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Abstract

We prove the following statements about bounded linear operators on a complex separable infinite
dimensional Hilbert space. (1) Let A and B* be subnormal operators. If A2X = XB2 and A3X = XB3

for some operator X, then AX = XB. (2) Let A and B* be subnormal operators. If A2X - XB2 e Cp

and A*X - XB3 s Cp for some operator X, then AX - XB e CSp. (3) Let T be an operator such
that 1 - T*T G Cp for some p > 1. If r2A" - AT2 e Cp and r3A" - AT3 e C, for some operator
X, then TX- XTe Cp. (4) Let T be a semi-Fredholm operator with ind T < 0. If T2X - XT2 e C2

and r3A" - XT'3 e C2 for some operator X, then TA" - AT e C2.

1980 Mathematics subject classification (Amer. Math. Soc): 47 B 47, 47 B 10, 47 B 20.
Keywords: commutant, normal operators, subnormal operators, isometry, Schatten />-class.

Let H denote a complex separable infinite dimensional Hilbert space and let
B(H) denote the algebra of all bounded linear operators acting on H. Let Cp

denote the Schatten />-class with || • Ĥ  ( 1 < / > < O O ) denoting the associated
/>-norm. Hence C2 is the Hilbert-Schmidt class and Cx is the class of compact
operators. Relations between the commutant of an operator A and the com-
mutants of powers of A have been investigated by many authors, for example, see
[1] and [2]. In [1], Al-Moajil proved the following result.

THEOREM 1. / / N e B(H) is normal and N2X = XN2 and N*X = XN3 for

some X e B(H), then NX = XN.

The purpose of this paper is to extend Theorem 1 to intertwining relations
between a subnormal and a co-subnormal operator and to present the commuta-
tor modulo Cp versions of these results.
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Using Berberian's trick we have the following.

THEOREM 2. Let Nand Mbe normaloperators. IfN2X= XM2andN3X = XM3

for some X G B(H), then NX = XM.

PROOF. On H © H, let L = |£ °M\ and y = |g *|. Then L is normal and
L2Y = YL2 and Z.3y = YL3. Therefore Theorem 1 implies that LY = YL, from
which it follows that NX = XM.

COROLLARY 1. Let A and B* be subnormal operators. If A2X = XB2 and
A3X = XB3 for some X e B(H), then AX = XB.

PROOF. By assumption there exists a Hilbert space Hl and there exist normal
operators N and M on H e Hx, such that AT = |o 5,1 a n d M = \s «J- L e t ^ =

|jf g|. Then easy matrix calculations yield N2Y = YM2 and W3y = yW3. Hence
by Theorem 2 we have NY = YM, from which we get AX = XB as required.

The next step we want to consider is the investigation of the same relations
modulo the Cp class. For p = oo, the situation is easy; just look at the Calkin
algebra B(H)/CX. For the p ¥= oo case we need first to present the following
simple lemma, which is due to Weiss [5].

LEMMA [5]. Suppose N is normal in B(H), X £ B(H), and I is any two-sided
ideal in B(H). Then NX e / implies N*X e / andXN <= / implies XN* e /.

THEOREM 3. Let N be a normal operator. IfN2X - XN2 e Cp andN3X - XN3

e Cp for some X e B(H), then NX - XN e C8/).

PROOF. Let K = NX - XN. if AT2* - A7V2 = J , e C , and iV3* - XN3 =
A:2 G C,, then N2K = ^(AT* - XN) = AT3* - A^AW = A^3* - (AW2 +
KX)N = N3X - AW3 - KXN = K2- KXN e Cp. Similarly we can show that
KN2 G Cp. Applying the lemma we obtain N*NK e Cp and KNN* G Cp, and
so (NK)*(NK) G Cp and (KN)(KN)* e Ĉ ,. Hence Af/C G C2|, and ^V e C2/).
Applying the lemma again we see that N*Ke C2p and KN* G Clp. Now
AT/:*/: = K(X*N* - N*X*)K = KX*N*K - KN*X*K G C2/,. Therefore
(KK*)2 e C2/,, and so A^* e C4/)) which is equivalent to saying that /i: G Cip,
as required.

COROLLARY 2. Let A and B* be subnormal operators. If A2X - XB2
 G Cp and

A3X - XB3 G Cp for some X e B(H), then AX - XB G C8p.

https://doi.org/10.1017/S1446788700028056 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028056


[3] Commutants modulo Cp of A1 and A3 49Cp

PROOF. Let N, M and Y be as in the proof of Corollary 1. Then N2Y - YM2

G Cp and N3Y - YM3 G Cp. Theorem 3 now implies that NY- YM G C8/).
Hence AX- XB e Cg,.

QUESTION. Can the %p in Theorem 3 be improved?
Due to the fact (consider the polar decomposition) that if T G B(H), then

T G F(H) (the ideal of finite rank operators) if and only if T*T G F(H), we can
modify the proofs of Theorem 3 and Corollary 2 to get the following.

THEOREM 4. Let A and B* be subnormal operators. IfA2X - XB2 G F(H) and
A3X - XB3 G F{H) for some X G B(H), then AX - XB <= F(H).

If we replace the normal operator in Theorem 3 by an isometry modulo Cp,
then we obtain the following better result.

THEOREM 5. Let T G B(H) be such that 1 - T*T G Cp for some p > 1. / /
T2X - XT2 G Cp and T3X - XT3 e Cp for some X e B(H), then TX - XT G

PROOF. It has been proved in [3] that if 1 - T*T G Q , then T = C + F,
where C G C^, and where F is either an isometry or a co-isometry with finite
dimensional null space. But the proof applies to any p < oo as well.

Now T2X - XT2 G ^ and T3X - XT3 e C, imply that F2X - XV2 e Ĉ
and F 3 ^ - A'F3 G C,. Let K = VX - XV; then, as in the proof of Theorem 3,
we have V2K e Cp and A'F2 G Cp. If F is an isometry, then K = V*2V2K G C .̂
If F* is an isometry, then K = KV2V*2 G Cp. Hence, in either case, K G C ,̂
and this completes the proof.

The self-adjointness modulo Cp, i.e. the fact that T — T* G Cp, is not as good
here as 1 — I T e C .̂ In fact we can easily see

THEOREM 6. Let T G fi(#) be such that T - T* G C,. / / T 2 ^ - XT2 e q,
3 ^ - AT3 G Ĉ  for some X e B(//), f/ie« TJf - Z7 G Cg/>.

For p — 1, we have the following result.

THEOREM 6. Let T ^ B(H) be a semi-Fredholm operator with indT < 0 (ind
denotes the usual Fredholm index). If T2X - XT2 G C2 and T3X - XT3 G C2

/or some X G fi(^), f/ie/i JA' - XT G C2.

PROOF. Since ind T < 0, there exists a finite rank partial isometry F whose
initial space is Ker T and whose range is properly contained in Ker T*. It follows
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that T + F is bounded below, and that (T + F)* has a non-trivial kernel (see
[4]). Let T + F = A and K = TX - XT. Then, as we have seen in the proof of
Theorem 3, T2K e C2. Thus (A - F)\AX - XA + XF - FX) e C2, and from
this we conclude that A2(AX — XA) e C2. If { en} is an orthonormal basis for H,
then oo > L\\A2(AX - XA)en\\

2 > b4L\%AX - XA)en\\
2, where b is a constant

such that \\Ax\\ > b\\x\\ for all x e H. Therefore AX - XA e C2. But then
rX - XT = y4X - XA + XF - FX e C2, which completes the proof.
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