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Abstract. For Hölder continuous cocycles over an invertible, Lipschitz base, we establish
the Hölder continuity of Oseledets subspaces on compact sets of arbitrarily large measure.
This extends a result of Araújo et al [On Hölder-continuity of Oseledets subspaces J. Lond.
Math. Soc. 93 (2016) 194–218] by considering possibly non-invertible cocycles, which,
in addition, may take values in the space of compact operators on a Hilbert space. As a
by-product of our work, we also show that a non-invertible cocycle with non-vanishing
Lyapunov exponents exhibits non-uniformly hyperbolic behaviour (in the sense of Pesin)
on a set of full measure.

1. Introduction
The celebrated Oseledets multiplicative ergodic theorem (MET) [20] plays a fundamental
role in the modern theory of dynamical systems. At an abstract level, the MET generalizes
the notion of eigenvalues and eigenvectors for a single matrix A ∈ Rd×d to concatenations
of matrices A( f n−1x) · · · A( f (x))A(x), where A : X→ Rd×d is an invertible matrix-
valued function on a probability space (X, B, µ) and f : X 	. Under some technical
assumptions, the MET guarantees the existence of a finite set of numbers (called Lyapunov
exponents) and subspaces of Rd (called Oseledets subspaces) which either form a
decomposition or a filtration of Rd (depending on whether f is invertible or not) such that
Lyapunov exponents describe the asymptotic growth of vectors that belong to Oseledets
subspaces under the action of A.

Arguably, the most important applications of this result are in the area of smooth
dynamics. For example, the proof of MET initiated the study of non-uniformly hyperbolic
dynamical systems: that is, systems with non-zero Lyapunov exponents with respect
to some smooth invariant probability measure. Since the landmark works of Pesin in
the 1970s, the theory of non-uniform hyperbolicity emerged as an independent, rich
and active discipline lying at the heart of dynamical systems theory. Among the most
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important consequences of non-uniform hyperbolicity is the existence of stable invariant
manifolds and their absolute continuity property (see [21]). The theory also describes the
ergodic properties of a dynamical system with a finite invariant measure that is absolutely
continuous with respect to the volume and it expresses the Kolmogorov–Sinai entropy in
terms of the Lyapunov exponents by Pesin’s entropy formula (see [21]). Furthermore,
combining the non-uniform hyperbolicity with the non-trivial recurrence guaranteed by
the existence of a finite invariant measure, the work of Katok [17] revealed a rich and
complicated orbit structure, including an exponential growth rate for the number of
periodic points measured in terms of the topological entropy and the approximation of
the entropy of an invariant measure by uniformly hyperbolic horseshoes. More recently,
Barreira, Pesin and Schmeling [6] discovered a striking relationship between this theory
and a dimension theory of dynamical systems by resolving the long standing Eckmann–
Ruelle conjecture. We refer to [5] for further references and a detailed exposition of this
theory.

Oseledets’ MET has not only been re-proved in many different ways, but it has also been
generalized several times, including to compact operators on Hilbert spaces by Ruelle [22],
to compact operators on Banach spaces with some continuity conditions on the base f and
the dependence of the operators on x ∈ X by Mañé [19], to quasi-compact operators on
possibly non-separable Banach spaces with continuity conditions by Thieullen [23] and to
quasi-compact operators on separable Banach spaces with weaker continuity conditions by
Lian and Lu [18]. Prior to the publication of [12], all previous work considered the MET
in one (or both) of two flavours: either there is no invertibility assumption on the base and
the linear actions and one obtains the existence of an equivariant flag or filtration, or there
is an invertibility assumption on both the base and the linear actions and one obtains the
much stronger outcome of existence of an equivariant splitting.

Froyland et al [12] extended the classical Oseledets multiplicative ergodic theorem by
proving that if the base is invertible, a unique Oseledets splitting exists even when the
matrices are not necessarily invertible.

THEOREM 1. [12] Let f : X 	 preserve an ergodic Borel probability measure µ and
assume that A : X→ Rd×d satisfies∫

X
log+‖A(x)‖ dµ(x) <+∞. (1)

Then there exist numbers
−∞≤ λ1 < λ2 < · · ·< λk (2)

and, for µ-almost every x ∈ M, a measurable decomposition

Rd
= E1(x)⊕ E2(x)⊕ · · · ⊕ Ek(x) (3)

such that
A(x)Ei (x)⊂ Ei ( f (x)) (with equality if λi >−∞) (4)

and

lim
n→∞

1
n

log‖A( f n−1x) · · · A( f x)A(x)v‖ = λi for v ∈ Ei (x)\{0}, i ∈ {1, . . . , k}. (5)
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Semi-invertible versions of the Oseledets theorem for quasi-compact operator cocycles
were developed in [13] and [15], generalizing the results of [23] and [18], respectively.
The numbers in (2) are called Lyapunov exponents and we will refer to the splitting in (3)
as the Oseledets splitting. Furthermore, we will say that Ei (x) is the Oseledets subspace
that corresponds to a Lyapunov exponent λi .

It is well known that, in general, in all the above-mentioned generalizations of MET,
the Oseledets subspaces depend only measurably on base points. However, it was recently
proved by Araújo et al [2] that, under the assumptions that f : X 	 is a Lipschitz map and
that A : X→ GL(d, R) is Hölder continuous, one is able to establish Hölder continuity
of the Oseledets subspaces on compact sets of arbitrarily large measure. The arguments
in [2] build on a previous work of Brin [9] who proved (in a particular case of derivative
cocycles) that, for Anosov systems, the stable and unstable distributions depend Hölder
continuously everywhere and that the same happens for non-uniformly hyperbolic systems,
but on a compact set of arbitrarily large measure.

The main objective of this paper is to extend the results from [2] by considering
possibly non-invertible cocycles as well as compact operator cocycles with values in the
space of all bounded linear operators acting on some Hilbert space. In order to describe
our main result in a finite-dimensional case, assume that A : X→ Rd×d is a Hölder
continuous cocycle over an invertible Lipschitz transformation f : X 	 satisfying (1).
We prove that the Oseledets subspaces in Theorem 1 are Hölder continuous on compact
sets of arbitrarily large measure. We emphasize that the lack of the invertibility causes
substantial complications and that, consequently, crucial parts of our argument differ from
the approach developed in [2]. In addition, this new setting requires new proofs of versions
of some well-known facts from Pesin theory. For example, Theorem 2 establishes upper
and lower bounds for the growth of the cocycles when restricted to the subbundles E(x)
and F(x) given by

E(x)= E1(x)⊕ · · · ⊕ Ei (x) and F(x)= Ei+1 ⊕ · · · ⊕ Ek(x),

as well as a lower bound on the angle between E(x) and F(x). This result plays an
important role in our arguments but is also of independent interest since it, in particular,
implies that if all Lyapunov exponents are non-zero, then the cocycle exhibits a non-
uniformly hyperbolic behaviour on a set of full measure. To the best of our knowledge,
this result had not yet been established before for semi-invertible cocycles.

We emphasize that semi-invertible cocycles arise in two very important situations from
the point of view of applications. Firstly, the study of Markov chains in a random
environment (MCRNs). Markov chains form the basis of mathematical models for a
huge variety of physical, chemical, and biological phenomena, including problems in
statistical mechanics, (bio)chemical engineering, epidemic modelling, complex networks
and genetics. More typically than not, the underlying transition probabilities in the Markov
chain model evolve over time according to some external random or time-dependent
environment. Instead of having a single invariant probability measure for a stationary
Markov chain, Markov chains in random environments possess a family of (random)
invariant measures (see, e.g., [10]), which depend on the environment. In the language
of Oseledets’ MET, X is the environment, f : X 	 describes the evolution of the random
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environment and A : X→ Rd×d is a stochastic matrix-valued function. The family of
random invariant measures are the top Oseledets spaces, corresponding to the leading
Lyapunov exponent λk = 0. The stability of these random invariant measures has been
explored in [11], where it is shown that, under mild assumptions on perturbations to
f or A, the random invariant measure is continuous in probability with respect to the
environment. Theorem 5 in the present work will show that if f is Lipschitz and x 7→ A(x)
is Hölder continuous, then the random invariant measure depends Hölder continuously
on the environment configuration x ∈ X on compact sets of arbitrarily large measure.
These assumptions on f and A are very reasonable for mathematical models of real-world
processes and our result provides the assurance that, on the vast bulk of the environment
space, the time-asymptotic distribution of trajectories of the MCRN varies continuously
with the environment.

A second application, which was the motivation for [12], concerns a program to
understand time-dependent dynamical systems through transfer operator cocycles. One
begins with a function x 7→ Tx , where each Tx : M 	 is a nonlinear map on a smooth
Riemannian manifold M . A map cocycle T f n−1x ◦ · · · ◦ T f x ◦ Tx represents the time-
dependent evolution of a nonlinear dynamical system. For example, let M be a three-
dimensional manifold representing the ocean, let X be the internal configuration of
the ocean (e.g. the distribution of pressure gradients), let f describe how the internal
configuration changes over one day and let Tx describe the motion of water particles over
one day given that the current configuration is x . Associated with each Tx is a linear
operator (the transfer operator; see, e.g., [4] for definitions) Lx : B 	, which acts on a
suitable Banach space B. Continuing with our ocean example, if g(z) : M→ R describes
the distribution of some inert, neutrally buoyant chemical in the ocean at ‘time’ x ∈ X , then
(Lx g)(z) is the distribution of the chemical one day later. That is, the transfer operators
{Lx }x∈X transform densities in B to densities in B just as the maps {Tx }x∈X transform
points in M to points in M .

In many areas of nonlinear dynamics, including fluid dynamics and models of
geophysical flow such as the ocean and atmosphere, one is interested in structures that
decay to equilibrium very slowly: so-called Lagrangian coherent structures or coherent
sets. In fluid dynamics, these represent parts of the fluid that are slow to mix with the rest
of the fluid; in the ocean and atmosphere, these structures have physical manifestations as
gyres and eddies, and vortices, respectively. It turns out that the second largest Lyapunov
exponent (the first non-trivial exponent after λk = 0) describes the time-asymptotic decay
rate of the family of most slowly decaying signed distributions {gx (z)}x∈X . Furthermore,
and crucially for applications, these signed distributions are given by the corresponding
second Oseledets spaces (see [12, 14] for details). In numerical experiments, the transfer
operators Lx are represented as large stochastic matrices on computers and the Oseledets
spaces are similarly discretized. Theorem 5 in the present paper states that if f is Lipschitz
and the linear actions are Hölder continuous, then the corresponding Oseledets spaces,
which describe the coherent structures, are Hölder continuous functions on subsets of
the base space X of arbitrarily large measure. This establishes the important fact that,
in applications, dramatic changes in coherent structures as a function of the driving
configuration are extremely rare.
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2. Semi-invertible cocycles and non-uniform hyperbolicity
In order to make our arguments more transparent and easier to follow, our presentation is
for finite-dimensional cocycles. In the final section, we highlight the changes necessary to
deal with the infinite-dimensional setting. A measurable map A : X × N0→ Rd×d , where
N0 = {0, 1, 2, . . .}, is said to be a cocycle over f if:
(1) A(x, 0)= Id for every x ∈ X ; and
(2) A(x, n + m)=A( f n(x), m)A(x, n) for every x ∈ X and n, m ≥ 0.
A map A : X→ Rd×d , defined by A(x)=A(x, 1), x ∈ X , is called a generator of a
cocycle A. For an f -invariant set 3⊂ X , a family of subspaces E(x)⊂ Rd , x ∈3 is
called A-invariant if A(x)E(x)⊂ E( f x) for each x ∈3.

We will now establish several auxiliary results related to Theorem 1 that will be used
throughout the paper. We start with the following lemma.

LEMMA 1. Assume that3 is an f -invariant set and let E(x)⊂ Rd and F(x)⊂ Rd , x ∈3
be A-invariant families of subspaces with the property that there exist λ1 < λ2, ε > 0 and
measurable functions C, C̃ :3→ (0,∞) such that:
(1)

λ1 + 3ε ≤ λ2 − 2ε; (6)

(2) E(x) ∩ F(x)= {0} for x ∈3;
(3) for x ∈3, v ∈ E(x)⊕ F(x) and n ≥ 0,

‖A(x, n)v‖ ≤ C̃(x)e(λ2+ε)n‖v‖; (7)

(4) for x ∈3, v ∈ F(x) and n ≥ 0,

‖A(x, n)v‖ ≥
1

C(x)
e(λ2−ε)n‖v‖; (8)

(5) for x ∈3, v ∈ E(x) and n ≥ 0,

‖A(x, n)v‖ ≤ C(x)e(λ1+ε)n‖v‖; and (9)

(6) for x ∈3 and m ∈ Z,

C̃( f m(x))≤ C̃(x)eε|m| and C( f m(x))≤ C(x)eε|m|. (10)

Then, there exists a measurable function K :3→ (0,∞) satisfying

K ( f m(x))≤ K (x)e5ε|m| for x ∈3 and m ∈ Z (11)

and such that

‖v1‖ ≤ K (x)‖v1 + v2‖ and ‖v2‖ ≤ K (x)‖v1 + v2‖ (12)

for v1 ∈ E(x) and v2 ∈ F(x).

Proof. Let P(x) : E(x)⊕ F(x)→E(x) and Q(x) : E(x)⊕ F(x)→F(x) be projections.
Set

γ (x)= inf{‖v1 + v2‖ : v1 ∈ E(x), v2 ∈ F(x), ‖v1‖ = ‖v2‖ = 1}.
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For any v ∈ E(x)⊕ F(x) such that P(x)v 6= 0 and Q(x)v 6= 0,

γ (x)≤
∥∥∥∥ P(x)v
‖P(x)v‖

+
Q(x)v
‖Q(x)v‖

∥∥∥∥
=

1
‖P(x)v‖

∥∥∥∥P(x)v +
‖P(x)v‖
‖Q(x)v‖

Q(x)v
∥∥∥∥

=
1

‖P(x)v‖

∥∥∥∥v + ‖P(x)v‖ − ‖Q(x)v‖‖Q(x)v‖
Q(x)v

∥∥∥∥
≤

2‖v‖
‖P(x)v‖

.

Hence
‖P(x)v‖ ≤

2
γ (x)
‖v‖.

We note that the above inequality is trivially satisfied when P(x)v = 0. Finally, if
Q(x)v = 0, then P(x)v = v and we conclude that

‖P(x)‖ ≤max{1, 2/γ (x)} for x ∈3. (13)

Similarly,
‖Q(x)‖ ≤max{1, 2/γ (x)} for x ∈3. (14)

Now take arbitrary v1 ∈ E(x) and v2 ∈ F(x) such that ‖v1‖ = ‖v2‖ = 1. By (7)–(9),

‖v1 + v2‖ ≥
1

C̃(x)e(λ2+ε)n
‖A(x, n)(v1 + v2)‖

≥
1

C̃(x)e(λ2+ε)n

(
1

C(x)
e(λ2−ε)n − C(x)e(λ1+ε)n

)
, (15)

for every n ≥ 0. Let n(x) be the smallest integer such that
1

C(x)
e(λ2−ε)n(x) − C(x)e(λ1+ε)n(x) ≥

1
C(x)

e(λ2−2ε)n(x) (16)

or, equivalently,
e(λ2−ε)n(x) − C(x)2e(λ1+ε)n(x) ≥ e(λ2−2ε)n(x). (17)

By (15) and (16),

γ (x)≥
1

C̃(x)e(λ2+ε)n(x)
·

1
C(x)

e(λ2−2ε)n(x)

and thus
2

γ (x)
≤ 2C(x)C̃(x)e3εn(x). (18)

Finally, we claim that n( f m(x))≤ n(x)+ |m| for each x ∈3 and m ∈ Z. Indeed, using (6)
and (10),

e(λ2−ε)(n(x)+|m|) − C( f m(x))2e(λ1+ε)(n(x)+|m|)

≥ e(λ2−ε)n(x) · e(λ2−ε)|m| − C(x)2e(λ1+ε)n(x) · e(λ1+3ε)|m|

≥ e(λ2−ε)n(x) · e(λ2−ε)|m| − C(x)2e(λ1+ε)n(x) · e(λ2−2ε)|m|

≥ e(λ2−2ε)n(x)
· e(λ2−2ε)|m| by (17)

≥ e(λ2−2ε)(n(x)+|m|).
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In order to complete the proof of the lemma, we are going to show that the function
K (x)=max{1, 2C(x)C̃(x)e3εn(x)

} satisfies (11) and (12). We note that (12) follows
directly from (13), (14) and (18). Moreover, using (10),

C( f m(x))C̃( f m(x))e3εn( f m (x))
≤ C(x)C̃(x)e3εn(x)

· e5ε|m|,

for each x ∈3 and m ∈ Z, which readily implies that (11) holds. �

Suppose that the Lyapunov exponents of the cocycle A are given by (2). Then, for each
i ∈ {1, . . . , k}, we can associate to (3) a new decomposition of Rd as

Rd
=

(⊕
j≤i

E j (x)
)
⊕

(⊕
j>i

E j (x)
)
. (19)

The following result establishes exponential bounds for A along the two subspaces
forming the decomposition (19) as well as for angles between them. For invertible
cocycles, such a result is well known (see [5, Theorem 3.3.1], for example). A major
difficulty in adapting the arguments in [5] is that they rely heavily on the well-known
fact that the angles between Oseledets subspaces in the standard (invertible) MET exhibit
a subexponential growth along each trajectory. On the other hand, to the best of our
knowledge, no such statement was established in relation to the semi-invertible version
of MET stated in Theorem 1. This forces us to develop an argument (based on Lemma 1),
which is completely different from the one in [5], to first establish exponential bounds for
A along the subspaces in (19) and then use this to deduce an appropriate bound for the
angle between those subspaces.

THEOREM 2. Let A be a cocycle over f satisfying (1) with Lyapunov exponents as in (2)
and take i ∈ {1, . . . , k}. Let

E1(x)=
i⊕

j=1

E j (x) and E2(x)=
k⊕

j=i+1

E j (x).

Then there exists a Borel set 3⊂ X such that µ(3)= 1 and, for each ε > 0, there are
measurable functions C, K :3→ (0,∞) with the property that, for every x ∈3:
(1) for each v ∈ E1(x) and n ≥ 0,

‖A(x, n)v‖ ≤ C(x)e(λi+ε)n‖v‖, (20)

where, if i = 1 and λ1 =−∞, λ1 is replaced by any number that belongs to the
interval (−∞, λ2);

(2) for each v ∈ E2(x) and n ≥ 0,

‖A(x, n)v‖ ≥
1

C(x)
e(λi+1−ε)n‖v‖; (21)

(3) for each u ∈ E1(x) and v ∈ E2(x),

‖u‖ ≤ K (x)‖u + v‖ and ‖v‖ ≤ K (x)‖u + v‖; and (22)

(4) for each n ∈ Z,

C( f n(x))≤ C(x)eε|n| and K ( f n(x))≤ K (x)eε|n|. (23)
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Proof. Step 1. Upper bound for growth on E1 and temperedness of the function C .
We begin by establishing property (20). We start with the following lemma.

LEMMA 2.

lim sup
n→∞

1
n

log‖A(x, n)|E1(x)‖ ≤ λi for µ− a.e. x ∈ X, (24)

where A(x, n)|E1(x) denotes the restriction of A(x, n) onto E1(x).

Proof of the lemma. Let {e1, . . . , el} be an orthonormal basis for E1(x). For each n ∈ N,
let vn ∈ E1(x) be such that ‖vn‖ = 1 and ‖A(x, n)|E1(x)‖ = ‖A(x, n)vn‖. Furthermore,
for n ∈ N, write vn in the form

vn =

l∑
j=1

a j,ne j

for a j,n ∈ R. We note that |a j,n| = |〈vn, e j 〉| ≤ ‖vn‖ · ‖e j‖ = 1 and thus

‖A(x, n)|E1(x)‖ ≤
l∑

j=1

|a j,n| · ‖A(x, n)e j‖ ≤

l∑
j=1

‖A(x, n)e j‖. (25)

Since e j ∈ E1(x), it follows, from (5), that

lim sup
n→∞

1
n

log‖A(x, n)e j‖ ≤ λi for j ∈ {1, . . . , l}. (26)

Finally, we note that (25) and (26) readily imply (24). �

It follows from (24) that, for ε > 0,

D(x) := sup
n≥0
{‖A(x, n)|E1(x)‖ · e−(λi+ε)n}<∞ (27)

for µ almost every x ∈ X .

LEMMA 3.
lim

n→±∞

1
n

log D( f n(x))= 0 for µ-almost every x ∈ X. (28)

Proof of the lemma. For n ≥ 1,

‖A(x, n) | E1(x)‖ ≤ ‖A( f (x), n − 1) | E1( f (x))‖ · ‖A(x)|E1(x)‖

≤ ‖A( f (x), n − 1) | E1( f (x))‖ · ‖A(x)‖.

By multiplying the above inequality by e−(λi+ε)n , we obtain

e−(λi+ε)n‖A(x, n)|E1(x)‖ ≤ e−(λi+ε)(n−1)
‖A( f (x), n−1)|E1( f (x))‖ · e−(λi+ε)‖A(x)‖.

Hence
D(x)≤ D( f (x)) ·max{e−(λi+ε)‖A(x)‖, 1}.

It follows, from (1), that there exists a non-negative and integrable function ψ : X→ R
such that

log D(x)− log D( f (x))≤ ψ(x). (29)
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Set
D̃(x)= log D(x)− log D( f (x)).

We note that
1
n

log D( f n(x))=
1
n

log D(x)−
1
n

n−1∑
j=0

D̃( f j (x)) (30)

for each x ∈ X and n ∈ N. By (29), D̃+ is integrable. Hence we can apply the Birkhoff
ergodic theorem (see [3, p. 539]) and conclude that there exists a ∈ [−∞,∞) such that

lim
n→∞

1
n

n−1∑
j=0

D̃( f j (x))= a (31)

for µ-almost every x ∈ X . It follows, from (30) and (31), that

lim
n→∞

1
n

log D( f n(x))=−a.

On the other hand, since µ is f -invariant, for any c > 0,

lim
n→∞

µ({x ∈ X : log D( f n(x))/n ≥ c})= lim
n→∞

µ({x ∈ X : log D(x)≥ nc})= 0,

which immediately implies that a ≥ 0. Thus

lim
n→∞

1
n

log D( f n(x))≤ 0.

Since D(x)≥ 1 for µ almost every x ∈ X , by (27), we conclude that (28) holds when
n→∞.

Now we establish (28) for the case n→−∞. Set

D′(x)= log D( f −1(x))− log D(x).

Obviously,
1
n

log D( f −n(x))=
1
n

log D(x)+
1
n

n−1∑
j=0

D′( f − j (x)) (32)

for each x ∈ X and n ∈ N. By (29), D′+ is integrable. Hence we can apply the Birkhoff
ergodic theorem and conclude that there exists a ∈ [−∞,∞) such that

lim
n→∞

1
n

n−1∑
j=0

D′( f − j (x))= a (33)

for µ-almost every x ∈ X . We can now proceed as in the previous case and obtain that
a = 0, which implies (28). �

It follows, from (28) and Proposition 4.3.3(ii) in [3], that there exists a non-negative
and measurable function C defined on a set of full measure satisfying the first inequality
in (23) such that D(x)≤ C(x), which, together with (27), implies that (20) holds.

Step 2. Lower bound for growth on E2 and temperedness of the function 1/C .
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We now show (21). By Theorem 1, the cocycle A is invertible along the subbundle
E2. We would like to apply Step 1 to the inverse of the cocycle obtained by restricting
A onto the subbundle E2 to conclude that (21) holds for some function C satisfying the
first inequality in (23) on a set of full measure. In order to do this, we first require the
integrability condition of Lemma 4. The arguments in the proof of Lemma 4 are partly
inspired by those in the proof of Corollary 3.8 [8].

LEMMA 4. ∫
X

log+‖(A(x)|E2(x))−1
‖ dµ(x) <∞.

Proof of the lemma. Take an arbitrary v ∈ E2(x) such that ‖v‖ = 1 and find an
orthonormal basis {v1, . . . , vm} of E2(x) such that v1 = v. Then,

|det(A(x)|E2(x))| ≤ ‖A(x)v‖ ·
m∏

i=2

‖A(x)vi‖ ≤ ‖A(x)v‖ · ‖A(x)‖m−1.

Hence
‖A(x)v‖ ≥ ‖A(x)‖1−m

· |det(A(x)|E2(x))|. (34)

Moreover, by (34),

‖(A(x)|E2(x))−1
‖ = sup

w∈E2( f x),‖w‖=1
‖A(x)−1w‖

= sup
v∈E2(x),‖v‖=1

1
‖A(x)v‖

≤
‖A(x)‖m−1

|det(A(x)|E2(x))|
,

and therefore

log‖(A(x)|E2(x))−1
‖ ≤ (m − 1) log‖A(x)‖ − log|det(A(x)|E2(x))|.

In view of (1), setting
ψ(x)= log|det(A(x)|E2(x))|, (35)

it remains to prove ψ− ∈ L1(µ). We first note that ψ(x)≤ log‖A(x)‖m = m log‖A(x)‖,
which, together with (1), implies that ψ+ ∈ L1(µ). It follows, from Birkhoff’s ergodic
theorem, that there exists a ∈ R ∪ {−∞} such that

a = lim
n→∞

1
n

n−1∑
i=0

ψ( f i (x))= lim
n→∞

1
n

n∑
i=1

ψ( f −i (x))

for µ-almost every x ∈ X . We note that

a = lim
n→∞

1
n

n∑
i=1

ψ( f −i (x))= lim
n→∞

1
n

n∑
i=1

log|det(A( f −i (x))|E2( f −i (x)))|

= lim
n→∞

1
n

log|det(A( f −n(x)), n)|E2( f −n(x)))|

= lim
n→∞

1
n

log
1

|det(A( f −n(x)), n)|E2( f −n(x)))−1|
.
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Again, let {v1, . . . , vm} be an orthonormal basis for E2(x). Then, by going backwards
in (2) (which is possible by [13, Lemma 20]), we can find λ ∈ R such that, for sufficiently
large n,

|det(A( f −n(x), n)|E2( f −n(x)))−1
| ≤

m∏
i=1

‖(A( f −n(x), n)|E2( f −n(x)))−1vi‖ ≤ emnλ,

which implies that a ≥−mλ and thus a ∈ R. Moreover, by Kingman’s subadditive ergodic
theorem,

a = inf
n∈N

1
n

∫
X

log|det(A( f n−1(x), n)|E2(x))| dµ(x)≤
∫

X
log|det(A(x)|E2(x))| dµ(x),

which implies the integrability of ψ−. �

To finish this step, we now establish the existence of function C satisfying (21) and
the first inequality in (23). By Theorem 1, the map A(x) is invertible along the direction
E2(x) and we will denote the inverse of this map by A−1(x). Let B be a cocycle over f −1

defined on a subbundle E2(x) with generator A−1
◦ f −1. It follows, from Theorem 1,

Lemma 4 and [13, Lemma 20], that the Lyapunov exponents of the cocycle B are given by

−λk < · · ·<−λi+1.

Furthermore, E j (x) is the Oseledets subspace corresponding to −λ j for i + 1≤ j ≤ k.
We can now apply Step 1 to B to conclude that there exists a function C :3→ (0,∞)
such that

‖B(x, n)v‖ ≤ C(x)e(−λi+1+ε/2)n for x ∈3, n ≥ 0 and v ∈ E j+1(x)⊕ · · · ⊕ Ek(x)
(36)

and
C( f m(x))≤ C(x)e(ε/2)|m| for x ∈3 and m ∈ Z. (37)

It follows readily from (36) and (37) that (21) holds.

Step 3. Lower bound for K and temperedness of K .
The existence of function K satisfying (22) and (23) follows by applying Lemma 1

successively. For i = k − 1, it is sufficient to apply Lemma 1 to E(x)= E1(x)⊕ · · · ⊕
Ek−1(x) and F(x)= Ek(x) using the properties (20) (both for E(x) and E(x)⊕ F(x))
and (21) from Steps 1 and 2. For i = k − 2, we again apply Lemma 1 to E(x)=
E1(x)⊕ · · · ⊕ Ek−1(x) and F(x)= Ek(x) and obtain a function K1, as in the statement
of Lemma 1. Further, we apply Lemma 1 to E(x)= E1(x)⊕ · · · ⊕ Ek−2(x) and
F(x)= Ek−1(x) and obtain a function K2, as in the statement of Lemma 1. Now
take an arbitrary v ∈ E1(x)⊕ · · · ⊕ Ek−2(x) and w ∈ Ek−1(x)⊕ Ek(x), w = w1 + w2,
w1 ∈ Ek−1(x), w2 ∈ Ek(x). By (12),

‖v‖ ≤ K2(x)‖v + w1‖ ≤ K1(x)K2(x)‖v + w‖. (38)

Similarly,
‖w2‖ ≤ K1(x)‖v + w‖

and
‖w1‖ ≤ K2(x)‖v + w1‖ ≤ K1(x)K2(x)‖v + w‖.
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Hence
‖w‖ ≤ 2 max{K1(x), K1(x)K2(x)}‖v + w‖. (39)

It follows, from (38) and (39), that (22) holds for K (x)= 2 max{K1(x), K1(x)K2(x)},
which, in view of (11), satisfies the second inequality in (23) with ε replaced by some aε
for some a > 0 (this is possible since ε > 0 can be made arbitrarily small). Proceeding
inductively, we can establish the appropriate bounds for the angle in the general case when
1≤ i ≤ k. �

As we have already noted in the introduction, Theorem 2 plays a central role in the
proof of our main result. However, it is also a result of independent interest. For example,
it shows that the non-invertible cocycles with all non-zero Lyapunov exponents are non-
uniformly hyperbolic in the sense of Pesin (see [5] for details) on a set of full measure.
Furthermore, it shows that the notion of a non-uniform exponential dichotomy for not
necessarily invertible discrete time dynamics (introduced by Barreira and Valls in [7])
is ubiquitous in the context of ergodic theory. In order to formulate an explicit result,
we recall that we say that a sequence (An)n∈Z of operators on Rd admits a non-uniform
exponential dichotomy if:
(1) there exist projections Pn : Rd

→ Rd for each n ∈ Z satisfying

An Pn = Pn+1 An

for n ∈ Z, such that each map

An| ker Pn : ker Pn→ ker Pn+1

is invertible; and
(2) there exist a constants D, λ > 0 and ε ≥ 0 such that

‖A(m, n)Pn‖ ≤ De−λ(m−n)+ε|n| for m ≥ n

and
‖A(m, n)Qn‖ ≤ De−λ(n−m)+ε|n| for m ≤ n,

where Qn = Id−Pn and

A(m, n)= (A(n, m)| ker Pm)
−1
: ker Pn→ ker Pm

for m < n.
The following result is a direct consequence of Theorem 2.

THEOREM 3. Let A be a cocycle satisfying (1) with non-vanishing Lyapunov exponents.
Then there exists a Borel set 3⊂ X of full µ-measure such that, for each x ∈3, the
sequence (An)n∈Z defined by An = A( f n(x)), n ∈ Z admits a non-uniform exponential
dichotomy.

3. An Oseledets splitting of the adjoint cocycle
The other crucial ingredient in the proof of Hölder continuity of the Oseledets splitting
(Theorem 5) is the use of the adjoint cocycle. Suppose that A is a cocycle over f whose
generator A satisfies (1). Moreover, assume that the Lyapunov exponents of A and the
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corresponding Oseledets decomposition are given by (2) and (3). We denote by A∗ the
cocycle over f −1 with generator A∗ ◦ f −1. The following result identifies Lyapunov
exponents and the Oseledets splitting of the cocycle A∗. We note that this theorem is well
known for invertible matrix cocycles. (See [22] and [3, Theorem 5.1.1]; for semi-invertible
cocycles, this result follows implicitly from the contents of the proof of Corollary 17 [16].
We present a separate argument here for completeness.)

THEOREM 4. The Lyapunov exponents of the cocycle A∗ are given by (2). Furthermore,
the Oseledets subspace that corresponds to λi is given by(⊕

j 6=i

E j (x)
)⊥
. (40)

Proof. Let Fi (x) be a subspace of Rd given by (40). It follows, from (4), that

A(x)
(⊕

j 6=i

E j (x)
)
⊂

⊕
j 6=i

E j ( f (x)),

which readily implies that A∗( f −1(x))Fi (x)⊂ Fi ( f −1(x)) for each i ∈ {1, . . . , k}.
Furthermore, the subspaces Fi (x) form a direct sum. Indeed, assume that

v ∈ Fi (x) ∩ (F1(x)+ · · · Fi−1(x)+ Fi+1(x)+ · · · + Fk(x))

and write v in the form v = v1 + · · · + vk , where v j ∈ E j (x) for j = 1, . . . , k. Since

v ∈ Fi (x) and v1 + · · · + vi−1 + vi+1 + · · · + vk ∈
⊕
j 6=i

E j (x),

we conclude that 〈v, v1 + · · · + vi−1 + vi+1 + · · · + vk〉 = 0. On the other hand, since

v ∈ F1(x)+ · · · + Fi−1(x)+ Fi+1(x)+ · · · + Fk(x)⊂ Ei (x)⊥,

〈v, vi 〉 = 0. Hence 〈v, v〉 = 0 and v = 0. We now want to prove that

Rd
=

k⊕
i=1

Fi (x).

In order to prove the above equality we are going to show that (
⊕k

i=1 Fi (x))⊥ = {0}.
Take v ∈ (

⊕k
i=1 Fi (x))⊥ =

⋂k
i=1 Fi (x)⊥ and write it in a form v = v1 + · · · + vk , where

vi ∈ Ei (x), i = 1, . . . , k. Since v and v2 + · · · + vk both belong to F1(x)⊥, we conclude
that v1 ∈ F1(x)⊥. However, since the subspaces E j (x) form a direct sum of Rd , this
implies that v1 = 0. Similarly, we obtain that v j = 0 for j = 2, . . . , k and thus v = 0. In
order to complete the proof of the theorem, we are going to show that for µ-almost every
x ∈ X ,

lim
n→∞

1
n

log‖A∗(x, n)u‖ = λi for u ∈ Fi (x)\{0} and i ∈ {1, . . . , k}. (41)

Take i ≥ 2 and u ∈ Fi (x)\{0}. We first note that A∗(x, n)=A( f −n(x), n)∗. Hence

‖A∗(x, n)u‖ = max
‖v‖=1
|〈A∗(x, n)u, v〉| = max

‖v‖=1
|〈u,A( f −n(x), n)v〉|. (42)
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For v ∈ Ei ( f −n(x)), ‖v‖ = 1, one has A( f −n(x), n)v ∈ Ei (x). Since u ∈ Fi (x)\{0},
setting

c = c(x)= 1
2 sup{|〈w1, w2〉| : w1 ∈ Fi (x), w2 ∈ Ei (x), ‖w1‖ = ‖w2‖ = 1},

‖A∗(x, n)u‖ = max
‖v‖=1
|〈u,A( f −n(x), n)v〉| ≥ c‖u‖ · ‖A( f −n(x), n)v‖. (43)

On the other hand, it follows, from Theorem 2, that, for each ε > 0, there exists a
measurable function C :3→ (0,∞) defined on a Borel set 3⊂ X of full µ-measure
such that

C( f n(x))≤ C(x)eε|n| for x ∈3 and n ∈ Z (44)

and
‖A(x, n)w‖ ≥

1
C(x)

e(λi−ε)n‖w‖ for x ∈3, w ∈ Ei (x) and n ≥ 0. (45)

It follows, from (44) and (45), that

‖A( f −n(x), n)v‖ ≥
1

C(x)
e(λi−2ε)n for n ≥ 0. (46)

By (42), (43) and (46),

lim inf
n→∞

1
n

log‖A∗(x, n)u‖ ≥ λi − 2ε.

Since ε > 0 was arbitrary, we conclude that

lim inf
n→∞

1
n

log‖A∗(x, n)u‖ ≥ λi . (47)

Now take an arbitrary v ∈ Rd , ‖v‖ = 1 and write it as v = v1 + · · · + vk , where v j ∈

E j ( f −n(x)) for j = 1, . . . , k. Since u ∈ Fi (x), 〈u,A( f −n(x), n)v j 〉 = 0 for j 6= i .
Hence

|〈u,A( f −n(x), n)v〉| = |〈u,A( f −n(x), n)vi 〉| ≤ ‖u‖ · ‖A( f −n(x), n)vi‖. (48)

Furthermore, it follows, from Theorem 2, that, for each ε > 0, there exist measurable
functions C, K :3→ (0,∞) defined on a Borel set 3 of full µ-measure such that, for
every x ∈3 and n ∈ Z,

‖A(x, n)w‖ ≤ C(x)e(λi+ε)n‖w‖ for w ∈ Ei (x), n ≥ 0, (49)

‖wi‖ ≤ K (x)‖w1 + w2‖ for i ∈ {1, 2}, w1 ∈ Ei (x) and w2 ∈
⊕
j 6=i

E j (x), (50)

C( f n(x))≤ C(x)eε|n| and K ( f n(x))≤ K (x)eε|n|. (51)

We note that the existence of the function K can be easily deduced from the appropriate
bounds for the angles between

⊕i
j=1 E j (x) and

⊕k
j=i+1 E j (x) as well as

⊕i−1
j=1 E j (x)

and Ei (x) (see Lemma 1 and the proof of Theorem 2). Thus

‖A( f −n(x), n)vi‖ ≤ C( f −n(x))e(λi+ε)n‖vi‖

≤ C( f −n(x))K ( f −n(x))e(λi+ε)n‖v‖

≤ C(x)K (x)e(λi+3ε)n .
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Hence, using (42) and (48), we obtain

lim sup
n→∞

1
n

log‖A∗(x, n)u‖ ≤ λi + 3ε.

Since ε > 0 was arbitrary, we conclude that

lim sup
n→∞

1
n

log‖A∗(x, n)u‖ ≤ λi . (52)

Obviously, (47) and (52) imply (41). Now we discuss the case i = 1. If λ1 >−∞, then
one can repeat the above arguments and establish (41) for i = 1 also. If λ1 =−∞, then
one can repeat the second estimates and obtain that

lim sup
n→∞

1
n

log‖A∗(x, n)u‖ ≤ L ,

for u ∈ F1(x), where L is arbitrary real number. By letting L→−∞, we establish (41) in
this situation also. �

4. Hölder continuity of Oseledets splitting
In this section, we prove that the Oseledets subspaces of a Hölder continuous cocycle A
are Hölder continuous on a set of arbitrarily large measure in X . For a subspace A ⊂ Rd

and a vector v ∈ Rd , we define

d(v, A)= inf{‖v − w‖ : w ∈ A}.

Furthermore, for two subspaces V and W of Rd , we define the distance between them by

d(V, W )=max
{

sup
w∈W,‖w‖=1

d(w, V ), sup
v∈V,‖v‖=1

d(v, W )

}
.

It turns out that the quantity d(V, W ) can be expressed in an equivalent form, which will
be more suitable for our purposes. Let PV : Rd

→ Rd and PW : Rd
→ Rd be orthogonal

projections onto V and W , respectively. The following lemma is well known (see, e.g., [1,
p. 111]).

LEMMA 5. For any two subspaces V and W of Rd ,

d(V, W )= ‖PV − PW‖.

Now let X be a metric space with a metric ρ and let 3⊂ X . We say that the family
E(x), x ∈3 of subspaces of Rd is Hölder continuous on 3 if there exist L , ε0 > 0 and
β ∈ (0, 1] such that

d(E(x), E(y))≤ Lρ(x, y)β for every x, y ∈3 satisfying ρ(x, y)≤ ε0.

We now introduce the notion of a Hölder continuous cocycle. We say that the cocycle A
is Hölder continuous if there exist C, ν > 0 such that

‖A(x)− A(y)‖ ≤ Cρ(x, y)ν for x, y ∈ X.

The following two simple lemmas will be particularly useful.
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LEMMA 6. Let 3⊂ X. A family E(x), x ∈3 of subspaces of Rd is Hölder continuous if
and only if the family E(x)⊥, x ∈3 is Hölder continuous.

Proof. Let P(x) denote the orthogonal projection onto E(x) for x ∈3. Then Id−P(x) is
an orthogonal projection onto E(x)⊥. Hence it follows, from Lemma 5, that

d(E(x), E(y))= ‖P(x)− P(y)‖ = ‖(Id−P(x))− (Id−P(y))‖

= d(E(x)⊥, E(y)⊥)

for every x, y ∈3. The conclusion of the lemma now follows directly from the definition
of Hölder continuity. �

LEMMA 7. Let 3⊂ X and assume that E(x), F(x), x ∈3 are two families of subspaces
of Rd such that:
(1) the subspaces E(x) and F(x) are orthogonal for each x ∈3;
(2) the family E(x), x ∈3 is Hölder continuous; and
(3) the family E(x)⊕ F(x), x ∈3 is Hölder continuous.
Then the family F(x), x ∈3 is also Hölder continuous.

Proof. Let P(x) be an orthogonal projection onto E(x) and let Q(x) be an orthogonal
projection onto F(x) for x ∈3. Since E(x) and F(x) are orthogonal, P(x)+ Q(x) is an
orthogonal projection onto E(x)⊕ F(x). Hence it follows, from Lemma 5, that

d(F(x), F(y))= ‖Q(x)− Q(y)‖ ≤ ‖(P(x)+ Q(x))− (P(y)+ Q(y))‖

+ ‖P(x)− P(y)‖

= d(E(x)⊕ F(x), E(y)⊕ F(y))

+ d(E(x), E(y))

for every x, y ∈3. The Hölder continuity of the family F(x) follows directly from the
Hölder continuity of families E(x)⊕ F(x) and E(x). �

We will use the following two auxiliary results from [2], which are slight generalizations
of the original work of Brin [9] (see also [5, Lemmas 5.3.4. and 5.3.5]).

LEMMA 8. Let (An)n≥1, (Bn)n≥1 be two sequences of real matrices of order d > 0 such
that, for some 0< λ < µ and C ≥ 1, there exist subspaces E, E ′, F, F ′ of Rd satisfying
Rd
= E ⊕ E ′ = F ⊕ F ′ such that:

(1) ‖Anu‖ ≤ Cλn
‖u‖ for u ∈ E and C−1µn

‖v‖ ≤ ‖Anv‖ for v ∈ E ′;
(2) ‖Bnu‖ ≤ Cλn

‖u‖ for u ∈ F and C−1µn
‖v‖ ≤ ‖Bnv‖ for v ∈ F ′; and

(3) max{‖v‖, ‖w‖} ≤ d‖v + w‖ for v ∈ E, w ∈ E ′ or v ∈ F, w ∈ F ′.
Then, for each pair (δ, a) ∈ (0, 1] × [λ,+∞) satisfying(

λ

a

)n+1

< δ ≤

(
λ

a

)n

and ‖An − Bn‖ ≤ δan,

d(E, F)≤ (2+ d)C2(µ/λ)δlog(µ/λ)/ log(a/λ).
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LEMMA 9. Assume that A is a Hölder continuous cocycle and that there exists L > 0 such
that f is Lipschitz with constant L and such that ‖A(x, n)‖ ≤ Ln for n ≥ 0 and x in some
fixed compact set 3⊂ X. Then there exist C, ν > 0 such that ‖A(x, n)−A(y, n)‖ ≤
Cnd(x, y)ν for x, y ∈3 and n ≥ 0.

We now arrive at our main result.

THEOREM 5. Let A be a Hölder continuous cocycle satisfying (1) whose Lyapunov
exponents and the corresponding Oseledets splitting are given by (2) and (3). Then, for
each i ∈ {1, . . . , k} and δ > 0, there exists a compact set3⊂ X of measure µ(3) > 1− δ
such that the map x 7→ Ei (x) is Hölder continuous on 3.

Proof. We will divide the proof into several parts.

Step 1. Hölder continuity of x 7→ E1(x)⊕ · · · ⊕ Ei (x). We will first show that, for each
i ∈ {1, . . . , k} and δ > 0, there exists a compact set 3⊂ X satisfying µ(3) > 1− δ and
such that the map x 7→ E1(x)⊕ · · · ⊕ Ei (x) is Hölder continuous on3. We note that this
part is essentially already contained in [2, 5, 9]; we include it for the sake of completeness.

Choosing ε > 0 such that λi + ε < λi+1 − ε, it follows, from Theorem 2, that there
exists a Borel set 3⊂ X satisfying µ(3)= 1 and Borel measurable functions C, K :
3→ (0,∞) such that (20), (21), (22) and (23) hold (with the same convention as in
the statement of Theorem 2 for λ1 in (20), if i = 1). Moreover, there exists a measurable
function C̃ :3→ (0,∞) such that

‖A(x, n)‖ ≤ C̃(x)e(λk+ε)n for x ∈3 and n ≥ 0. (53)

For l ∈ N, let
3l = {x ∈3 : C(x)≤ l, C̃(x)≤ l, K (x)≤ l}.

It is easy to verify (see [5, p. 121]) that each set3l is compact. Furthermore, we obviously
have that

3l ⊂3l+1 and
∞⋃

l=1

3l =3.

Since µ(3)= 1, there exists l ∈ N such that µ(3l) > 1− δ. On the other hand, it follows,
from (20), (21), (22) and (23), that, for every x ∈3l ,

‖A(x, n)v‖ ≤ le(λi+ε)n‖v‖ for v ∈ E1(x)⊕ · · · ⊕ Ei (x) and n ≥ 0; (54)

1
l

e(λi+1−ε)n‖v‖ ≤ ‖A(x, n)v‖ for v ∈ Ei+1(x)⊕ · · · ⊕ Ek(x) and n ≥ 0; (55)

and
‖u‖ ≤ l‖u + v‖ and ‖v‖ ≤ l‖u + v‖ (56)

for u ∈ E1(x)⊕ · · · ⊕ Ei (x) and v ∈ Ei+1(x)⊕ · · · ⊕ Ek(x). Moreover, it follows, from
(53), that

‖A(x, n)‖ ≤ le(λk+ε)n for every x ∈3l and n ≥ 0. (57)

Hence, applying Lemmas 8 and 9 to sequences An =A(x, n) and Bn =A(y, n) with
x, y ∈3l , we easily obtain the Hölder continuity of the map x 7→ E1(x)⊕ · · · ⊕ Ei (x)
on 3l .
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Step 2. Hölder continuity of x 7→ Ei+1(x)⊕ · · · ⊕ Ek(x). We now prove that, for each
i ∈ {1, . . . , k − 1} and δ > 0, there exists a compact set 3⊂ X satisfying µ(3) > 1− δ
and such that the map x 7→ Ei+1(x)⊕ · · · ⊕ Ek(x) is Hölder continuous on 3. We note
that

(Ei+1 ⊕ · · · ⊕ Ek(x))⊥ =
(⊕

j 6=1

E j (x)
)⊥
⊕ · · · ⊕

(⊕
j 6=i

E j (x)
)⊥
= F1 ⊕ · · · ⊕ Fi ,

where F j , j = 1, . . . , i are the Oseledets spaces of the adjoint cocycle and the second
equality follows from Theorem 4. We now apply Step 1 to the adjoint cocycle to find a
measurable set 3⊂ X satisfying µ(3) > 1− δ and such that the map

x 7→ F1 ⊕ · · · ⊕ Fi = (Ei+1 ⊕ · · · ⊕ Ek(x))⊥

is Hölder continuous on 3. The desired conclusion now follows directly from Lemma 6.
We note that this part is also contained in [9], [5] and [2], but is obtained by applying the
previous step to the inverse of A. Such an approach is unavailable to us because the inverse
of A may not exist.

Step 3. Hölder continuity of x 7→ Ei (x). In the final part, we prove that, for each i ∈
{1, . . . , k} and δ > 0, there exists a compact set3⊂ X satisfying µ(3) > 1− δ and such
that the map x 7→ Ei (x) is Hölder continuous on 3. We note that our arguments related
to this part of the proof differ significantly from those in [2] and are arguably simpler.
For i = 1 or i = k, there is nothing to prove since the conclusion follows directly from
the previous two steps. Now take an arbitrary i ∈ {2, . . . , k − 1} and δ > 0 and let 3l be
the set of measure greater than 1− δ constructed in the first step of the proof. Without
loss of generality, we can assume that the mapping x 7→ Ei (x)⊕ · · · ⊕ Ek(x) is Hölder
continuous on 3l since, otherwise (using Step 2 of the proof), we can pass to a compact
subset of 3l of measure greater than 1− 2δ on which this holds. Let P(x) denote the
orthogonal projection onto F(x) := Ei (x)⊕ · · · ⊕ Ek(x). For a point x ∈3l , we define
a sequence of matrices (An)n by An =A(x, n)P(x). Choose any v ∈ F(x)⊥ ⊕ Ei (x) and
write it in the form v = v1 + v2, where v1 ∈ F(x)⊥ and v2 ∈ Ei (x). Using (54) and the
orthogonality of F(x)⊥ and Ei (x), we conclude that

‖Anv‖ = ‖Anv2‖ = ‖A(x, n)v2‖ ≤ le(λi+ε)n‖v2‖ ≤ le(λi+ε)n‖v‖.

Hence
‖Anv‖ ≤ le(λi+ε)n‖v‖ for every v ∈ F(x)⊥ ⊕ Ei (x) and n ≥ 0. (58)

On the other hand, it follows readily, from (55), that

1
l

e(λi+1−ε)n‖v‖ ≤ ‖Anv‖ for every v ∈ Ei+1(x)⊕ · · · ⊕ Ek(x) and n ≥ 0. (59)

We now want to establish appropriate bounds for the angles between F(x)⊥ ⊕ Ei (x)
and Ei+1(x)⊕ · · · ⊕ Ek(x). Select an arbitrary u = u1 + u2 ∈ F(x)⊥ ⊕ Ei (x) with u1 ∈

F(x)⊥, u2 ∈ Ei (x) and v ∈ Ei+1(x)⊕ · · · ⊕ Ek(x). By (56),

‖u + v‖2 = ‖u1 + u2 + v‖
2
= ‖u1‖

2
+ ‖u2 + v‖

2
≥ ‖u2 + v‖

2
≥

1
l2 ‖v‖

2,
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which implies that
l‖u + v‖ ≥ ‖v‖.

Similarly,

‖u + v‖2 = ‖u1‖
2
+ ‖u2 + v‖

2
≥

1
l2 (‖u1‖

2
+ ‖u2‖

2)=
1
l2 ‖u‖

2,

which implies that
l‖u + v‖ ≥ ‖u‖.

Hence

max{‖u‖, ‖v‖} ≤ l‖u + v‖ for u ∈ F(x)⊥ ⊕ Ei (x) and v ∈
k⊕

j=i+1

E j (x). (60)

In order to apply Lemma 8, we need to bound the quantity ‖An − Bn‖, where Bn =

A(y, n)P(y) and y is some other point in 3l .

‖An − Bn‖ = ‖A(x, n)P(x)−A(y, n)P(y)‖

≤ ‖A(x, n)P(x)−A(x, n)P(y)‖ + ‖A(x, n)P(y)−A(y, n)P(y)‖

≤ ‖A(x, n)‖ · d(F(x), F(y))+ ‖A(x, n)−A(y, n)‖.

By applying Lemma 9, (57) and the Hölder continuity of the map x 7→ F(x), we conclude
that there exists C, ν > 0 (independent of x and y) such that

‖An − Bn‖ ≤ Cnd(x, y)ν .

It now follows, from Lemma 8, that the map x 7→ F(x)⊥ ⊕ Ei (x) is Hölder continuous on
a set3l , which, in view of Lemma 7, implies the Hölder continuity of the map x 7→ Ei (x)
on the same set. �

5. Cocycles on Hilbert spaces
In this section, we state a generalization of our results to cocycles on Hilbert spaces.

THEOREM 6. Let X be a Borel subset of a separable complete metric space, let f : X 	
be a bi-Lipschitz ergodic transformation, let H be a Hilbert space and let A : X→ B(H)
take values in the space of all compact operators. Further, assume that A satisfies (1) and
that x 7→ A(x) is Hölder continuous in the operator norm topology. Then either of the
following hold.
(1) There is a finite sequence of numbers (note that below we order Lyapunov exponents

and Oseledets spaces in reverse order to (2) and (3), starting with the largest one)

λ1 > λ2 > · · ·> λk > λ∞ =−∞

and a decomposition

H= E1(x)⊕ · · · ⊕ Ek(x)⊕ E∞(x)

such that

A(x)Ei (x)= Ei ( f (x)), i = 1, . . . , k and A(x)E∞(x)⊂ E∞( f (x))
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and

lim
n→∞

1
n

log‖A(x, n)v‖ = λi for v ∈ Ei (x)\{0}, i ∈ {1, . . . , k} ∪ {∞}.

Moreover, each Ei (x), i = 1, . . . , k is a finite-dimensional subspace of H. The
maps x 7→ Ei (x), i = 1, . . . , k are Hölder continuous on a compact set of
arbitrarily large measure.

(2) There exists an infinite sequence of numbers

λ1 > λ2 > · · ·> λk > · · ·> λ∞ =−∞

and a decomposition

H= E1(x)⊕ · · · ⊕ Ek(x)⊕ · · · ⊕ E∞(x)

such that

A(x)Ei (x)= Ei ( f (x)), 1≤ i <∞ and A(x)E∞(x)⊂ E∞( f (x))

and

lim
n→∞

1
n

log‖A(x, n)v‖ = λi for v ∈ Ei (x)\{0}, i ∈ N ∪ {∞}.

Moreover, each Ei (x), i 6= ∞ is a finite-dimensional subspace of H. The maps x 7→
Ei (x), i 6= ∞ are Hölder continuous on a compact set of arbitrarily large measure.

Proof. In cases (1) and (2), all statements, except the Hölder continuity, follow from
Theorem 17 in [13], which extends Theorem 1 to a semi-invertible version of Oseledets’
theorem under weaker conditions than those in our hypotheses: namely, that f is an
ergodic homeomorphism, H is a Banach space, A takes values in the space of all quasi-
compact operators and x 7→ A(x) is µ-continuous; the resulting Oseledets splitting is µ-
continuous.

Case 1. In this case one is able to repeat the arguments in the proof of Theorem 5 and
establish the Hölder continuity. Indeed, we emphasize that all of the preparatory results
that we used extend to this setting. In particular, Theorem 4 and Lemma 8 are valid
for cocycles on Hilbert space (with the same proof) and the corresponding version of
Theorem 2 also holds. More precisely, one is able to repeat all arguments in the proof
Theorem 2, with the exception of Lemma 2.

The statement of Lemma 2 remains unchanged in our Hilbert space setting. The
proof in the Hilbert space case is identical to the proof of Proposition 14 in [13], where
Proposition 14 is now applied to the cocycle A(x, n) restricted to E1(x).

Case 2. Arguing as in case 1 above, one is able to show Hölder continuity of Oseledets
subspaces Ei (x) for i 6= ∞ on a compact set of arbitrarily large measure for any Hölder
continuous cocycle. Unfortunately, we are not able to establish a similar property for
E∞(x). The major obstacle in repeating our arguments is the fact that one does not have a
lower bound for the expansion on a subspace complementary to E∞(x). �
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