J. Austral. Math. Soc. (Series A) 41 (1986), 47-50

ON THE COMMUTANTS MODULO C_p OF A^2 AND A^3

FUAD KITTANEH

(Received 7 March 1984)

Communicated by G. H. Chabrowski

Abstract

We prove the following statements about bounded linear operators on a complex separable infinite dimensional Hilbert space. (1) Let A and B* be subnormal operators. If $A^2X = XB^2$ and $A^3X = XB^3$ for some operator X, then AX = XB. (2) Let A and B* be subnormal operators. If $A^2X - XB^2 \in C_p$ and $A^3X - XB^3 \in C_p$ for some operator X, then $AX - XB \in C_{8p}$. (3) Let T be an operator such that $1 - T^*T \in C_p$ for some $p \ge 1$. If $T^2X - XT^2 \in C_p$ and $T^3X - XT^3 \in C_p$ for some operator X, then $TX - XT \in C_p$. (4) Let T be a semi-Fredholm operator with ind T < 0. If $T^2X - XT^2 \in C_2$ and $T^3X - XT^3 \in C_2$ for some operator X, then $TX - XT \in C_2$.

1980 Mathematics subject classification (Amer. Math. Soc.): 47 B 47, 47 B 10, 47 B 20. Keywords: commutant, normal operators, subnormal operators, isometry, Schatten p-class.

Let *H* denote a complex separable infinite dimensional Hilbert space and let B(H) denote the algebra of all bounded linear operators acting on *H*. Let C_p denote the Schatten *p*-class with $\|\cdot\|_p$ $(1 \le p \le \infty)$ denoting the associated *p*-norm. Hence C_2 is the Hilbert-Schmidt class and C_{∞} is the class of compact operators. Relations between the commutant of an operator *A* and the commutants of powers of *A* have been investigated by many authors, for example, see [1] and [2]. In [1], Al-Moajil proved the following result.

THEOREM 1. If $N \in B(H)$ is normal and $N^2X = XN^2$ and $N^3X = XN^3$ for some $X \in B(H)$, then NX = XN.

The purpose of this paper is to extend Theorem 1 to intertwining relations between a subnormal and a co-subnormal operator and to present the commutator modulo C_p versions of these results.

^{© 1986} Australian Mathematical Society 0263-6115/86 \$A2.00 + 0.00

Fuad Kittaneh

Using Berberian's trick we have the following.

THEOREM 2. Let N and M be normal operators. If $N^2 X = XM^2$ and $N^3 X = XM^3$ for some $X \in B(H)$, then NX = XM.

PROOF. On $H \oplus H$, let $L = |{}_0^N {}_M^0|$ and $Y = |{}_0^0 {}_0^X|$. Then L is normal and $L^2Y = YL^2$ and $L^3Y = YL^3$. Therefore Theorem 1 implies that LY = YL, from which it follows that NX = XM.

COROLLARY 1. Let A and B^* be subnormal operators. If $A^2X = XB^2$ and $A^3X = XB^3$ for some $X \in B(H)$, then AX = XB.

PROOF. By assumption there exists a Hilbert space H_1 and there exist normal operators N and M on $H \oplus H_1$, such that $N = \begin{vmatrix} A & R \\ 0 & A_1 \end{vmatrix}$ and $M = \begin{vmatrix} B & 0 \\ S & B_1 \end{vmatrix}$. Let $Y = \begin{vmatrix} X & 0 \\ 0 & 0 \end{vmatrix}$. Then easy matrix calculations yield $N^2Y = YM^2$ and $N^3Y = YM^3$. Hence by Theorem 2 we have NY = YM, from which we get AX = XB as required.

The next step we want to consider is the investigation of the same relations modulo the C_p class. For $p = \infty$, the situation is easy; just look at the Calkin algebra $B(H)/C_{\infty}$. For the $p \neq \infty$ case we need first to present the following simple lemma, which is due to Weiss [5].

LEMMA [5]. Suppose N is normal in B(H), $X \in B(H)$, and I is any two-sided ideal in B(H). Then $NX \in I$ implies $N * X \in I$ and $XN \in I$ implies $XN * \in I$.

THEOREM 3. Let N be a normal operator. If $N^2X - XN^2 \in C_p$ and $N^3X - XN^3 \in C_p$ for some $X \in B(H)$, then $NX - XN \in C_{8p}$.

PROOF. Let K = NX - XN. if $N^2X - XN^2 = K_1 \in C_p$ and $N^3X - XN^3 = K_2 \in C_p$, then $N^2K = N^2(NX - XN) = N^3X - N^2XN = N^3X - (XN^2 + K_1)N = N^3X - XN^3 - K_1N = K_2 - K_1N \in C_p$. Similarly we can show that $KN^2 \in C_p$. Applying the lemma we obtain $N^*NK \in C_p$ and $KNN^* \in C_p$, and so $(NK)^*(NK) \in C_p$ and $(KN)(KN)^* \in C_p$. Hence $NK \in C_{2p}$ and $KN \in C_{2p}$. Applying the lemma again we see that $N^*K \in C_{2p}$ and $KN^* \in C_{2p}$. Now $KK^*K = K(X^*N^* - N^*X^*)K = KX^*N^*K - KN^*X^*K \in C_{2p}$. Therefore $(KK^*)^2 \in C_{2p}$, and so $KK^* \in C_{4p}$, which is equivalent to saying that $K \in C_{8p}$, as required.

