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It is well known (Lee [13]) that the class of all distributive p-algebras B = Ba is a variety
and that the class of all subvarieties of B forms a chain

B-i C B O C B | c . . , c B , c . , . c B B

where B_i is the trivial class, Bo is the class of Boolean algebras, and Bi is the class of Stone
algebras.

Urquhart [14] described the finitely generated free algebras in all classes Bn for 1 < n < co
(see Berman and Dwinger [4] or Kohler [12]). The free Stone algebras were studied by Balbes
and Horn [3], Chen [5] and Katrinak [9],[10]. Davey and Goldberg [7] gave a characterization
of the free algebras FDp,,(X) in the classes Bn, 1 < n < co, using the topological duality of
Priestley.

In this paper we give an intrinsic algebraic characterization of FDpn{X) for all 1 < n < co.
We shall use the method of constructing the free extensions of posets in the class of dis-
tributive lattices and preserving some prescribed bounds (Dean [6]). This method has suc-
cessfully been used to determine the free p-algebras Fpn(X) in [11].

1. Preliminaries. A (distributive) p-algebra is an algebra L = (L; v, A,* , 0, 1), where
(L; v, A, 0, 1) is a bounded (distributive) lattice and the unary operation * is characterized by

a < b*if and only ifa A b = 0

In any p-algebra L we can define the set of closed elements

B(L) = {xeL:x = x**)

It is known that (B(L); +, A,* , 0, 1) is a Boolean algebra, where

a + b = (a* A b*)*

As we mentioned above, the class B = BM of all distributive p-algebras is equational (see [2]
or [8]). The subvariety B,,, 1 <n <co, is defined by the following identity

(Ln){X\ A . . . A X n ) * v ( x \ A . . . V X , , ) * V . . . V ( x , A . . . A X ^ ) * = 1

(cf. [13]). Similarly as in [11], we shall work in the class of distributive lattices with the free
extensions of posets preserving some bounds (see [6]): Consider a poset (T; <) with families C
and U of finite subsets of T such that
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0) P < q in T implies \p, q] € £ and {/?, q\ e U,
(ii) S € £(S e W) implies that there exists infrS(suprS).

Following [6] a distributive lattice FD(T; £,Z<0 is called a/ree distributive lattice gener-
ated by T (a free distributive extension of T) and preserving bounds from £ and U, if it
satisfies the following conditions:

(i) T c FD(r; £, U) and for a, Z> e T, a < A in T if and only if a < b in FD(r; £, W);
(ii) For S e £, infr S = /\(s : S € S) and for SeW, supr 5 = VO : * e S);

(iii) [T] = FD(7; C,U), i.e. 71 generates FD(r; C,U);
(iv) Let M be a distributive lattice and let <p: T —> M be an isotone mapping with the

properties ^(supj-.?) = \/((p(s) : s e S) for every S eU and <p(infr5) = /\(cp(s): s e S). Then
there exists a (lattice) homomorphism r\ : FD(J; C,U) ->• Mextending y, i.e. r][T = cp.

2. The poset associated with a set. In order to see how to introduce this concept, we begin
by observation of four facts formulated in Lemmas 1-4.

LEMMA 1. Let L be a distributive p-algebra. Then the following statements are equivalent:

(i) L satisfies the identity (£,„), 1 < n < co;
(ii) (xi A . . . A xn+x)*= (x2 A . . . A * n + i )*v . . . v (;*) A . . . A xn)*;

(iii) 0*, v . . . v *„+,)**= (x2 v . . . v xn+x)**y... v 0*, v . . . v ;*„)**;
(iv) «i V . . . v an+i = t = a\ + ... + an+\, whenever a\,..., an+\ £ B(L) and a,- + aj = tfor

anyi^j.

Proof. The equivalence of (i), (ii) and (iii) can be found in Wafker [15]. Assume now (iii).
Take t = a\ + ... + an+i for a\,..., an+\ e B{L) satisfying a, + o7 = t if i ^j. We shall prove
(iv.). For n = 1 it follows from (iii). Assume n > 2. Let x,> = a\ A . . . A a,_i A
A . . . A an+i. Then

a,- = 0*i v . . . v x,_i v xi+i v . . . v xn+,)**= x, + . . . + x,_i + x,+1 + . . . + xn+l

by distributivity and the assumption. Clearly,

0*i v . . . v xn+\)** = (ai v . . . v an+i)**= r

Therefore,
/ = a, v . . . v an+,

by (iii).

