ON THE COMMUTANTS MODULO C_{p} OF A^{2} AND A^{3}

FUAD KITTANEH
(Received 7 March 1984)
Communicated by G. H. Chabrowski

Abstract

We prove the following statements about bounded linear operators on a complex separable infinite dimensional Hilbert space. (1) Let A and B^{*} be subnormal operators. If $A^{2} X=X B^{2}$ and $A^{3} X=X B^{3}$ for some operator X, then $A X=X B$. (2) Let A and B^{*} be subnormal operators. If $A^{2} X-X B^{2} \in C_{p}$ and $A^{3} X-X B^{3} \in C_{p}$ for some operator X, then $A X-X B \in C_{8_{p}}$. (3) Let T be an operator such that $1-T^{*} T \in C_{p}$ for some $p \geqslant 1$. If $T^{2} X-X T^{2} \in C_{p}$ and $T^{3} X-X T^{3} \in C_{p}$ for some operator X, then $T X-X T \in C_{p}$. (4) Let T be a semi-Fredholm operator with ind $T<0$. If $T^{2} X-X T^{2} \in C_{2}$ and $T^{3} X-X T^{3} \in C_{2}$ for some operator X, then $T X-X T \in C_{2}$.

1980 Mathematics subject classification (Amer. Math. Soc.): 47 B 47, 47 B 10, 47 B 20. Keywords: commutant, normal operators, subnormal operators, isometry, Schatten p-class.

Let H denote a complex separable infinite dimensional Hilbert space and let $B(H)$ denote the algebra of all bounded linear operators acting on H. Let C_{p} denote the Schatten p-class with $\|\cdot\|_{p}(1 \leqslant p \leqslant \infty)$ denoting the associated p-norm. Hence C_{2} is the Hilbert-Schmidt class and C_{∞} is the class of compact operators. Relations between the commutant of an operator A and the commutants of powers of A have been investigated by many authors, for example, see [1] and [2]. In [1], Al-Moajil proved the following result.

Theorem 1. If $N \in B(H)$ is normal and $N^{2} X=X N^{2}$ and $N^{3} X=X N^{3}$ for some $X \in B(H)$, then $N X=X N$.

The purpose of this paper is to extend Theorem 1 to intertwining relations between a subnormal and a co-subnormal operator and to present the commutator modulo C_{p} versions of these results.

Using Berberian's trick we have the following.

Theorem 2. Let N and M be normal operators. If $N^{2} X=X M^{2}$ and $N^{3} X=X M^{3}$ for some $X \in B(H)$, then $N X=X M$.

Proof. On $H \oplus H$, let $L=\left|\begin{array}{ll}N & 0 \\ 0 & M\end{array}\right|$ and $Y=\left|\begin{array}{cc}0 & X \\ 0 & 0\end{array}\right|$. Then L is normal and $L^{2} Y=Y L^{2}$ and $L^{3} Y=Y L^{3}$. Therefore Theorem 1 implies that $L Y=Y L$, from which it follows that $N X=X M$.

Corollary 1. Let A and B^{*} be subnormal operators. If $A^{2} X=X B^{2}$ and $A^{3} X=X B^{3}$ for some $X \in B(H)$, then $A X=X B$.

Proof. By assumption there exists a Hilbert space H_{1} and there exist normal operators N and M on $H \oplus H_{1}$, such that $N=\left|\begin{array}{ll}A & R \\ 0 & A_{1}\end{array}\right|$ and $M=\left|\begin{array}{cc}B & 0 \\ S & B_{1}\end{array}\right|$ Let $Y=$ $\left.\right|_{0} ^{X} 0_{0}^{0} \mid$. Then easy matrix calculations yield $N^{2} Y=Y M^{2}$ and $N^{3} Y=Y M^{3}$. Hence by Theorem 2 we have $N Y=Y M$, from which we get $A X=X B$ as required.

The next step we want to consider is the investigation of the same relations modulo the C_{p} class. For $p=\infty$, the situation is easy; just look at the Calkin algebra $B(H) / C_{\infty}$. For the $p \neq \infty$ case we need first to present the following simple lemma, which is due to Weiss [5].

Lemma [5]. Suppose N is normal in $B(H), X \in B(H)$, and I is any two-sided ideal in $B(H)$. Then $N X \in I$ implies $N^{*} X \in I$ and $X N \in I$ implies $X N^{*} \in I$.

Theorem 3. Let N be a normal operator. If $N^{2} X-X N^{2} \in C_{p}$ and $N^{3} X-X N^{3}$ $\in C_{p}$ for some $X \in B(H)$, then $N X-X N \in C_{8 p}$.

Proof. Let $K=N X-X N$. if $N^{2} X-X N^{2}=K_{1} \in C_{p}$ and $N^{3} X-X N^{3}=$ $K_{2} \in C_{p}$, then $N^{2} K=N^{2}(N X-X N)=N^{3} X-N^{2} X N=N^{3} X-\left(X N^{2}+\right.$ $\left.K_{1}\right) N=N^{3} X-X N^{3}-K_{1} N=K_{2}-K_{1} N \in C_{p}$. Similarly we can show that $K N^{2} \in C_{p}$. Applying the lemma we obtain $N^{*} N K \in C_{p}$ and $K N N^{*} \in C_{p}$, and so $(N K)^{*}(N K) \in C_{p}$ and $(K N)(K N)^{*} \in C_{p}$. Hence $N K \in C_{2 p}$ and $K N \in C_{2 p}$. Applying the lemma again we see that $N^{*} K \in C_{2 p}$ and $K N^{*} \in C_{2 p}$. Now $K K^{*} K=K\left(X^{*} N^{*}-N^{*} X^{*}\right) K=K X^{*} N^{*} K-K N^{*} X^{*} K \in C_{2 p}$. Therefore $\left(K K^{*}\right)^{2} \in C_{2 p}$, and so $K K^{*} \in C_{4 p}$, which is equivalent to saying that $K \in C_{8 p}$, as required.