COROLLARY 2. Let A and B^* be subnormal operators. If $A^2X - XB^2 \in C_p$ and $A^3X - XB^3 \in C_p$ for some $X \in B(H)$, then $AX - XB \in C_{8p}$.

PROOF. Let N, M and Y be as in the proof of Corollary 1. Then $N^2Y - YM^2 \in C_p$ and $N^3Y - YM^3 \in C_p$. Theorem 3 now implies that $NY - YM \in C_{8p}$. Hence $AX - XB \in C_{8p}$.

QUESTION. Can the 8p in Theorem 3 be improved?

Due to the fact (consider the polar decomposition) that if $T \in B(H)$, then $T \in F(H)$ (the ideal of finite rank operators) if and only if $T^*T \in F(H)$, we can modify the proofs of Theorem 3 and Corollary 2 to get the following.

THEOREM 4. Let A and B^* be subnormal operators. If $A^2X - XB^2 \in F(H)$ and $A^3X - XB^3 \in F(H)$ for some $X \in B(H)$, then $AX - XB \in F(H)$.

If we replace the normal operator in Theorem 3 by an isometry modulo C_p , then we obtain the following better result.

THEOREM 5. Let $T \in B(H)$ be such that $1 - T^*T \in C_p$ for some $p \ge 1$. If $T^2X - XT^2 \in C_p$ and $T^3X - XT^3 \in C_p$ for some $X \in B(H)$, then $TX - XT \in C_p$.

PROOF. It has been proved in [3] that if $\mathbf{1} - T^*T \in C_{\infty}$, then T = C + V, where $C \in C_{\infty}$, and where V is either an isometry or a co-isometry with finite dimensional null space. But the proof applies to any $p < \infty$ as well.

Now $T^2X - XT^2 \in C_p$ and $T^3X - XT^3 \in C_p$ imply that $V^2X - XV^2 \in C_p$ and $V^3X - XV^3 \in C_p$. Let K = VX - XV; then, as in the proof of Theorem 3, we have $V^2K \in C_p$ and $KV^2 \in C_p$. If V is an isometry, then $K = V^{*2}V^2K \in C_p$. If V^* is an isometry, then $K = KV^2V^{*2} \in C_p$. Hence, in either case, $K \in C_p$, and this completes the proof.

The self-adjointness modulo C_p , i.e. the fact that $T - T^* \in C_p$, is not as good here as $1 - T^*T \in C_p$. In fact we can easily see

THEOREM 6. Let $T \in B(H)$ be such that $T - T^* \in C_p$. If $T^2X - XT^2 \in C_p$ and $T^3X - XT^3 \in C_p$ for some $X \in B(H)$, then $TX - XT \in C_{8p}$.

For p = 2, we have the following result.

THEOREM 6. Let $T \in B(H)$ be a semi-Fredholm operator with $\operatorname{ind} T < 0$ (ind denotes the usual Fredholm index). If $T^2X - XT^2 \in C_2$ and $T^3X - XT^3 \in C_2$ for some $X \in B(H)$, then $TX - XT \in C_2$.

PROOF. Since ind T < 0, there exists a finite rank partial isometry F whose initial space is Ker T and whose range is properly contained in Ker T^* . It follows

Fuad Kittaneh

that T + F is bounded below, and that $(T + F)^*$ has a non-trivial kernel (see [4]). Let T + F = A and K = TX - XT. Then, as we have seen in the proof of Theorem 3, $T^2K \in C_2$. Thus $(A - F)^2(AX - XA + XF - FX) \in C_2$, and from this we conclude that $A^2(AX - XA) \in C_2$. If $\{e_n\}$ is an orthonormal basis for H, then $\infty > \Sigma ||A^2(AX - XA)e_n||^2 \ge b^4 \Sigma ||(AX - XA)e_n||^2$, where b is a constant such that $||Ax|| \ge b||x||$ for all $x \in H$. Therefore $AX - XA \in C_2$. But then $TX - XT = AX - XA + XF - FX \in C_2$, which completes the proof.

References

- A. H. Al-Moajil, 'The commutants of relatively prime powers in Banach algebras', Proc. Amer. Math. Soc. 57 (1976), 243-249.
- [2] M. R. Embry, 'nth roots of operators', Proc. Amer. Math. Soc. 19 (1968), 63-68.
- [3] P. Fillmore, J. Stampfli and J. Williams, 'On the essential numerical range, the essential spectrum, and a problem of Halmos', *Acta Sci. Math.* (*Szeged*) 33 (1972), 179–192.
- [4] C. Pearcy, Some recent developments in operator theory (Lecture Notes No. 36, Amer. Math. Soc., Providence, R. I., 1978).
- [5] G. Weiss, 'The Fuglede commutativity theorem modulo operator ideals', *Proc. Amer. Math. Soc.* 83 (1981), 113-118.

Department of Mathematics United Arab Emirates University P.O. Box 15551 Al-Ain U.A.E.