Conversely, suppose that (iv) is true. Take X\,..., xn+\ e L and put

a,- = 0*i v . . . VJC,-_, v . . . vx n + i )** .

It is easy to verify that

for / ^7 , and this implies (iii).
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LEMMA 2. Let the distributive p-algebra L be generated by a subset X, i.e. [X] — L. Then
the set X** = {z e L : z = x**, x e X] generates B(L) in the class of Boolean algebras, i.e.
[X**]Bool= B(L).

LEMMA 3. Let L — FDpn(X) be a free p-algebra freely generated by X in the variety
B,,, 1 < n < co. Then B(L) = FB(A"**) (= the free Boolean algebra freely generated by X**).

LEMMA 4. Let L be a distributive p-algebra generated by as subset X. Then XU B{L) gen-
erates L in the class of (distributive) lattices, i.e. L = [XU B)L)]Lal.

Lemmas 2-4 are straightforward consequences of [11; Lemmas 2-4]. We recall that a
poset associated with a set A'was denned in [11] as follows:

DEFINITION 1. Let A' be a set. Take a disjoint copy X — [x : x e X] and construct a free
Boolean algebra FB(A^). We can assume XnFB{X) = 0. Now we define the poset
P(X) = (P{X); <) associated with X as follows:

(i) P{X) is bounded, i.e. 0 < u < 1 for every u e P(X) and 0, 1 € FB(^);
(ii) a < u and 0 ^ a e FB(^) if and only if u e FB(;P) and a < u in FB( i ) ;

(iii) x < x for every x 6 X;
(iv) x < u for x e X if and only if x < u or x = u.

Denote by FB( i ) the free Boolean algebra (FB(^); +, . , ' ,0 , 1). It remains to be said
which existing gib's and lub's in P(X) should be preserved.

DEFINITION 2. Let P(X) be the poset associated with the given set X. Set

(i) C = Ca = C\ = . . . = £ „ . . . and A e C if and only if A is a finite subset of FB(A )̂ or
A = {a, b) c P{X) and a < b in P(X);

(ii) U = Ua, where A e U if and only if A = {a, b} c P(X) and a < b in P(X);
(iii) A e Un for 1 < n < co if and only if A e U or A = \a\,...,an+\] such that

a\,..., an+\ e FB(A) and a\+ ...+ an+\ = a, + a, for any / ^j.

Now we shall show that the lattice FD(P(X); CnMn) for 1 < n < co do exist. Note that
a A b = a • b for any a, b e FB(^) in FD(P(X); £„, Un).

First we need a new concept from Balbes [1]. Suppose that we have a set /. Let (E)
denote a set of lattice inequalities of the form.

*/, A . . . A J C 4 , <yh V...vyjm

where {i\,..., /„}, {j\,... ,jm) c /. A distributive lattice L is called (E)-free if there exists a
subset A = {a,},ey of L with I <zj such that.

(i) [A] = L;
(ii) the set {a,},ey satisfies (£) i.e.

0,-, A . . . A fl,n < fly, V . . . V djm

for every inequality from (£);
(iii) whenever {bj}ieJ is a subset of a distributive lattice M such that {bi}ieJ satisfies (£),

then there exists a homomorphism/: L -*• M such thaty(a,) = bj for all / € / .
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THEOREM 1. Let P(X) be the poset associated with a set X. Then YY){P{X); £„, Un) exists
for every 1 < n < a>.

Proof. First we set / = P(X). Now we define the set (£„) of inequalities in {x,},s/ as fol-
lows:

(a) X( < xj if and only if / < j in P(X);
(b) xij A . . . A xik < Xj if and only if {i\,..., ik) Q FB(A') andy = i\ ... ik in FB(Ai;
(c) x , < x h v . . . v xjn+t i f a n d o n l y if t = j \ + . . . + j n + 1 f o r j \ , . . . , j n + x e FB[X) a n d

t =ji +jk whenever / ^ k.

By [1; Theorem 1.9], there exists an (£n)-free distributive lattice //„. The properties of//,,
can be summarized in other words as follows [1; Theorem 1.8]:

(i) there exists an order preserving embedding e : P(X) -> //„;
(ii) (e(/): i e P{X)\ satisfies (£„);
(iii) whenever {6,}i6/C M and M is a distributive lattice such that {6,},e/ satisfies (£„),

then there exists a homomorphism/: //„—>• M such that f[s{i)) = bj.

