 2022).

The boundedness of the OB-validity region restricts the maximal Ra, which can be
reached in almost-OB experiments. This means that for any chosen fluid and threshold
on the degree of NOBness (parameter ), Rayleigh numbers Ra larger than a certain
maximum value Ra,,, s can in principle not be realized experimentally. In figure 1, these
Ray,qx 5 values are achieved in the upper corners of each OB-validity region, and each
value of Ra,,,y s is written in the plots with the colour of the corresponding OB-validity
region.

By comparing the values of Ra,,, s among the analysed fluids in figure 1, it can
be inferred that water emerges as the optimal fluid for investigating RB convection
under OB conditions at extreme Ra, owing to its highest Ra,,, 5. Nonetheless, we
note that achieving such exceedingly high Ra is feasible only when the water layer’s
depth is several hundred metres. Considering this limitation, the utilization of cryogenic
helium and pressurized SF¢ becomes more advantageous for experimental inquiries
into the transition to the ultimate regime. In figure 2, by examples of pressurized SFg
(used in Gottingen experiments) and cryogenic helium (used in other studies of the
ultimate regime, including Oregon, Grenoble and Brno) we show the dependencies
of Ra,,.s on the reference temperature Ty and pressure Py. One sees, in particular,
that keeping the operating pressure Py in a range between 10 bar and 15 bar in
experiments with SFg is favourable in the sense that this allows higher values of
Ra under (almost) OB conditions to be achieved. In all studied cases, we found that
pressure variations of the fluid properties are negligible compared with their temperature
variations.
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Figure 1. Regions of the validity of the OB approximation, in terms of the maximum temperature difference,
A, and container height, L, according to (2.8)—(2.9), for different fluids: (a) water at To = 40 °C and Py = 1 bar,
(b) air at Tp = 40°C and Py = 1 bar, (c¢) ethane at Ty = 40°C and Py = 1 bar, (d) helium at Ty = 40°C and
Po = 1bar, (e) helium at Tp = —268.15°C = 5K and Py = 1 bar, (f) SFs at Tp = 30°C and Py = 20bar. The
nested green, blue and red OB-validity regions correspond, respectively, to the thresholds on the degree of
NOBness 6 = 5 %, 10 % and 20 %. The lower boundaries of these regions have the slopes L A~ 3, the left
boundaries L o< A, and the right ones are vertical. The values of the maximum achievable Rayleigh numbers,

Ray,qy 5, are written with the corresponding colours.
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Figure 2. Maximum achievable Rayleigh numbers Ra,,,, s, as functions of the reference pressure P, for
different thresholds on the degree of NOBness: 6 = 5% (green), 6 = 10 % (blue) and 6 = 20 % (red), for
(a) gaseous SF¢ (solid lines for 7o = 20 °C and dashed lines for 7y = 30 °C) and (b) cryogenic helium (thick
lines for Ty = 2.5 K, thin lines for 7y = 4.0 K and dashed lines for 7y = 5.5 K). The continuous lines show the
liquid phase only, while the dashed lines correspond to both phases, gas and liquid, showing a V-shape near
the critical pressure P, &~ 2.27 bar, where the fluid properties become very sensitive to the temperature and
pressure variations.

4. The effect of the temperature dependency of ¢, on the measured Nu

Among all fluid properties, the specific heat capacity ¢, was found to have the strongest
variations with the temperature (i.e. &, r is significantly larger than any other &y 7 or
&¢,p), for both considered fluids, which are pressurized SF¢ and cryogenic helium.

For each of the two considered fluids, we selected two cases (characterized by Py
and [T_, T]) that correspond to some representative Gottingen or Brno measurements:
one case is the ‘classical’ one, where the heat transport scaling exponent y < 1/3 was
measured, and the other case we call ‘ultimate’, where y = 0.4 was measured, see figure 3.
In the classical cases, ¢, (T) is almost flat, while in the ultimate cases it rapidly decreases
with increasing temperature, for both, SFg and helium. By example of these four cases
(classical and ultimate, for both, pressurized SFg and cryogenic helium) we want to
investigate in DNS whether the strong temperature variation of ¢, alone (as in the ultimate
cases) can significantly increase the heat transport and with this alter the scaling exponent
y in the Nu ~ Ra” relation.

Assuming that for any small 6 > 0, all requirements (2.8)—(2.9) are fulfilled apart from
the variation of ¢, with the temperature, so that P, T is not negligible, we obtain the
governing equations, which are similar to the OB equations (2.1)—(2.3), but with

(cp(T)/cpo) T + (u-V)T] = ko V2T 4.1)

instead of (2.3). (In terms of independent fluid parameters, (4.1) can be rewritten as
(M T + (- V)T = (ko/po)V-T.)

The four profiles of ¢, (T) /cp,o (classical and ultimate, for pressurized SFg and cryogenic
helium, cf. figure 3b,d) are approximated by polynomials

Cp.0 A

3 _ J
=1y e(T50) @)
j=1
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Figure 3. (a,c) Specific heat capacity ¢, as functions of the temperature 7, in the classical case (blue
symbols) and ultimate case (red symbols), for (a) SF¢ for T € [13.49 °C, 29.49 °C] and pressure Py = 15.28 bar
(classical) and Py = 17.68 bar (ultimate), and for (c) cryogenic helium for 7' € [4.305 K, 4.409K] and Py =
0.8137 bar (classical), and T € [5.097 K, 5.214 K] and Py = 2.0724 bar (ultimate). (b,d) Non-dimensionalized
data from (a,c), respectively.

with ¢; being the respective coefficients. This together with (2.1)—(2.2) and (4.1) leads to
the Nusselt number

3 .

L ¢i (T—To\’ oT

Nu= — T—To |1 J — Kg— , 43

u oA uz( 0) +jzl:j ( A ) Ko oz (4.3)
= St

where u; is a component of the velocity field in the vertical direction z, and (- - - )5, , means
the averaging in time and over any horizontal cross-section S;.

We conducted DNS of RB convection in a cubic domain, for Ra = 10°, 107, 108, 10°
and 10'°, and Prandtl number Pr = 1, according to (2.1)—(2.2) and (4.1) and for the four
temperature profiles of ¢, (T)/c,(To) as in figure 3(b,d), to check whether the ultimate
profiles of ¢,(T) can significantly increase the Nusselt numbers compared with the
classical profiles. For this purpose, we used the computational code GOLDFISH (Shishkina
et al. 2015; Reiter & Shishkina 2020; Reiter, Zhang & Shishkina 2022) with sufficiently
fine computational grids (Shishkina et al. 2010; Kooij et al. 2018) that have at least 14 grid
points in each boundary layer and 1283, 1923, 2563, 3603 and 576 grid points in total for
Ra = 10°, 107, 108, 10? and 1010, respectively.

We expected that the classical profiles of ¢, (T) would lead to results close to those
from the OB approximation, but the ultimate profiles would lead to visible NOB effects,
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Nu ‘ultimate’ Nu‘classical’ Nu‘ulrimate’ Nu ‘classical’
SF¢ SFe

Ra Nuop Helium ‘Helium dSFé AHelium

106 8.100+0.003 8.20+0.006 8.22+0.002 8.39+0.006 8.27+0.003 12% 3.6%
107 16.37£0.002 16.40 +0.004 16.40 +0.008 16.65+0.02  16.46 + 0.01 02% 17%
108 31.65+0.017 31.63+0.02 31.66+0.005 31.97+0.01 31.58+0.006 —01% 1.0%
10° 62.44+0.003 62.24+0.04 622240074 6292+0.23 6227+009 —-03% 0.8%
1010 127.63+£0.05 127.42+0.07 — 128.38 £ 0.29 — —02% 0.6%

Table 1. Nusselt numbers Nu obtained for different Ra and fluids (pressurized SF¢ and cryogenic helium), and
the classical or ultimate profiles of c,, see the main text. Statistics is collected over a duration of at least 800

free-fall time units and at least 5 samples per time unit. The relative difference d is defined as d = (Nu “!mate’ _
Nuopp)/Nupp. The error o (standard deviation of Nu(z) profile) is calculated as o2=(1 J/(N; — l))Z;V;l (Nu —
(Nuy)s,, /)%, where N, is the total number of grid points in the vertical direction z.

in particular, to clear differences in the heat transport. Surprisingly enough we failed to
recognise any NOB effects or any tendency associated with the NOBness that increases
with growing Ra; we found it neither for the classical profiles, nor for the ultimate ones,
see table 1. Of course, different DNS show slightly different values of Nu, but there is
no pattern that indicates the growth of the scaling exponent y for the ultimate profiles

compared with the classical ones.

5. Conclusions

To sum up, for any fluid and any reasonable threshold for NOBness &, the OB-validity
region is a bounded domain in the parameter plane of the maximum temperature difference
in the system, A, and the container height, L. This also bounds the maximum achievable
Rayleigh number Ra,,, 5. We calculated Ra,,,, s for water, air, helium and pressurized
SF¢ at room temperature, and cryogenic helium, for 6 = 5 %, 10 % and 20 %.

For pressurized SF¢ and cryogenic helium, we found that the pressure variation of
the fluid properties is negligible. With respect to the temperature variations, the specific
heat, ¢, is the most sensitive for these fluids. Our DNS, however, showed that the strong
temperature variation of ¢, does not alter the heat transport. Our DNS results therefore do
not support the proposition that solely the NOB effects are responsible for the huge growth
of Nu (with a significant growth of the scaling exponent y in the Nu ~ Ra” relation)
which was measured in the Gottingen and Brno experiments at the largest Ra values. This
growth can be explained by the transition to the ultimate regime and the difference in
Ra, at which this transition happens in different experiments, can be explained by the
non-normal-nonlinear nature of this transition rather than purely by the NOB effects
(Roche 2020; Lohse & Shishkina 2023).

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.389.
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