Corollary 2. Let A and B^{*} be subnormal operators. If $A^{2} X-X B^{2} \in C_{p}$ and $A^{3} X-X B^{3} \in C_{p}$ for some $X \in B(H)$, then $A X-X B \in C_{8 p}$.

Proof. Let N, M and Y be as in the proof of Corollary 1. Then $N^{2} Y-Y M^{2}$ $\in C_{p}$ and $N^{3} Y-Y M^{3} \in C_{p}$. Theorem 3 now implies that $N Y-Y M \in C_{8 p}$. Hence $A X-X B \in C_{8 p}$.

Question. Can the $8 p$ in Theorem 3 be improved?
Due to the fact (consider the polar decomposition) that if $T \in B(H)$, then $T \in F(H)$ (the ideal of finite rank operators) if and only if $T^{*} T \in F(H)$, we can modify the proofs of Theorem 3 and Corollary 2 to get the following.

Theorem 4. Let A and B^{*} be subnormal operators. If $A^{2} X-X B^{2} \in F(H)$ and $A^{3} X-X B^{3} \in F(H)$ for some $X \in B(H)$, then $A X-X B \in F(H)$.

If we replace the normal operator in Theorem 3 by an isometry modulo C_{p}, then we obtain the following better result.

Theorem 5. Let $T \in B(H)$ be such that $1-T^{*} T \in C_{p}$ for some $p \geqslant 1$. If $T^{2} X-X T^{2} \in C_{p}$ and $T^{3} X-X T^{3} \in C_{p}$ for some $X \in B(H)$, then $T X-X T \in$ C_{p}.

Proof. It has been proved in [3] that if $1-T^{*} T \in C_{\infty}$, then $T=C+V$, where $C \in C_{\infty}$, and where V is either an isometry or a co-isometry with finite dimensional null space. But the proof applies to any $p<\infty$ as well.

Now $T^{2} X-X T^{2} \in C_{p}$ and $T^{3} X-X T^{3} \in C_{p}$ imply that $V^{2} X-X V^{2} \in C_{p}$ and $V^{3} X-X V^{3} \in C_{p}$. Let $K=V X-X V$; then, as in the proof of Theorem 3, we have $V^{2} K \in C_{p}$ and $K V^{2} \in C_{p}$. If V is an isometry, then $K=V^{* 2} V^{2} K \in C_{p}$. If V^{*} is an isometry, then $K=K V^{2} V^{* 2} \in C_{p}$. Hence, in either case, $K \in C_{p}$, and this completes the proof.

The self-adjointness modulo C_{p}, i.e. the fact that $T-T^{*} \in C_{p}$, is not as good here as $1-T^{*} T \in C_{p}$. In fact we can easily see

Theorem 6. Let $T \in B(H)$ be such that $T-T^{*} \in C_{p}$. If $T^{2} X-X T^{2} \in C_{p}$ and $T^{3} X-X T^{3} \in C_{p}$ for some $X \in B(H)$, then $T X-X T \in C_{8 p}$.

For $p=2$, we have the following result.
Theorem 6. Let $T \in B(H)$ be a semi-Fredholm operator with ind $T<0$ (ind denotes the usual Fredholm index). If $T^{2} X-X T^{2} \in C_{2}$ and $T^{3} X-X T^{3} \in C_{2}$ for some $X \in B(H)$, then $T X-X T \in C_{2}$.

Proof. Since ind $T<0$, there exists a finite rank partial isometry F whose initial space is $\operatorname{Ker} T$ and whose range is properly contained in $\operatorname{Ker} T^{*}$. It follows
that $T+F$ is bounded below, and that $(T+F)^{*}$ has a non-trivial kernel (see [4]). Let $T+F=A$ and $K=T X-X T$. Then, as we have seen in the proof of Theorem 3, $T^{2} K \in C_{2}$. Thus $(A-F)^{2}(A X-X A+X F-F X) \in C_{2}$, and from this we conclude that $A^{2}(A X-X A) \in C_{2}$. If $\left\{e_{n}\right\}$ is an orthonormal basis for H, then $\infty>\Sigma\left\|A^{2}(A X-X A) e_{n}\right\|^{2} \geqslant b^{4} \Sigma\left\|(A X-X A) e_{n}\right\|^{2}$, where b is a constant such that $\|A x\| \geqslant b\|x\|$ for all $x \in H$. Therefore $A X-X A \in C_{2}$. But then $T X-X T=A X-X A+X F-F X \in C_{2}$, which completes the proof.

References

[1] A. H. Al-Moajil, 'The commutants of relatively prime powers in Banach algebras', Proc. Amer. Math. Soc. 57 (1976), 243-249.
[2] M. R. Embry, ' nth roots of operators', Proc. Amer. Math. Soc. 19 (1968), 63-68.
[3] P. Fillmore, J. Stampfli and J. Williams, 'On the essential numerical range, the essential spectrum, and a problem of Halmos', Acta Sci. Math. (Szeged) 33 (1972), 179-192.
[4] C. Pearcy, Some recent developments in operator theory (Lecture Notes No. 36, Amer. Math. Soc., Providence, R. I., 1978).
[5] G. Weiss, 'The Fuglede commutativity theorem modulo operator ideals', Proc. Amer. Math. Soc. 83 (1981), 113-118.

Department of Mathematics
 United Arab Emirates University
 P.O. Box 15551 Al-Ain

U.A.E.