Now it is easy to verify that //„ = F D ^ A ^ ) ; £„, Un), and the proof is complete.

REMARK 1. Following [1; Theorem 1.9] the lattice //„ from the proof of Theorem 1 can
be constructed as follows: Consider mappings

i.e. s e 2P(X). We say that s e 2PW satisfies the inequality

Xij A . . . A Xin < Xh V . . . V Xjm

for M , . . . , « „ , ji,... ,jm eP(X), if

s(i\) = ... = s(in) - 1 and s(Ji) = ... = s(jm) - 0.

Let Iq{En) denote the set of s e 2 / w which satisfy the inequalities from (£„).
Now, define A("] = {s e 2P(X) : s(i) = 1 and s e 2P(X) - Iq(En)}, i € P(X). The sublattice

of 2P(X) generated by the set {A{"] : i e P(X)} is a bounded distributive lattice. This lattice,
[{AW : i 6 P(X)}}, is Hn.

Our next task is to establish that ¥T>(P(X); Cn,Un) is isomorphic to ¥\ypn(X). For the
sake of clarity we shall adapt [11; Lemmas 5-7] for the distributive case.

LEMMA 5. Let P(X) denote the poset associated with a set X. Then there exists a (unique)
lattice-epimorphism

7t:Hn = FD(P(X); Cn, Un) - (^)

for every 1 < n < u> such that

(i) n(x) = x for every x 6 X,

(ii) n(a) = afar every a e FB(Z),
(iii) u < n{u)for every u e //„,
(iv) u < a and a € FB(X) implies n(u) < a.
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Now, we are in position to formulate the next result.

THEOREM 2. Let P(X) denote the poset associated with a set X. Then the free distributive p-
algebra FDpn(X) in the class Bn, 1 < n < co, and the distributive lattice Hn = ¥T>{P{X); £„, Un)
are isomorphic as lattices. More precisely, Hn can be considered as a p-algebra such that

(i) M* = n{u)' for every u e Hn,
(ii) Hn = [X],
(in) B(Hn) ~ (FB(X); + , . , ' , 0,1),
(iv) Hn e Bn, i.e. Hn satisfies the identity (Ln).

The proofs of Lemma 5 and Theorem 2 are essentially the same as of [11; Lemmas 5-7]
and of [11; Theorem 1] (see also Lemma 1).

3. Construction of FDpn(X). Theorem 2 lacks a certain simplicity which it ought to have.
Our work in this section will remedy this defect.

The following definition is crucial.

DEFINITION 3. Let P{X) denote the poset associated with a set X. A subset 0 / S c P(X)
is said to be an n-order-filter (1 < n < co) if

(i) S is increasing, i.e. 5 = [S),
(ii) 5 n FB(JT) is a filter (= dual ideal) of the Boolean algebra FB(*),
(iii) t = a\ + ... + an+\ e S and t — a, + aj for any i^j imply a, e S for some

1 < i < n + 1, whenever 1 < n < co and a\,..., an+\ e FB(A^).

REMARK 2. It is easy to see that a fc-order-filter is an «-order-filter, whenever k < n. For
the sake of simplicity we shall often say "order-filter" instead of "<w-order-nlter". Next we
shall consider mappings s : P(X) -> 2. Let Ker{s), for .y € 2P{X), denote the set {/ e P(X):
s ( 0 = l } .

LEMMA 6. Let P(X) be the poset associated with a set X. Then s € 2F{X) - Iq{En)
x if and

only if Ker(s) is an n-order-filter (1 < n < co).

Proof. Suppose that J 6 2nX) - Iq(En). Consider Ker{s) = S c P(X). Let / <j in P{X)
and /" e Ker(s). Since s does not satisfy

Xi < Xj

and s(i) = 1, we get s(f) = 1. Thus, j e Ker(s) and Ker(s) is increasing. Similarly,
j'i, h e 5 n FB(A') andy = i\.ij in FB(X) imply j e S, because s does not satisfy

*i, A Xh < Xj.

Assume now that 1 < n < co and t = a\+ ... + an+\ e S such that a,- + as• = t for any
i ^j and a\,..., an+\ e FB(A'). Since s does not satisfy

X, < Xai V . . . V Xan+I

'The symbol — refers to the set-theoretic difference.
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for / = ai + . . . + an+\ and s(t) = 1, we get (a,-) = 1 for some 1 < i < n + \. Thus, Ker{s) is an
n-order-filter of P{X).

The converse statement follows easily from properties of w-order-filters, and the proof is
complete.

We now denote the set of all n-order-filters S containing the given order-filter M c P(X)
by M(n)(A/)- w(n)(0 will simply mean u("\[i}). Since «w(i) is a family of subsets of P{X), we can
write M(n)(/) c Z ^ . Let £,,00 denote the (distributive) sublattice of 2 W generated by
{«(")(/) : / € P(X)}, i.e. *„(*) = [{«(">(/): / €

LEMMA 7. Le/ /'(X) denote the poset associated with a set X. Then there exists a lattice
isomorphism <p : FDpn(X) —*• Kn{X), 1 < n < a>, such that

(i) the restriction tp \ P(X) is an order-isomorphism between P(X) and {u(n\i) : i € P{X)};
(ii) the restriction <p [ FB(Z) is an order-isomorphism between FB(A) and

(w'"'(/): / e FB(vY)}. Moreover, there exists a lattice epimorphism

x:Kn(X)^ (w(n)(/) : / € FB{X))

such that

(iii) T({"\X)) = u{"\x)for every x e X;
(iv) r(w<"»(a)) = u^\a)for every a e
(v) v < x{v)for every v e Kn(X);_
(vi) w(n)(/) c u("\a) andae FB(^) imply r(u{n\i)) C u("\a)for any i e P(X).
Proof. According to Lemma 6, the mapping

5 -^ Ker(s)

is an order-isomorphism between 2 P W — Iq(En) and the set of all «-order-filters of P(X).
Therefore, by Remark 1, Hn and Kn(X) are isomorphic as lattices. Eventually, by Theorem 2,
there exists a lattice isomorphism

<p : FDpn(X) -»• Kn(X)

It is easy to verify that this isomorphism satisfies (i) and (ii). The last conditions and
Lemma 5 imply (iii)-(iv).

The condition (ii) of Lemma 7 shows that {u^(i): / 6 FB(A')} is a Boolean algebra iso-
morphic to FB(A'). In addition, i/"'(0) and i/"'(l) are the smallest and the greatest elements
of it, respectively, and if"^{a') is the complement of u^"\a), a e FB(i").

We are now in position to state the main facts about /7-order-filters.

THEOREM 3. Let P(X) denote the poset associated with a set X, let 1 < n < u>. Then the
free distributive p-algebra FDp,,(X) in the class Bn and the distributive lattice K,,(X) are iso-
morphic as lattices. More precisely, Kn{X) can be considered as a p-algebra such that

(i) v* = x{v)' for every v £ Kn{X),
(ii) {u("\i): / e X} freely generates K,,(X) as a p-algebra in the class Bn,
( i i i ) B{Kn{X)) = { i / " > ( Q : i 6 F ( } ( i )

The proof follows directly from Lemma 7.
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4. Finite Algebras. It is known (see [4] that a finitely generated distributive p-algebra is
finite. Obviously, every finite distributive p-algebra is determined by its poset of non-zero
join-irreducible elements. Theorem 3 suggests a natural way of describing this set.

LEMMA 8. Let X be a finite set. Assume that i\,..., ik e P(X) and 1 < n < co. Then there
exists an order-filter M c P{X) such that

u("\h) n . . . n u(n\ik) = u("\M). (*)

Conversely, for every order-filter M c P{X) there exists i\,..., ik e P(X) such that (*) is true.

Proof. Let i\, ...,ik e P(X) be given. Evidently,

U

for every j = 1 , . . . , k. M is an order-filter and (*) can be easily verified.
On the other hand, let M c P(X) be an order-filter. Clearly, MDFB(X) = [a) for some

aeFB(X). If MflJ = 0, then i/-"\a) = uM(M). Let MHX=[i] ik). Evidently,
*(//) ^ a for every j = 1 , . . . , k. A simple verification shows that (*) holds true.

Recall that for / e FB(^) c P(X) and finite X, we can define the height function: Let
hB(t) denote the length of a longest maximal chain in [0, t] n FB(Z). It is easy to see that hB(t)
is the number of all atoms a e FB(A') such that a < t.

LEMMA 9. Let X be a finite set and let M be an order-filter of P{X). