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EVEN CANONICAL SURFACES WITH SMALL K\ I

KAZUHIRO KONNO

Introduction

Let S be a minimal algebraic surface of general type defined over the complex

number field C, and let K denote the canonical bundle. According to [10], we call

S a canonical surface if the rational map Φκ associated with | K\ induces a bira-

tional map of S onto the image X. We denote by Q (X) the intersection of all

hyperquadrics through X.

One of the fundamental problems on canonical surfaces is a conjecture of

Miles Reid [15, p. 541] which states that a canonical surface satisfies either (1)

K > 4pg — 12, or (2) the irreducible component of Q(X) containing the canonical

image X is of dimension 3. In other words, canonical surfaces with K < Apg —

12 should have a flavor similar to the exceptions of Enriques-Babbage-Petri's

theorem, i.e., trigonal curves and plane quintic curves. Unfortunately, as of now,

the conjecture is known to hold only for canonical surfaces with K = 3pg — 7,

3pg - 6 (see [4], [8], [1], [10] and [12]).

The present paper is an experiment for Reid's conjecture, considering regular

canonical surfaces which are even. Here, a compact complex manifold of dimension

2 is called an even surface if the second Stiefel-Whitney class W2 vanishes

[10, §5]. Since they are closed under deformations, even surfaces have their own

interest among surfaces of general type; Furthermore, as Horikawa stated in

[10, §5], we can rediscover some important lines, e.g., K = 2pg — 4, by consider-

ing only even surfaces. This is why we choose them as an experimental material.

Let S be an even surface. Since W2 = 0, we can find a line bundle L on S which

satisfies K = 2L. Such a line bundle L will be referred to as a semi-canonical

bundle on S.

In Section 1, even canonical surfaces with K < Apg — 12, q — 0 are classi-

fied into three types (I), (II) and (III) according as the nature of the semi-canonical

map ΦL. Namely, we call S a surface of type (I) (resp. type (II)) if ΦL is a rational

map of degree 1 (resp. 3) onto the image, whereas we call it a surface of type (III)
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if ΦL is composed of a pencil.

In Section 2, we study surfaces of type (I). More generally, following an idea

of Castelnuovo [4], we show that the inequality L > 4h (L) — 10 holds whenever

ΦL induces a birational map onto the image, and we classify those which attain the

lower bound U — Ah°(L) — 10. It will be turned out that they coincide with

surfaces of type (I). We show that most of them have a pencil of plane quintic

curves. A more precise statement can be found in Theorem 2.6 whose proof

occupies Section 3.

In Sections 4—7, we study surfaces of type (II). The purpose here is to get an

inequality similar to [17, (0.0)] in spirit (Theorem 7.4). Since the semi-canonical

image is birationally a ruled surface, surfaces of type (II) may be considered as a

2-dimensional analogue of trigonal curves. By studying the structure of

semi-canonical images, we can show that surfaces of type (II) have a pencil of

trigonal curves of genus at most 10. When the semi-canonical image is ruled by

lines, we apply a method in [18] in order to get such an upper bound on genus.

The inequality (7.3) may suggest what we can expect on the slope of non-

hyperelliptic fibrations, another problem in the geography of surfaces.

In Section 8, we show our main result, Theorem 8.4, which states that Reid's

conjecture is true for regular even canonical surfaces. This essentially follows

from a more general criterion (Theorem 8.3). We also give some examples. Among

others, we exhibit a series of canonical surfaces with K = 4pg — 12 and q = 0,

which may be called bi-K3 surfaces, whose canonical image is cut out by hyper-

quadrics. This implies that, in Reid's conjecture, K = Apg — 12 is the fatal line.

In a future paper, we shall study even canonical surfaces on Reid's line.

The author thanks Professor E. Horikawa for sending him his recent papers

[10] and [11] before publication, which inspired him very much and brought him

to study even surfaces. He also thanks Professor M. Reid for his kind letters and

for sending him an interesting paper [17]. Finally but not less deeply, he thanks

Professors T. Ashikaga and S. Mukaί for stimulating discussions, and the referee

whose valuable suggestions improved the original arguments in Section 4.

§1. Semi-canonical map

In this section, we show the following proposition with several lemmas.

PROPOSITION 1.1. Let S be an even canonical surface with K < 4pg — 12,

q — 0, and let L denote a semi-canonical bundle. Then L < 4h (L) — 10. Furth-

ermore, the semi-canonical map ΦL satisfies one of the following:
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( I ) ΦL induces a birational map of S onto the image.

(Π) Φι induces a generically finite map of degree 3 onto the image which is

birationally equivalent to a rational ruled surface.

(IE) ΦL is composed of a pencil of non-hyper elliptic curves of genus 3 or 4.

LEMMA 1.2. Let S be as in Proposition 1.1. Then U < 4h°(L) — 10.

Proof. Since L is a positive even integer, there is an integer k such that

U = 4h°(L) - 2k. It follows from K2 < 4pg - 12 that U <pg~ 4, or

equivalently th?Xpg > 4h (L) — 2k + 4. By the Riemann-Roch theorem, we have

(1.1) 2h\L) - h\L) = - U/2 + χWs).

It follows that 2h° (L) - h1 (L) = - 2h° (L) + k + 1 + pβ > 2h° (L) - k + 5.

Therefore, we have k > h\Q + 5 > 5 and, hence, U < 4h°(L) - 10. Q.E.D.

We put h (L) — n + 1. Then we have L < in — 6 by Lemma 1.2. Since L

is a positive even integer, we in particular have n > 2.

LEMMA 1.3. Let S be as above, and assume that ΦL induces a generically finite

map f : S-* V onto the image. Then deg/ = 1 or 3. When deg/ — 3, V is bira-

tionally a rational ruled surface.

Proof. Since V is an irreducible nondegenerate surface in Pw, we have

(1.2) U > (deg/)(deg V) > ( d e g / ) ( « - 1).

Since U < 4n — 6, we have d e g / < 3. Suppose that d e g / = 2. Then we have

deg V < 2n — 3 by (1.2). It follows from [2, Lemma 3] that V is birationally

equivalent to a ruled surface. On the other hand, being a canonical surface, S

cannot be birationally equivalent to a double covering of a ruled surface. There-

fore, deg f Φ 2. If deg/— 3, then V̂  is birationally a ruled surface by [2] again.

Since q(S) = 0, F i s rational. Q.E.D.

LEMMA 1.4. Let S be as above. Assume that \L\ is composed of a pencil as

L I = I nD I + Z, where | D \ is an irreducible pencil and Z denotes the fixed part.

Then I D \ is a pencil of non- hyperelliptic curves of genus 3 or 4 which is free from

base points.
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Proof. We have An - 6 > U = nLD + LZ > nLD. It follows 3 > LD = nD2

+ DZ > nD2 > 2D2. Since S is an even surface, fl is a nonnegative even inte-

ger. Therefore, we get D2 — 0. Since 5 is a canonical surface, a general member of

I D I must be a non-hyperelliptic curve. Since KD = 2LD < 6 and D — 0, | D | is

a pencil of non-hyperelliptic curves of genus 3 or 4 which is free from base

points. Q.E.D.

§2. Surfaces of type (I)

In this section, we study surfaces of type (I) following a classical idea of

Castelnuovo. A similar computation can be found in [8].

LEMMA 2.1. Let S be an even surface with a semi-canonical bundle L. Put n =

h°(L) — 1 and assume that the semi-canonical map ΦL induces a birational map of S

onto the image 7 c P n . Then U > deg V> An — 6. // deg V = An — 6, then

U — An — 6, I L \ is free from base points and q(S) ^ h (L).

Proof Let σ : S—• S be a composite of blowing-ups such that the variable

part I MI of | σ*L \ is free from base points. We can assume that σ is the shortest

among those with such a property. Let Z denote the fixed part of I σ L\. Then

(2.1) L2 - M2 + (σ*L + M)Z > M2.

Let C be a general member of | M\. We can assume that it is an irreducible

nonsingular curve. We denote by Mc the restriction of M to C. From the cohomo-

logy long exact sequence for

0 - * 0 — O(M) — ΘC(MC) — 0,

we have

(2.2) h\Mc) > h\M) - 1.

Since deg V = M2, it is sufficient for our purpose to show that deg Mc

^ Ah°(Mc) - 6.

Let K denote a canonical divisor on 5. We have an exceptional divisor E for

σ such that K = σ*K + E = 2M + 2Z + E. Putting h° (Mc) = r + 1, let m be

the integer part of (deg Mc - 1 ) / 0 — 1) and ε = deg Afc — 1 — m (r — 1) .

Since the canonical bundle Kc of C is induced by ^ + M, it follows that 3

degM c < 2g(C) - 2, i.e., 3m (r - 1) + 3ε + 5 < 2g(C) with equality holding

only if M (2Z + E ) = 0. On the other hand, Castelnuovo's bound (see e.g.,

https://doi.org/10.1017/S0027763000004347 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004347


EVEN CANONICAL SURFACES WITH SMALL K2 1 1 9

[7, Theorem (3.7)]) implies that 2g{C) < m(m — l ) ( r — 1) + 2mε. Putting these

together, we get

m(m - 4) (r - 1) + (2m - 3)ε > 5.

If r = 2, we have ε = 0 and m > 5. If r > 3, then we have m > A and, furth-

ermore, ε > 1 when m — 4. Hence, in either case, we have (m — A)(r — 1) + ε

- 1 > 0. Since deg Mc = 4 (r + 1 ) - 6 + (m - 4 ) (r - 1 ) + ε - 1, we get

degMc >Ah°(Mc) - 6 .

Assume that M — An — 6. The above observations imply that h (Mc) — n

and M(2Z + E) = 0. Hence we have MZ = Λffi = 0. In particular, σ is the

identity map. In order to show that | L | is free from base points, it is sufficient to

show that Z = 0. Since MZ = 0, we have Z < 0 by Hodge's index theorem. On

the other hand, we have 0 < LZ = MZ + Z = Z since L is nef. Hence Z = 0,

and we have Z = 0 by Hodge's index theorem. Now, by (2.1), we get L = An — 6.

Since the equality holds in (2.2), the restriction map H (L) —• H (Lc) is

surjective. Therefore, we get h\us) < h\L). Q.E.D.

DEFINITION 2.2. For any nondegenerate subvariety W in P , we denote by

Q(W) the intersection of all hyperquadrics through W and call it the quadric hull

of W. When there are no hyperquadrics through W, we put Q{W) = P .

LEMMA 2.3. Let S be an even surface with L — Ah (L) — 10, and assume that

ΦL induces a birational map onto the image. Put n — h (L) — 1. Then S is a regular

surface with pg = An — 2, K — Apg — 16. Furthermore, the semi-canonical image

V = ΦL(S) has only rational double points as its singularity and Q(V) is an irreduci-

ble threefold of degree n — 2 in P w .

Proof Let C be a general member of | L |. We can assume that it is an

irreducible nonsingular curve. We denote by Lc the restriction of L to C. Then we

have h (Lc) = n. Since 3L induces the canonical bundle Kc, we have

(2.3) h°(mLc) =

3^-3 if m = 2,

g(C) = 6n- 8 if m = 3,

(2m - 3) (2M - 3) if m > 4.

We put Co = ΦL(C). We regard Co as a general hyperplane section of V. Then it

is a nondegenerate curve in P w of degree Z, = An — 6. Let Zo denote a general

hyperplane section of Co. Since it is a nondegenerate set of 4n — 6 distinct points

in uniform position, we have
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AZo(l) = n - 1, AZo(2) > 2n - 3,

Az/3) > 3w - 5, A2o(4) > 4n - 7,

Az (m) = An — 6 (m > 5),

where AZQ denotes the Hubert function of ZQ (see [7, Ch. 3] for the properties).

Note that we have hCo(m) < h°(mLc). Since ACo(l) — n and hCo(m) ^ /zC o(^ — 1)

+ hZo(m), it follows from (2.3) that

AZβ(l) = w - 1, ACo(l) = »,

AZo(2) = 2n - 3, ACo(2) = 3w - 3,

Az[(3) = 3w - 5, ACo(3) = 6n - 8,

AZo(4) = 4« - 7, hCo(m) = (2m - 3)(2w - 3) for m > 4.

Since we have hCo(m) = hCo(m — 1) + hZo(m) for all positive integer m, Co is

projectively normal. Hence, it is a nonsingular curve of genus 6w — 8.

We next consider V. By the Riemann-Roch theorem and Ramanujam's

vanishing theorem, we have

9 U 9 „ . , :;

m\m — 2) (2w — 3) + χ if m > 3,

where χ = χ(Θs). Since A7(2) > hv{\) + A C Q (2) = 4w - 2, we have pg >

4n - 2. Since hv(3) > hv(2) + hcβ) > lOw - 10, we have χ > 4n - 1. On

the other hand, it follows from (1.1) that χ = 4n — 1 — h (L). Hence we have

hι(L) = 0 and χ = 4w — 1. By Lemma 2.1, we get q = 0 and pg = 4n — 2. Then

it is easy to see that h°(mL) — hv{m) — hv(m — 1) + hCo(m) holds for any

positive integer m. This shows that V is projectively normal, that is, the

multiplication map SymmH°(L) —• £Γ (mL) is surjective for any m > 0. Since

/£ = 2L, it follows that V is isomorphic to the canonical model of S. Hence V has

at most rational double points as its singularity.

We show the last assertion of Lemma 2.3. Since Zo is a nondegenerate set of

An — 6 distinct points in P and since we have hZo(2) — 2n — 3, it follows

from Castelnuovo's Lemma (see, e.g., [7, Lemma (3.9)]) that Q(Z0) is a rational nor-

mal curve. Since V is projectively normal, Q(V) is an irreducible threefold of de-

gree n - 2 in V. Q.E.D.

By this lemma and Lemma 1.2, we see that even surfaces with L — Ah (L) ~

10 for which ΦL is birational onto the image coincide with surfaces of type (I) in

the sense of Proposition 1.1. Hence we have the following:
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LEMMA 2.4. Let S be a surface of type (I). Then the canonical image X is not cut

out by hyperquadrics. More precisely, the quadric hull of X is the Veronese transform of

the quadric hull of the semi-canonical image which is of dimension 3.

Proof. Since the semi-canonical image V is projectively normal, X is nothing

but the Veronese transform of V. Since the homogeneous ideal of Q(V) is gener-

ated in degree 2, Q(X) is contained in the Veronese transform of Q(V). We have

h°(2K) = K2 + χ{Θs) = 20n - 25 and *°(Q(V), 0(4)) = 20w - 25. It follows

that any hyperquartic through V contains Q{V). Hence Q(X) coincides with the

Veronese transform of Q(V). Q.E.D.

2.5. In order to describe surfaces of type (I), we recall that an irreducible

nondegenerate threefold of degree n — 2 in Pn is one of the following varieties

(see [6] or [8]).

(A) P 3 (n = 3).

(B) A hyperquadric in P (n = 4).

(C) A cone over P embedded into P by the holomorphic map associated with

(n = 6), i.e., the weighted projective space P( l , 1, 1, 2).

(D) A rational normal scroll, that is, the image of the total space of the

P2-bundle

7Γ : Paιb>c = PW(a) Θ Θ(b) Θ Θ(c)) — P 1 ,

by the holomorphic map associated with | T\, where T denotes a tautological

divisor and a, b, c are integers satisfying

0 <a< b< c, a + b + c = n- 2 (n>5).

We have the following subcases:

(D.I) 0 > O : P β Λ c .

(D.2) a = 0, b > 0: a cone over the Hirzebruch surface Σ c _ 6 embedded by

the holomorphic map associated with | J 0 + c/^|, where Δo is a section with

Δo — b — c and Γ i s a fiber.

(D.3) a = b = 0, c > 0 : a generalized cone over a rational normal curve of

degree c = n — 2 in Pw~ whose ridge is a line.
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The proof of the following is much similar to [1], and we postpone it to the

next section.

THEOREM 2.6. Let S be a surface of type (I). Then S is the minimal resolution of

a surface S' with at most rational double points, where Sr is one of the following:

(1) A sextic surface in P .

(2) A complete intersection of a hyperquadric and a hyperquintic in P

(3) A hyper surf ace of degree 9 defined in P ( l , 1, 1, 2) by

xou + A3u + A5u + A7u + A9 = 0,

where Gr0, xlf x2, u) is a system of coordinates with deg xi — 1, deg u — 2, and the

Ak are homogeneous forms of degree k in the x{.

(4) A member of | 5T — in — A)F \ on PatbtC, where F denotes a fiber of it and

a, b, c are integers satisfying

0<a<b<c, a + b + c = n-2, a + c < 4b + 2, b<3a + 2.

§3. Proof of Theorem 2.6

In this section, we show Theorem 2.6. We first consider (A), (B) of 2.5.

LEMMA 3.1. When n — 3, V is a sextic surface in P . When n = 4, V is a

complete intersection of a hyperquadric and a hyperquintic.

Proof Let Zo be, as before, a set of points obtained by cutting V twice by

general hyperplanes. If n = 3, then Zo is a set of 6 distinct points on P . It

follows that V is a sextic surface. If n — 4, then it consists of 10 distinct points

and Q(Z0) is a nonsingular conic curve. Since hZo(5) = 10 and hQ(Zo)(5) =

h (P , 0(10)) = 11, there exists a plane quintic curve which contains Zo but

does not contain Q(Z0). Since Zo is of degree 10, it follows that Zo is a complete

intersection of the quintic curve and Q(Z0). Since V and Q(V) are both projec-

tively normal, Vis a hyperquintic section of Q(V). Q. E. D.

We next consider the case (C) of 2.5.

PROPOSITION 3.2. Let S be a surface of type (I) with h (L) = 7 and L = 18.
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Assume that Q(V) is a cone over the Veronese surface. Then S is the minimal resolu-

tion of a surface S' in the P1-bundle τn : P(ΰ 0 Θ(2)) —» P 2 , which has at most

rational double points, and which is linearly equivalent to 4T + F, where T and F

respectively denote a tautological divisor and a pull- back of a line in P . Therefore, the

semi-canonical image is a weighted hypersurface of degree 9 in the weighted protective

space P( l , 1, 1, 2) defined by

x0u
4 + A3u

3 + A5u
2 + A7u + A9 = 0,

where (xO1 xlf x2, u) is a system of coordinates with deg x{ — 1, deg u — 2, and the

Ak are homogeneous forms of degree k in the xv

Proof. Let υ be the vertex of Q(V) c P 6 . Blow P 6 up at v and let W be the

proper transform of Q(V). Then W can be identified with the total space of the

P^bundle πx : P ( 0 0 6(2)) -> P 2 . Note that T and F generate the Picard group

of W, and that we have T — 2TF in the Chow ring of W. Note also that Q(V) is

nothing but the image of S u n d e r the holomorphic map associated with | T\. We

denote by τ : W^> Q(V) the induced holomorphic map. Let 71*, be the section

linearly equivalent to T — 2F. Then v — τ(TJ).

Let Λo be the pull-back by ΦL of the linear system of hyperplanes through v,

and let G be the fixed part of Λo. Since Q(V) is a cone over the Veronese surface,

we have a net A such that 2H ^ Λo — G for H ^ A. Note that we have

L = [ 2H •+• G] and LG = 0 since | L \ is free from base points. Therefore, we

have 18 = L = 2LH + LG = AH + 2GH. Since S is an even surface, we have

H = 2 or 4. If H =2, then A induces a rational map of degree less than three

onto P . This contradicts that S is a canonical surface. It follows H = 4, GH = 1

and G2 = - 2.

We remark that G is a ( — 2)-curve. To see this, note that G consists of

(— 2)-curves, because KG — 2LG = 0. Let Go be the irreducible component of G

with HG0 > 0. Since HG0 < HG = 1, we have HG0 = 1. Then we have EG' = 0,

where Gf = G — Go. It follows from LG0 = 0 that G0G' = 0. Then, since G =

Go = — 2, we get (GO = 0. By Hodge's index theorem, we have G' = 0, that is,

G=G0.

We let Sf denote the proper transform of V by τ : W~» Q(V). Since S' is

obtained from V by blowing up at a point, S r has at most rational double points as

its singularity (because so does V). Though we cannot directly conclude that S is

the minimal resolution of S\ we at least have χ (Θs?) = χ (ΰs) = 23.

Suppose that S' is linearly equivalent to aT + βF on W. Since S r is irreduci-

ble, a and /3 must be nonnegative integers. Furthermore, since H = 4, yl induces
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a rational map of degree 3 or 4 onto P 2 . Hence we have a — 3 or 4. Since deg V

= U = 18, we have 18 = Γ 2 ( α T + βF) = 4a + 2β, that is, 2a + β = 9. It fol-

lows (α, β) = (4, 1) or (3, 3). We can exclude the last alternative as follows:

Assume that S' is linearly equivalent to 3 Γ + 3F. From

0 -> £ „ ( - SO -> £„,-> ^ -> 0,

we have χ(Θs,) = χ ( ^ ) — χ(^V(~~ 3 7 — 3/0). Then an easy calculation shows

χ(Os,) = 22. This contradicts that χ(6s,) must be 23. Therefore, S' is linearly

equivalent to 4 T + F. Then the dualizing sheaf ω s, °̂  ^ ' ^s induced by 27, and

we have

ω\, = (2T)2(4Γ + F) = 12 = K\

It follows that S coincides with the minimal resolution of S'. Therefore, the

natural map S—> V factors through S'. We have shown that A induces a holomor-

phic map of degree 4 onto P .

Let Xo and Xx be sections of [T] and [ Γ J , respectively, such that they form

a system of homogeneous fiber coordinates on W. Then the equation of any

member of | 471 + F \ can be written as

aX + a3X0

3X1 + aXxl + a7XX + aX = 0,

where the a{ are homogeneous forms of degree i on P . It follows that | 4 Γ + F\

is free from base points and contains an irreducible nonsingular member.

Since V is obtained from S' by contracting a (— 2)-curve defined by

Xγ = aι = 0, we see that it is defined by the equation as in the statement of

Proposition 3.2. Q.E.D.

Remark 3.3. It is shown in [5] that the moduli space is non-reduced for the

above type of surfaces. The key is the presence of the (— 2)-curve G.

We finally consider the case (D) of 2.5. We separately treat the three

subcases (D.I), (D.2) and (D.3).

LEMMA 3.4. Let S be a surface of type (I). Assume that Q(V) is isomorphic to

Pβ,δ,c. Then the semi-canonical image is linearly equivalent to 5T —• (n — 4)F, where

F denotes a fiber of π : P f l )b>c ~~> P . Furthermore, a, b, c satisfy

(3.1) a + c<4b + 2, b<3a + 2.
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Proof Assume that V is linearly equivalent to aT + βF. Since deg V

= An - 6, we have 7 2 ( α 7 + βF) = 4n - 6. It follows (a - 4) (n - 2) + β =

2. The dualizing sheaf ωv is induced from (a — 3 ) 7 + (β + n — 4)F. Since V

has at most rational double points, and since K— 2L, ωv and 27 are equivalent

on V. Therefore, we have ((a ~ 5)7 + (β + n - 4)FΫ(aT + βF) = 0. It

follows (a - 5) (a(n - 2) + β + 2a(β + n - 4)) = 0 . Since n > 5, we get

a = 5 and β = 4 — n.

The rest can be shown similarly as in the proof of [1, §2, Claim III], using the

fact that V has at most rational double points. Q. E. D.

PROPOSITION 3.5. Assume that Q(V) is a cone over the Hirzebruch surface Σ c _ 6 .

Then S is the minimal resolution of a surface S in the P -bundle ϋϊ: P ( β 0 Θ(ΔQ

+ cΓ)) —* Σc_& which has at most rational double points and which is linearly

equivalent to 4 7 + π τ (Δo + (2 — b)Γ), where 7 denotes a tautological divisor.

Furthermore, (3.1) is satisfied, i.e., 1 < b < 2 and c < 4b + 2.

Proof Assume that Q(V) is a cone over the Hirzebruch surface Σ c_ f t. Recall

that b and c are integers satisfying 0 < b ^ c and b + c = n — 2. Let υ be the

vertex of Q(V) c Pw . Blow P w up at υ and let FF be the proper transform of

Q(V). Then W can be identified with the total space of ro: P(0 0 0Ό4O +

C.Π) —• Σc_£. We have 7 = Tto (4 0 + cΓ) in the Chow ring of W. We let 7^

denote the section linearly equivalent to 7 — ΠT (^1O + cT1). Note that Q(V) is no-

thing but the image of Wunder the holomorphic map associated with \ T\, and 7TO

is contracted to υ. We denote by r : W—» Q(VO the induced holomorphic map.

Let Λo be the pull-back by ΦL of the linear system of hyperplanes through v,

and let G be the fixed part of Λo. We put A = Λo — G. Then it induces a rational

map μ: S-* Σ c _ 6 . We let i/ denote a general member of A. Then L = [// + G].

Note that we have LG — 0, since | L | is free from base points. Let o : S~* S be

the elimination of the base points of A and let | H\ and i? be the variable and the

fixed part of σ A. Then E consists of exceptional curves for σ, and | H \ defines a

holomorphic map μ: S-+ Σ c _ 6 . Note that μ is of degree not less than 3, and that

G - = E + σ G is the inverse image of v. Since we have An — 6 — (σ L) =

(σ*L)H = H2 + HG= (degμ) (n - 2) + HGt we see that άegμ = 3 or 4, and

that G =£ 0. In particular, we have a holomorphic map h : §—* W over μ such that

/z*7oo = G.

We let S* be the proper transform of V by r : W ^ Q(V0. Then 5 * = h(S),

and it has at most rational double points since so does V. As we saw above, S may

not be the minimal resolution of S . However, since 5 has only rational double
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points, we at least have χ(0 s *) = χ ( ^ s ) —An — 1.

Suppose that S is linearly equivalent to aT + τπ (βΔ0 + γΓ). Then we have

a > 3. We also remark that β and γ are nonnegative, because S 1^ is effective.

Since deg V = L = An — 6, we have An — 6 = T (aT + τπ (βΔ0 + γΓ)). It fol-

lows

(3.2) (n - 2) a + bβ + 7 = An - 6.

Let C r be a section of S by a general member of | T\. Then, we can assume that

C is a nonsingular curve of genus 6n — 8. Since the canonical bundle of C is

induced by (a - ϊ)T+m*((β - 1)ΔO + (γ + b - 2)Γ), we get 12w - 18 =

T(aT+xs*(βΔ0 + γΓ))((a- l)T + m*((β- l)Δ0+ (γ + b - 2)D). By a

calculation, we get

(3.3) (An- 6)(α-4) + (a + β)(bβ + γ - 2) - (β - l)(cβ- 7) = 0.

It follows from (3.2) and (3.3) that (α, β, 7) = (4, 1, 2 - b) or (3, 2, w - 26).

We can exclude the last alternative as follows: Assume that 5 is linearly equiva-

lent to 3Γ + nτ*(24 + (c ~ b + 2)Γ). From

we have χ(ΰs*) = χWw) ~ χWw(~ S ))• Then an easy calculation shows

χWs*) = An — 2. This contradicts that χ(&s*) m ust be 4n - 1. Therefore, S* is

linearly equivalent to 4 Γ + ΠT ( 4 O + (2 — W D . Then the dualizing sheaf ω s * of

S is induced by 2T, and we have

α4* = (2T)2(47 + ro*(4 + (2 - ft)D) = 16w - 24 = ίC2.

It follows that 5 coincides with the minimal resolution of 5 . Hence the natural

map S—• V factors through S . As a consequence, we have H = 4 ^ — 8.

G — — 2 and see that μ is a holomorphic map of degree 4.

It is easy to see that | 4 T + ΠT (ΔO + (2 ~ b)Γ) \ contains an irreducible

surface with at most rational double points if and only if b < 2 and c < Ab + 2.

Q.E.D.

We remark that r : W~» Q(V) factors through P0,^c, and that T^ is

contracted to a nonsingular rational curve on POfbfC. The image S7 of S is linearly

equivalent to 5T — (n — A)F on P0,δfC Recall that G consists of (— 2)-curves, and

that it corresponds to the intersection T^ Π S . Therefore, Sr has at most rational

double points as its singularity.

In order to complete the proof of Theorem 2.6, it is now sufficient to show
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the following:

LEMMA 3.6. The case (D.3) is inadequate, that is, Q(V) can never be a genera-

lized cone over a rational normal curve.

Proof. By considering the pull-back of the linear system of hyperplanes

through the ridge of Q{V), we see that L = [(n — 2)D + G], where | D | is an

irreducible pencil and G is an effective (possibly zero) divisor corresponding to

the ridge (see [9, Lemma 1.5]). We have

An - 6 = U = Of - 2)LD + LG > (n - 2)LD.

Since n > 5, we get 4 > LD > (n - 2)D2 + DG > 3D2. Since S is an even

surface, D is a nonnegative even integer. Thus D = 0. Note that a general

member of | D \ is non-hyperelliptic, since S is a canonical surface. Then, Clif-

ford's theorem shows that h°(D, Θ(L\D)) < LD/2 + 1 < 3. It follows that the

image of D under ΦL is at most a line. This contradicts that ΦL induces a biration-

al map of S onto the image. Q.E.D.

§4. Semi-canonical images of surfaces of type (II)

We let S denote a surface of type (II) in the sense of Proposition 1.1. Put

n = h (L) ~ 1 as usual. Let o : S~* S denote a succession of blowing-ups such

that the variable part | M \ of | σ L \ is free from base points. We can assume that

σ is the shortest among those enjoying such a property. Then \ M\ induces a

holomorphic m a p / : S—• Voί degree 3, where Vis an irreducible non-degenerate

surface in Pn which is birationally equivalent to a rational ruled surface. In this

section, we study the structure of Fmore closely. See also [16] and [18].

First of all, we remark the following:

LEMMA 4.1. Let S be an even surface, and let h : S—> W be a holomorphic map

of odd degree onto a surface W. Then W has no Cartier divisors with odd

se If- intersec tion num ber.

Proof If Do is a Cartier divisor on W with Do odd, then (h Do) —

(deg h) Do is odd. This is impossible, since S is an even surface. Q.E.D.

Let μ : V—> V denote the minimal resolution of V and let H be the pull-back

to V of a hyperplane section of V.
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LEMMA 4.2. μ is induced by the complete linear system \ H\.

Proof. Let τ : V —> V be the normalization of V and let H' be the pull-back

of a hyperplane section of V. Then / : S—> Kcan be lifted to a holomorphic map of

S onto V. Hence we have n + 1 = A°(Λί) > *°O/') > A ° ( ^ ( D ) = n + 1. It fol-

lows h°(Hf) — n + 1. Since μ : F—» V also factors through V', we have /z (H) =

w + 1, which is what we want. Q.E.D.

LEMMA 4.3. V is not isomorphic to P .

Proof. Assume that (V, Θv(ϊ)) - (P 2 , 0{k)) as polarized manifolds,

where A: is a positive integer. Then deg V = k2 and n + 1 = A°(V, ^ ( D ) =

(Λ + 1) (A + 2)/2). Let \L\ = \M0\+ Z be the decomposition of | L \ into the

variable and the fixed parts. Since (V, Θv(l)) — (P , Θ(k)), we have a net A

such that Mo — kL0 for Lo ^ Λ and which induces a rational map ΦΛ : S—• P of

degree 3. By Lemma 4.1, ΦΛ cannot be holomorphic. Hence we have Lo ^ 4. Since

U < An - 6 = 2k2 + 6k - 6 and

L2 = Ml + (L + MQ) Z> Ml = k2L\ > 4k2,

we have no such an integer k. Q.E.D.

By this lemma, we know that V is obtained from a Hirzebruch surface Σ r f by

a succession of blowing-ups ι> : V~^ Σd at xlf... ,xs on Σ d . Put i/ = P ^ and let

Ti denote the multiplicity of H at x{. We remark that, since β : K—•* V is the

minimal resolution, there are no (— l)-curves E with H E = 0.

L E M M A 4 . 4 . Σ r f c a n be c h o s e n s o t h a t a l l t h e r{— 1 .

Proof. The following argument is suggested by the referee.

Let C be a general member of \H\. If h (H\c) > 0, then we have

2h°(H\c) < H 2 + 2 by Clifford's theorem, which contradicts 3H2 < L2 <

4n-6,n = h°(H\c). Hence /^(i/lc) = 0, n = H2 + 1 - g(C) and ^ 2 >

4g(C) + 2. In particular, we have (2Ky + R)H - 4^(C) - 4 - H2 < 0. Hence

Kγ + ^ / 2 is not nef. If V is not a Hirzebruch surface, Mori's cone theorem im-

plies that there is a ( - l)-curve Eι with (Ky + ϊϊ/2)Eι < 0, i.e., HE, < 1.

Then, by what we remarked above, HE1 = 1. Let vγ: V—* Vλ denote the contrac-

tion of Eγ, and put Hλ = (vγ)*H. On (Vlf HJ, we have H^ = H2 + 1 and

= g(C) for a general member Q of 1 ^ 1 , since HEX = 1. Hence, as above,
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we can find a (— l)-curve E2 such that HιE2 < 1, provided that Vι is not a Hir-

zebruch surface. If HλE2 = 0, then v^E^) is not on E2 (since ίΪEι = 1) and we

see that vι (E2) is a (— l)-curve which does not meet H, a contradiction. Hence

HγE2 = 1. Contracting E2, we get another model (V2, H2) with H2 = H1 + 1 and

g(C2) = g(C-). In this way, we get a sequence of pairs (Vjf Hj) and (— l)-curves

Ej+ι with HjEj+1 — 1 until we arrive at ( Σ d , ί θ . Hence we can assume that all

the r{ = 1. Q.E.D.

LEMMA 4.5 (cf. [16] and [18]). If either άeg V< ^(n - 2) or 3 < n < 5, then

V is ruled by straight lines. If V is not ruled by straight lines, then the possible

(V, H) is one of the following\

(1) άeg V= | ( n - 2): (V, H) = (Σd, 2Δ0 + βΓ), n = 3(β - d) + 2.

(2) degV= (4»

(2a) V is Σd blown up at a point x and H is v*(2Δ0 + βΓ) - 8, where 8 =

v~\x), n = 3(β- d) + I, or

(2b) (V, S) = (Σi, 34 + 4Γ), n = 13.

(3) deg7= (4w-6)/3:

(3a) K 15 Σ d blown up at two points xv x2 which are possibly infinitely near, and

H = i / ( 2 4 + βΓ) ~ 8, where 8 - v~\xx) + v~\x2), n = 3(β - d), or

(3b) V is the image of a quadric surface in P by \ Θ{3) |, n — 15, or

(3c) V is Σιι blown up at a point x, and H = v (3zl0 + 4Γ) — 8, where

8= v~\x), n= 12.

In (1), (2a) and (3a), β is an integer satisfying β > max(2<i, d + 2).

Proof Since 3{n — 1) < L <̂  4/z — 6 and since L is even, we have n ^ 3

and deg V = w — 1 for 3 < n < 5. Therefore, if n < 5, K is ruled by lines as is

well-known.

Assume that H is linearly equivalent to aΔ0 + βΓ on Σd. Since | H\ contains

an irreducible member and since it induces a birational map, we can assume that

β > da > 0 if d > 0, and β > a > 0 if d = 0. Note that, when d = 1, we can

further assume β > a, since, if β — α, then Δ0H = 0 and Δo induces a

(— l)-curve on Vwhich does not meet H. We have n — χ(H) — 1 = χ(H) — 1 —

Σr r f (r f + l )/2 and deg V= H1 — H2 — Σr]. Since we can assume that all the
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rt — 1 by Lemma 4.4, we have

w = (α + I)(j8 + 1 - da/2) - 1 - s, deg 7 = 2a(β - da/2) - s,

where 5 is the number of the blowing-ups appearing in v : V~» Σ d . Hence

3 deg 1/ = An - 8 + (α - 2) (2/3 - Λ* - 4) + s.

In particular, we get 3 deg V > 4/z — 8 when α > 2. Now, the assertion follows

from an easy calculation. Q.E.D.

As a consequence, we get the following:

PROPOSITION 4.6. The semi-canonical image V of a surface of type (II) is ruled by

rational curves of degree at most 3. Therefore, surfaces of type (II) can be further

classified into the following three types.

(Πa) V is ruled by straight lines.

(lib) V is ruled by rational curves of degree 2.

(Πc) V is ruled by rational curves of degree 3.

§5. Surfaces of type (Πa)

In this section, we study surfaces of type (Πa) and show the following:

THEOREM 5.1. Let S be a surface of type (Πa). Then the ruling of V induces on S

a pencil \ D\ of trigonal curves of genus g without base points, 4 < g < 6.

Furthermore,

(5.1) L2 > 2fg~J2)
 (gn ~ 3g + 8)*

Proof We first show the inequality (5.1). For g = 4, (5.1) clearly holds,

since we always have L > 3(n — 1). In order to show (5.1) for g > 5, we need

some preparations.

Let A be an irreducible pencil of curves on S such that ΦL maps it onto a

pencil of straight lines on V. Let p: S—• S be the blowing-up of the base points of

A, and let A denote the strict transform of A. Then A induces a surjective holo-

morphic map λ : S—• P . We let D denote a general fiber of λ, and put g — g(D).

We denote by K the canonical bundle of S, and let E be an exceptional divisor
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such that K = p K + [E]. We have DE — Σ ? % where the m( are the multiplic-

ity of th

DoίΛ.

ity of the base points appearing in p. Note that we have D = Σ w , for a member

Since K < K = 4L , (5.1) is a consequence of the following:

LEMMA 5.2. If g > 5, then

(5.2) K2 > 2 ( ^ Γ Γ 2

1 ) (gn - 3* + 8).

Proof. This is a mimic of [18, §4]. Put | p*L | = | M \ + Z and Z = 2Z + £.

Then we have if = 2M + Z. Since | M | induces a rational map of degree 3 onto

V, and since it maps D onto a straight line, we have M D = 3. We have

/z CD, Θβ(M)) < 2 by Clifford's theorem. Therefore, the restriction map

ϋf (M) —* H (m\β) is surjective, since ΦQ maps ΰ onto a line. Let /^ be the

greatest integer such that the restriction map H (M — nfi) —* H (M \β) is

surjective. Then n1 > 0 as we saw above. Let n2 be the greatest integer such that

H (M — n2D) Φ 0. It is easy to see that we have nι + n2 = n — 1. Furthermore,

we can find xγ ^ H°(M— nj)) and x2 ^ H°(M — n2D) such that the pair

(xl9 x2) defines a rational map h : S—• ΣW 2_W l of degree 3. Let ί0, ^ be a basis for

# ° 0 ) ) . Then the products ti

ot
n

1

ι~iχ1, tit"2~} x2(0 < i< nlf 0 < < n2) form a

basis for H (M). Since | D \ is free from base points and since | M\ has at most

base points, we can assume that the divisors (xx), (x2) have no commom compo-

nents. Then it is easy to see that Lλ — [ M — nj)\ is nef, since M — nj) ~

(#!> ^ (J?2) + («2 - njD. We also put L2= [M— n2D]. Note that if^pi = [2M

+ 2J5 + Z] is nef by Arakelov's theorem (cf. [3]).

Put δ = ZD. Since 2^ - 2 = ί ΰ = 6 + <5, we have δ = 2g - 8. By the

assumption g ^ 5, we have δ > 0. We can show that δK§/Έ>ι + 2Lγ + Z is nef as

in [18, Corollary 1]. Therefore,

0 < (<5#5/pi + 2LX + 2)(K- 2n2D)

= (δ + l)K2- 4(g- l ) ( W l + (δ + \)n2- δ).

From this, we get

(5.3) K2 > 4

2^ I y (nx + (2g - 7)n2 ~

On the other hand, since Lγ is nef, we have
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K2 = K(2Lί + 2nj) + Z)

= 2(2L2 + Z + 2n2D) (Lx + nj)) + KZ
( 5 ' 4 ) = 2(2L2 + Z) Lγ + 4(g - \)nλ + I2n2 + KZ

>i(g- l)nx + 12n2 + KZ.

Since δK§^ + 2LX + Z is nef, we have

KZ > ~ ~ (n, + 1) - 2δ

as in [18, Corollary 2]. Therefore, we get

)2)(5.5) K2 > 2g

4_7 «2g2 - 8£ + 3)n, + 3(2^ - 7)n2 - 2(# - 4) 2 ).

Since ^ + w2 = n — 1, (5.2) is derived from (5.3) when (2g —

(2^ — 7)w2 + 6 ^ 0 , and otherwise, it is derived from (5.5). Therefore, the

inequality (5.2) has been established. Q.E.D.

We continue the proof of Theorem 5.1. Assume that L ^ An — 8. Since L >

3(n — 1), we have n > 5 and, by (5.1), we get 4 < g < 6. We show that | /? | is

free from base points. Recall that we have δ — ZΏ — (2Z + E)D and

δ = 2g — 8. Assume that | Z) | has a base point. Then ED is positive. Since 5 is

even, ED is an even integer. Note that we have LD — (M + Z)D = 3 + ZZ).

Therefore, we have (g, LD, ED) = (5, 3, 2), (6, 4, 2) or (6, 3, 4). On the other

hand. Hodge's index theorem shows {LD) > L D . Since D > ED , we get

(LD) >: L (ED). Therefore, we in particular have L ^ 8. This contradicts

L > 3n — 3, since n > 5. Thus | D | has no base points.

As for L = 4w — 6, we need the following:

LEMMA 5.3. L#£ S be a surface of type (Ila) with L — 4n — 6, and assume that

n = 3 or 4. T/î n S /ιas a pencil of non- hyperelliptic curves of genus 4 which is free

from base points.

Proof When w = 3, we have pg = 10 and if = 24. Then the assertion

follows from [12, §4] or [11]. We assume that n = 4. Then U = 10 and

deg V — 3. Therefore, | L \ has one base point P. Let σ : S~* S be the blowing-up

at P, and put £ = σ~1(P). We let | M\ denote the variable part of | σ*L\. Then

M = 9 and ME = 1. M induces a holomorphic map / : S~* V. As is

well-known, Kis either Σι embedded by | Δo + 2Γ\ or a cone over rational cubic
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curve. In the latter case, we can lift/to a holomorphic map of S onto Σ 3 . This can

be seen as follows. Let G denote the fixed part of the linear system coming from

that of hyperplanes through the vertex of V. Then we can find an irreducible pen-

cil I D I such that M = [3D + G] ([9, Lemma 1.5]). We have MG = 0 and it fol-

lows 9 = M2 = 3MD = 9D2 + 3DG. Then D2 = 0 or 1. If D2 = 1, then DG = 0

and G = 0. By Hodge's index theorem, we have G = 0. Then 1 = ME — 3DE,

which is absurd. Therefore, the inverse image of the vertex is G. Since Σ 3 is

obtained from V by blowing up the vertex, we can lift / to a holomorphic map

onto Σ 3 . Therefore, in either case, we have a holomorphic map h : §—> Σ r f , where

d = 1, 3, such that M = h*(Δ0 + {{d + 3)/2)Γ). We put D = σ*h*Γ. Since E is

an irreducible curve with ME = 1, h*(E) is either a fiber Γ, or ΔQ, d = 1. If

h*{E) is a fiber, then Z?/z Γ = 0. It follows that I Z) | is a pencil of curves of

genus 4 without base points. If h*(E) = Δo, then Eh*Γ— 1. It would follow

Z) = 1, which is absurd since 5 is an even surface. Q.E.D.

We complete the proof of Theorem 5.1 for L = An — 6. For this purpose, we

freely use the notation in the proof of Lemma 5.2. We can assume that n > 5 by

virtue of Lemma 5.3. Since L = An — 6, it follows from (5.1) that 4 ^ g < 8. We

remark that g — 8 occurs only when w = 5, if = K and the equality holds in

(5.2). If I D I has a base point, then K > K and, therefore, we have g < 7. But

then, similarly as in the case L < 4w — 8, one can show that | D \ has no base

points.

We can exclude g = 7, 8 as follows: By what we have shown above, we have

S = S in the proof of Lemma 5.2. Therefore we have KZ ^ 0, and it follows from

(5.4) that 4(4n - 6) = K2 > 4(g - l)nλ + I2n2. Consider the case g=7. Then

this gives 3n2 > 2n. On the other hand, it follows from (5.3) that l\n > 1 8 %

Hence g—Ί cannot happen. Quite similarly, we can exclude the case g — 8.

Therefore, we have 4 < g < 6.

Q.E.D. of Theorem 5.1.

§6. Surfaces of type (lib)

By Lemma 4.5, we have L — 4n — 6 or An — 8 if Kis not ruled by lines. In

the course of the study, we sometimes need to lift a map into a cone to its nonsing-

ular model by applying a method due to Horikawa [9].

LEMMA 6.1 Let S be a surface of type (lib) with L2 = 4n — 8. Then S has a

pencil of trigonal curves of genus 7, which is free from base points.
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Proof. It follows from Lemma 4.5 that V is isomorphic to either Σ r f embed-

ded into Pn by \2Δ0 + βΓ\, where β > 2d and n = 3(β ~ d) + 2, or the

Veronese transform of a cone over a rational normal curve. In any cases, we get

deg V — (4/3) (n — 2). Since L2 = 3 deg K | L | is free from base points.

Assume that V is isomorphic to Σ r f . Then L comes from [2^O + /3Γ]. It

follows that the pencil \D\ induced from \ Γ\ is a pencil of trigonal curves of

genus 7. Note that d must be even by Lemma 4.1.

Assume that F is the Veronese transform of a cone. Then there exists a line

bundle Lo such that L = 2L0 and Lo induces a holomorphic map of degree three

onto the cone over a rational normal curve of degree m — 1 in P m , where

w = 3m — 1. Consider the pull-back by ΦLQ of the linear system of hyperplanes

through the vertex of the cone, and let G be the fixed part. We have an irreduci-

ble pencil | D | such that Lo = [(m — \)D + G] ([9, Lemma 1.5]). Since | Lo | is

free from base points, we have L0G = 0. Then 3m — 3 = (Lo) = (m — 1)LOD,

)i.e., L0D = 3. Since (Lo) must be a positive even integer, m is an odd integer not

less than 3. We have 3 = L0D = (m - 1)D2 + DG > (m - l)D2. It follows

D — 0, since S is an even surface. Therefore, D is of genus 7. Note that, since

G =£ 0 and Z) = 0, the holomorphic map of S onto the cone induced by Lo can be

lifted to a holomorphic map of 5 onto Σw_χ. Q.E.D.

We assume that L = An — 6 in the following. Let σ : S—> S be, as before, a
I ?fc I

composite of blowing-ups such that the variable part |J l ί of ύ L \ is free from
base points. We denote by Z the fixed part of | σ L\. Since 5 is of type (lib), we

have M > An — 8 by Lemma 4.5.

LEMMA 6.2. Let S be a surface of type (lib) with U — An — 6. Asswmg that

deg V = (4n — 8)/3. Then one of the following occurs.

(1) L has no fixed component and σ is a composite of two blowing-ups.

(2) σ is the identity map, MZ = LZ = 1 and Z = 0.

(3) σ is the identity map, MZ = 2, LZ = 0 and Z 2 = - 2 .

Proof Since 4w - 6 = (σ*L)2 = ( σ * L ) M + (σ*L)Z= M 2 + MZ+ (σ*L)Z,

we have MZ + (σ L) Z — 2. Let Zo be the fixed part of | L |. Then we can find

an exceptional divisor E such that Z= σ Zo + E, and we have ME — Σ w ) t

where the mi are the multiplicity of the base points appearing in σ. From MZ +

(σ*I) Z = 2, it follows Mσ*Z0 + Σ m 2 + LZ0 = 2.
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Assume first that | Z | has no fixed components. Then Z consists of exception-

al curves, and we have (o L) Z = 0. We have 2 = MZ = Σ ^ V Therefore, σ is a

composite of two blowing-ups and we have (1).

Assume that | L | has a fixed component. We claim that o is the identity map.

If ME = 2, then Mσ*Z0 = LZ0 = 0. Since LZ0 = (σ*L)σ*Z0 = Mσ*Z0 + Z0

2, we

have Zo — 0. By Hodge's index theorem, we get Zo = 0. This contradicts the

assumption that | L | has a fixed component. If ME — 1, then Mσ Zo + LZ0 = 1

which is equivalent to 2Mσ Zo + Zo = 1. This implies that Zo is odd. Since S is

an even surface, this is absurd. Hence, we have ME = 0. This shows that σ is the

identity map, and we have Z o = Z.

We have MZ + LZ = 2. If MZ = 0 and LZ = 2, then we have Z 2 = 2,

which contradicts Hodge's index theorem. If MZ — LZ — 1, then Z = 0 and we

are in (2). If MZ = 2 and LZ = 0, then Z 2 = - 2 and we are in (3). Q.E.D.

LEMMA 6.3. (1) and (2) of Lemma 6.2 cannot occur.

Proof. We first show that (1) of Lemma 6.2 cannot happen. Assume contrari-

ly that (1) is the case. Let Pλ and P2 be two base points of | L | which may be

infinitely near. Put £ , = σ ' ^ P , ) . Then Z=Eι

JrE2. We have MZ = 2 and

Z 2 = - 2.

Assume that V is isomorphic to Σ d . Then M — f [2Δ0 + βΓ] . Since

MZ = 2, we have either (a) /*Z - Γ, or (b) /*Z - J o , /3 = 2d + 2, or (c) /*Z =

24 0, j8 = 2d + 1. Put Z) = / * Γ and £> = σ*D. If (a) is the case, then DZ = 0. Put

β0 = [j8/2] and Mo = / * [ 4 0 + j80Γ|. Then Mo is nef and M0Z = 1. Hence we can

assume that M0Eι = 1 and M0i?2 = 0. Since M = 2M0 or 2M0 + A we have M £ 2

= 0. This is a contradiction, since £ 2 must contain a ( — l)-curve. If (b) is the

case, then we have DZ = 1. It follows that D = 1, which contradicts that S is an

even surface. If (c) is the case, then we have D > 2 since DZ = 2. We have

LD = (σ*L)D = 6 + 2 = 8. Since (LZ))2 > UD2 by Hodge's index theorem, we

get n < 9. On the other hand, we have n = 3(β - d) + 2 = 3d + 5 and d > 0.

Therefore, we have n = 8, d = 1. This implies that V is isomorphic to Σ x embed-

ded by I 2Δ0 + 3Γ\. We have an irreducible curve C on V which is linearly

equivalent to Δo + Γ. Then C — 1 and Z / C = 0. Therefore, we get

((T*/ C) = 3, which contradicts that S is an even surface.

When V is the Veronese transform of a cone over a rational normal curve of

degree d, we can find a line bundle Mo such that M = 2M0 and | Mo | induces a

holomorphic map onto the cone. We can write Mo = [dD H- G] with an irreducible

pencil | D | and an effective divisor G which is the divisorial part of the inverse
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image of the vertex. Note that we have M0G = 0 since | MQ | is free from base

points. Since 3 = M0D = dff + GD > dD2, we have either ( i ) ff = 0, GD = 3,

or (ii) D = 1 (d = 2 or 3). If ( i ) is the case, we can lift §—» V to a holomor-

phic map of S onto Σ d , and we can show that this leads us to a contradiction as

in the previous case V= Σ d . Assume that (ii) is the case. Since M0G = 0 and

(σ*L) G > 0, we have ZG > 0. We have 1 = M0Z = dDZ + ZG. Therefore, we

get ΐ)Z = 0. We put D = σ*D. Since D2 = 1, it follows that D2 = 1. This contra-

dicts that S is an even surface. In sum, (1) of Lemma 6.2 has been excluded.

We next show that (2) of Lemma 6.2 is also inadequate. Assume contrarily

that (2) is the case. We can assume that n > 6 by Lemma 4.5. When V is the

Veronese transform of a cone, we can lift/ : S—* Vto a holomorphic map onto Σ r f

as in the proof of Lemma 6.1, which we also denote by / Note that d must be even

by Lemma 4.1. Since M = / * [ 2 4 0 + βΓ\ and MZ = 1, we have β = 2d + 1 and

f*Z = Δo. It follows ZD = 1, where we put D = f*Γ. Therefore, (M - D)Z = 0.

Since we have (M — D) = 4(n — 5) > 0, it follows from Hodge's index theorem

that Z = 0. This contradicts ZD = 1. Q.E.D.

LEMMA 6.4. Let S be a surface of type (lib) with L = 4 ^ — 6. Assume that

deg V — (4n — 8)/3. Then the ruling of V induces on S a pencil \ D \ of trigonal

curves of genus g, 7 < g < 8, without base points. Furthermore, n = 14, 20, 26 if

g(D) = 8.

Proof By Lemmas 6.2 and 6.3, we have MZ = 2, LZ = 0 and Z2 = - 2.

Since KZ = 2LZ = 0, we see that Z consists of (— 2)-curves.

When V is the Veronese transform of a cone, we can lift / : S—* V to a

holomorphic map of 5 onto Σ r f as in the proof of Lemma 6.1. Therefore, we

assume that | M\ induces a holomorphic map f : S—+ Σ d of degree 3 such that

M = / * [ 2 4 + βΓ]. Note that d must be even by Lemma 4.1. We put β0 = [β/2]

and M0=f*[Δ0 + β0Π. Then M = 2M0 or 2M0 + D, where D = f*Γ.

Since Mo is nef and MZ = 2, we have either ( i ) M0Z — 1, or (ii) M0Z = 0

and DZ = 2. When ( i ) is the case, Z is a (— 2)-curve. To see this, let Z : be an

irreducible component of Z with M0Z1 > 0. Since M0Z — 1, we have M0Z1 = 1

and M0Z2 = 0, where Z2 = Z~ Zv We have 0 = LZ, = MZγ + Z2 + ZXZ2. It

follows ZλZ2 — 0. Since Zγ — Z — — 2, we get Z 2 = 0. Therefore, Hodge's

index theorem shows Z 2 = 0. Hence Z = Zγ. Since M 0 Z = 1, we have either

f*Z - Γ or /*Z = 4) (j8 = 2d + 2). If /*Z - Γ, then we have g(D) = 7, whereas

we have g(D) — 8 when /*Z — 4 0. We show that n < 26 when /*Z ~ 4 0. Assume

contrarily that n > 26. Since n = 3(β — d) -\- 2 = 3d + 8 and since d is even,
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we have d > 8. Then U > 122 and it follows that (L - 7D)2 > 0. We have

(L - ID) (D + Z) = 0. Since (D + Z)2 = 0, Hodge's index theorem shows that D

+ Z = 0, which is absurd. Hence, n < 26 and we have rf = 0, 2, 4 or 6. Note

that, when d = 0, we can assume g(D) — 7 by considering another ruling of Σ o

We show that (ii) cannot happen. Assume contrarily that (ii) is the case. Then,

we have f*Z = 2Δ0 and β = 2d + 1. Since /3 > d + 2, d is positive. Recall that

we have w = 3Q3 — d) + 2 = 3 d + 5 and Z, =4/2 — 6. Therefore, we get

I 2 > 38 and it follows that (L - 2Z))2 > 0. Since DZ = 2 and Z 2 = - 2, we

have (Z> + 2Z)2 = 0. Since (Z, - 2Z>) (D + 2Z) = 0, it follows from Hodge's

index theorem that D + 2Z = 0, which is absurd. Q.E.D.

LEMMA 6.5. Let S be a surface of type (lib) with L = An — 6. Assume that

deg V = (4/2 — 7)/3 or (4/2 — 6)/3. Then the ruling of V induces on S a pencil

I D I of trigonal curves of genus 7 without base points, except when n = 6, 7 and

άeg V = n. In the exceptional cases, Ό — 2 and D is of genus 8 in = 6) or

9(w = 7).

Proo/. We separately consider the cases 3 deg V = An ~ 7 and 3 deg V

= 4/2-6.

(a) 3 deg V= An - 7.

Since L — 3 deg V = 1, \L\ has one base point P. Let σ : §-+ S be the

blowing-up at P, and put E = σ (P). We let | D \ denote the irreducible pencil

on S which is mapped onto the pencil of conies on V, and put D = σ*D. If we put

m = DE, then we have LD = 6 + m and D2 = & + m. When D2 = 0, | D \ is a

pencil of trigonal curves of genus 7. We investigate the case D > 0. Suppose first

that m > 0. By Hodge's index theorem, we have (LD) > L D . Therefore.

(6 + m)2 > (An - 6)D2 > (An - 6)rn.

It follows that An — 6 < (6/m + 1) . Recall that we have n > 6 by Lemma 4.5.

Since 4/2 — 7 = 3 deg V, we have n > 7. Therefore, we get m = 1, n = 7, 10 or

13. We have 2) = D + 1. Since D is an even integer, D is a positive odd inte-

ger. Hence D i> 2, and we have 49 ^ (4/2 — 6) X 2. Therefore, we get n — 7,

LD = 7 and D = 2. It follows that any general member of | D \ is a nonsingular

curve of genus 9.

m = 0

we have 36 > (An - 6)D2 > 2(4/2 - 6). Since n > 7, this is absurd.

Suppose that m — 0 and Z) > 0. Then Z) is positive. Since D must be even,
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(b) 3 deg V = in - 6.

Since L = 3 deg V, \ L \ is free from base points. Let | D | be the pencil

induced by a ruling of V. Then LD = 6. Since D is a nonnegative even integer,

we can put D — 2m. If m = 0, then | D | is a pencil of trigonal curves of genus 7.

Assume that m > 0. By Lemma 4.5, we have n > 6. Since 36 = (LD) > L D =

2m(4w — 6), we get (w, m) = (6, 1). In this case, any general member of | D \ is

a nonsingular curve of genus 8, since D = 2 and LD = 6. Q.E.D.

§7. Surfaces of type (He)

LEMMA 7.1. Let S be a surface of type (Πc). Then the semi-canonical image is

the image of a quadric surface in P by the holomorphic map associated with Θ(3).

Proof A description of V can be found in Lemma 4.5. We show that the

cases (2b) and (3c) are inadequate by using the notation there.

Assume that (2b) is the case. Since L ~ 3 deg V + 1, we see that | L | has

one base point P. Let σ : §—» S be the blowing-up at P, and put E = σ (P). Let

I M\ denote the variable part of | σ L |. Then M2 = 45 and ME = 1. We let

/ : §—» V— Σ i denote the natural holomorphic map. Then M = f (3Δ0 + 4Γ).

Since ME = 1, we have f#E = Δo. Therefore, we have Ef*Γ = 1. Put D =

σ*f Γ. Then we have D = 1, which is absurd since S is an even surface.

Assume that (3c) is the case. In this case, | L \ is free from base points,

because L = 3 deg V. Let Γ denote the proper transform of the fiber of Σ i

through the point x. Then it is a (— l)-curve, and it gives a Cartier divisor I on V

with / = — 1. This is because | H\ induces a biholomorphic map in a neighbour-

hood of Γ. Hence Lemma 4.1 implies that (3c) is inadequate. Q.E.D.

THEOREM 7.2. Let S be a surface of type (He). Then S has a pencil of trigonal

curves of genus 10 without base points, and the canonical model is defined in the

weighted projective space P (1, 1, 1, 1, 4) by

(7.1) A2 = 0, u + B8u + B12 = 0,

where Cr0, xlt x2y xZJ u) is a system of coordinates with deg Tj — 1, deg u = 4, and

the Ak are homogeneous forms of degree k in the x{.

Proof V is as in (3b) of Lemma 4.5. Then | L \ is free from base points, since

L — 3 deg V. In this case, there exists a line bundle Lo on S which satisfies L =

3L0 and induces a holomorphic map of degree 3 onto a quadric surface in P . Let

https://doi.org/10.1017/S0027763000004347 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004347


EVEN CANONICAL SURFACES WITH SMALL K 1 3 9

(x0, xlf x2, x3) be a system of homogeneous coordinates on P , which is identified

with a basis for H (Lo). We assume that the preimage Vo of V is defined by a

quadric equation A2 = 0 in the x{.

We claim that h (4L0) = 26. By the Riemann-Roch theorem, we have

χ(4L 0 ) = 35. Furthermore, we have h2(4L0) = h°(2L0) = /*°(K0, 0(2)) = 9.

Therefore, it is sufficient to show that h (2L0) = 0. For this purpose, we choose a

general member C of | LQ\. Then it is of genus 22. We consider the cohomology

long exact sequence for

0 — U(2L0) -> 0(3LO) — 0C(3LO | c ) — 0.

Recall that, since 3L0 = L, we have h (3L0)
 = 16 and A (3L0) = 0 by the proof

of Lemma 1.2. Hence it suffices for our purpose to prove the following:

LEMMA 7.3. A°(C, 0(3L O | C )) = 7.

Proo/. Since Z / 1 ^ ) = 0 and h°(L0) = 4, A°(L0 | c ) = 3 and we see that

I Lo \c I induces a holomorphic map of degree 3 onto an irreducible conic curve.

Hence, we can find a line bundle Mc which satisfies Lo | c = 2MC and which

induces a holomorphic map of degree 3 onto P . Note that we have Kc — 14MC

and h (iMc) > i + 1 for any i > 0.

We have h°(2Mc) = 3 and, by the Riemann-Roch theorem, h\l2Mc) = 18.

We have h°(3Mc) - h\llMc) = - 12 and h°(3Mc) > 4. Since C is nonhyperel-

liptic, it follows from Clifford's theorem that h (4MC) < 6. Hence we have

(A°(4MC), A°(10Mc)) = (5, 14) or (6, 15). Similarly, we get 6 < h°(5Mc) < 8

and Ί < h (6MC) < 9. By the base-point-free pencil trick, the following sequence

is exact for any m > 0 :

(7.2) 0 — H°((m - l)Mc) -> H°(mMc) <8> ^°(MC) ^ ^ ( ( m + 1)MC).

From (7.2) with m = 11, we see A°(llAfc) < 16. Hence h°(3Mc) = 4 and

A°(llΛίc) = 16. Assume that /z°(4Mc) = 6 and consider (7.2) for m = 4. It

shows A (5MC) > 8 and, therefore, h (5MC) = 8. But then, we would have

h°(6Mc) > 10 from (7.2) with m = 5, which contradicts h°(6Mc) < 9. Hence we

get h°(4Mc) = 5. Then, since A°(6MC) < 9, (7.2) with m = 5 gives h°(5Mc) < 7.

Assume that A°(5MC) = 7. Then h°(6Mc) = 9, and (7.2) for m = 6 gives

h°(7Mc) > 11. By (7.2) with m = 7, we get A°(8MC) > 13, which contradicts

Clifford's theorem since C is nonhyperelliptic. Therefore, h (5MC) — 6. Quite

similarly, we get a contradiction if we assume that h (6MC) > 7, by considering

(7.2) for m = 6, 7. Hence h°(6Mc) = 7. Q.E.D.

https://doi.org/10.1017/S0027763000004347 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004347


1 4 0 KAZUHIRO KONNO

In H (4L0) — C , we have quartic forms in the x{. Modulo A2, these present

25 linearly independent elements. Therefore, we have a new element η ^ H (4L0).

We consider H (12L0) = H (2K) which is 275 dimensional. Here, we have the

following elements

η3, B4η
2, Bsη, Bl2,

where the Bk are homogeneous forms of degree k in the x{. Modulo A2, these give

276 section. Therefore, we have a relation of the form

B0η
3 + Brf + Bsη + Bl2 = 0.

It is clear that Bo is a nonzero constant. Therefore, we can assume that Bo = 1

and B4 = 0 by a suitable linear change of η if necessary. We have shown that we

can lift S—» Vo c P to a holomorphic map into P ( l , 1, 1, 1, 4) by putting

u — ϊ}. The image is defined by Eq. (7.1). It can be checked that it is nothing but

the canonical model of S. Q.E.D. of Theorem 7.2.

In view of a conjecture in [17, (0.0)], it may be interesting to summarize the

obtained results in the following form:

THEOREM 7.4. Let S be a surface of type (II) or (III). Then it has a pencil \ D \ of

trigonal curves of genus g, 3 ^ g ^ 10. Furthermore, the numerical characters satisfy

Πo, K2> 2 4 ( g - 1 ) h 8 ( g - l ) ( 2 / r + l )
(7-3) K > 5 g + 1 pg- 5 ^ + 1

except when g = 5, or g = 8 with (pg, K2) = (78, 296), (102, 392). When g = 5,

they satisfy

κ2> 40 . _ 152
K ~ 11 p< 11 *

Proof We only have to show the inequalities in the statement. When g = 3,

(7.3) follows from Castelnuovo's inequality K > 3pg — 7 or [13, Theorem 1.2].

We assume that g > 4. Put /Ϊ°(L) = n + 1 as usual. Then it follows from (1.1)

that

L2 = 2pg - 4n - 2 + 2h\D > 2pg - \n - 2.

If we have an inequality of the form L > an — b with a > 0, then, since K = 2L,

we get an inequality of the form
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ΎΛ ^ 8a Λ Λ 2b\

by eliminating n. Note that, when g — 4, we have L > 3(w — 1) by the proof of

Lemma 1.4 and (5.1). Hence, for g < 7, the desired inequality follows from (5.1).

When g>7,we get (7.3) from Lemmas 6.1, 6.4, 6.5 and Theorem 7.2. Q.E.D.

§8. Quadrics through the canonical image

Firstly, we work in a more general situation: Let S be a canonical surface, X

its canonical image and Q(X) the quadric hull of X. The following is implicitly

stated in [17, (0.2) Remark].

LEMMA 8.1. Let S be a canonical surface with K < 4pg — 12 + q, and let W

be the irreducible component of Q(X) containing X. Then dim W ^ 3.

Proof. Put W — r. Since W is a non-degenerate variety in P , N — pg — 1,

we have

w h e r e Jw d e n o t e s the ideal sheaf of W in P . I t is c lear t h a t

h\2K) > dimlm {H°(PN, e(2))-+H°(X, ϋx(2))}.

Since h°(2K) = K2 + χ (Θs) and since X a W cz Q(X), we have

K2> {r+l)pg-\r(r+\) - (\-q + p8).

Since K2 < Apg — 12 + q by the assumption, we get (r - 4) (2N — r — 3) + 2

< 0. Hence r < 3. Q.E.D.

The following is a consequence of Enriques-Babbage-Petri's theorem:

LEMMA 8.2. Let S be a canonical surface. Suppose that S has a pencil {D} of

non-hyperelliptic curves whose general member is either a trigonal curve or a plane

quintic curve. Then the canonical image X can never be an irreducible component of

QUO.
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Proof. We assume that X is an irreducible component of Q(X), and show

that this leads us to a contradiction. We can assume that there is a holomorphic

map / : S—• C onto a nonsingular projective curve C, by eliminating the base

points if necessary. Let 8 be the locally free subsheaf of f*Θ(K) generated by

H°(C, fjΰ(K)). Put r— rk($). Since S is a canonical surface, the image of the

restriction map H (K) —• H (KD) has dimension at least 3. Hence r > 3. The

sheaf homomorphism / 8 c: / f%ϋ(K) —> ϋ(K) induces a rational map h:S—+

P(<5>) over C. Let Φτ denote the rational map of P($) associated with a tautologic-

al divisor T ^ | ΘPig)(l) |. Then, by the construction, the canonical map Φκ can be

identified with the composite Φτ ° h. Let A denote the linear subsystem of

I 2T\ which comes from hyperquadrics containing X. By the assumption, we see

that Σ : = h(S) is an irreducible component of the intersection of elements in A.

Note that an element of | 2T\ can be considered as a relative hyperquadric, that

is, it induces a hyperquadric on fibers of P($) —•* C Since S is a canonical

surface, a general fiber Όr of Σ —> C is birational to Zλ Furthermore, we can con-

sider it as a projection of a canonical curve D. Let g denote the genus of D. We

consider D as a canonical curve in P^ and D' cz P r . We denote by ?P" : P^ —•*

P the projection which induces the birational map of D onto D''.

CLAIM. D/ cannot be cut out by hyperquadrics.

Proof. Recall that D is a trigonal curve or a plane quintic curve. If r — g,

then D' = D and the assertion follows from Enriques-Babbage-Perti's theorem.

We assume that r < g. We consider the case where D is trigonal. Note that

Q(D) is a surface scroll. Since Ψ induces a birational map of D onto D',

Ψ{Q(D)) is 2-dimensional (for, otherwise, it is a rational curve). It follows that

Ψ{Q(D)) is also ruled by lines. Since a ruling of Q(D) induces on D a g3, a

general line / in the corresponding ruling of Ψ(Q(D)) intersects with Df at three

points (or more). Since a hyperquadric meets / at two points unless it contains /,

we see that any hyperquadric containing Df must contain Ψ(Q(D)). Hence Όr

cannot be cut out by quadrics. The case where D is a plane quintic curve can be

treated similarly, since Q(D) is the Veronese surface in this case. Q.E.D. of Claim

It follows that Σ cannot be cut out by elements in A contradicting our initial

assumption. Q.E.D.

By these lemmas, we get the following:
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THEOREM 8.3. Let S be a canonical surface with K < 4pg — 12 + q, and let X

be the canonical image. The irreducible component of Q(X) containing X is of dimen-

sion 3, provided that S has a pencil of trigonal curves or plane quintic curves.

We now state the following:

THEOREM 8.4. Let S be a canonical surface with K2 < 4χ(Θs) — 16. Assume

further that S is an even surface. Then the irreducible component of Q(X) containing

X is of dimension 3. In particular, Reid's conjecture [15, p. 541] is true for regular

even canonical surfaces.

Proof Assume first that S is a regular surface. For surfaces of type (I), the

assertion was shown in Lemma 2.4. As for the other types of surfaces, we can

apply Theorem 8.3.

We next assume that S is an irregular surface. Since K < 4χ(Θs) — 16, we

can show that L < 4h (L) — 10 holds as in Lemma 1.2. By Lemmas 2.1 and 2.3,

ΦL cannot be birational onto the image. Hence, as in Lemmas 1.3 and 1.4, we can

show that ΦL induces a rational map of degree 3 onto a ruled surface or it is

composed of a pencil of non-hyperelliptic curves of genus not greater than 4. In

either case, we see that S has a pencil of trigonal curves. Hence the assertion

follows from Theorem 3.8. Q.E.D.

We give some examples of even canonical surfaces.

EXAMPLE 1. The construction here is motivated by [11] and [14]. Let m and k

be positive integers with k < 2m. Let W be the total space of the P2-bundle

π: V(Θ(2m - 2) Θ Θ(4m - 2 - k) Θ 0(lOm - 2 - 2k)) -> P 1.

Let T and F denote a tautological divisor and a fiber, respectively. We choose

sections Xo, X, and X2 of [T - (2m - 2)F], [T~ (4m - 2 - k)F] and

[T — (10m — 2 — 2k) F], respectively, such that they form a system of

homogeneous coordinates on fibers of W. Let ak e H (kF), P e H (3X0) and

Q ^ H (2XJ be general members. Then the equation

Q2 - a\X2P = 0

defines an irreducible hypersurface S' of W which has double curves along k

conies defined by ak = Q = 0. We can assume that the other singular points of S'

are rational double points. Let S be the blow up along double conies. If we intro-

https://doi.org/10.1017/S0027763000004347 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004347


1 4 4 KAZUHIRO KONNO

duce a new variable w = Q/ak, then w can be identified with a fiber coordinate

on [2T- (8m - 4 - k)F] and S* is defined by

akw - Q = 0, w2 - Z 2 P = 0

*in the total space of [2T — (8m — 4 — &)F] . It is easy to see that S* has at

most rational double points, and that the dualizing sheaf is induced from T ~

(X2) + 2 (5m — 1 — k)F. Let S be the minimal resolution of S . In order to see

that S is an even surface, it is sufficient to show that (X2) induces on S a divisor

of the form 2Z, which is immediate (see, [11] or [14]).

By a standard calculation, one can show that the numerical characters of S

satisfy pg = 16m - 3k - 3, q = 0 and K2 = 3pg ~ 7 + k.

EXAMPLE 2. Let m and k be positive integers. Let d0 be a nonnegative integer

and assume that m + 1 > (k + l)d0. We consider the P -bundle

ΠT : w = V(Θ Θ Θ((k + DΔ0+ ((k + l)d0 + m + 1)D) — Σ 2 V

Let T denote a tautological divisor, and choose a general member S ^ | 3T\. Note

that S does not meet the section T^ linearly equivalent to T ~ & ((k + 1) Δo +

((k + l)rf0 + m + 1)Γ). Since - 2 Γ + m*((Λ - 1) 4 0 + ((Λ - l)rf0 + m -

D D is a canonical divisor of W, we see that K is induced from T^ + 2πi (A:Ji0 -b

(kd0 + m)Γ). Since [ T J is trivial on S, it follows K = 2L, where

L = π*[kΔQ+ (kdo + m)Γ] \s.

Therefore, S is an even surface. Furthermore, H (T + ΠT ((/c — l ) z l 0 +

((/c — 1) d0 + m — 1)Γ) is restricted to H°(K) isomorphically. It follows that S

is a canonical surface. Let | D \ be a pencil on S induced by | Γ | . Then it is a

pencil of trigonal curves of genus 3k + 1.

By a standard calculation, we have pg = (5k + 2) m + 2k + 1, q — 0 and

K2 = (2Ak/(5k + 2))(pg - 2k - 1). In other words, the slope of the fibration

S—> P 1 equals 24 (g — l)/(5g + 1), where g = 3k + 1 is the fiber genus.

EXAMPLE 3. Let (V, Lo) be a polarized K3 surface, and put L2

0 = 2/c. We

choose a member β ^ | 4L01 which has at most simple triple points. Let

/ ' : S/—* Vbe the double covering with branch locus B, and let S be the minimal

resolution of S\ We denote by / : S—* V the natural map. Since the dualizing

sheaf ωSr of S' is induced by 2L0, we see that S is an even surface with a

semi-canonical bundle L—f Lo. -By a standard calculation, we have
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h\ωs,) = h\V, Θ φ e(2L0)) = Ak + 3, A 1 ^ ) = 0,
ω\, = 2(2L0)

2 = 16ft.

Therefore, S is a regular surface of general type with K = 4pg — 12. In this

way, we obtain even canonical surfaces whose canonical image is cut out by

hyperquadrics: For example, let Cr0, xlf x2, x3) be a system of coordinates on P ,

and assume that V is defined by a homogeneous form A4 of degree 4 in the xr We

put Lo = Θv{ni) and follow the above construction. In this case, S' can be identi-

fied with a weighted complete intersection in P ( l , 1, 1, 1, 2m) defined by A4 =
2

u + B4m — 0, where deg u — 2m and B4m is a homogeneous form of degree 4m

in the x{. Since Lo = Am , we get pg(S) = 8m + 3. Furthermore, we clearly have

QUO = X.

This example explains the meaning of the line K — 4pg — 12 in Reid's

conjecture. We remark, in connection with Lemma 1.2, that a surface of degree

2n — 2 in P is (birationally) either a ruled surface or a K3 surface.
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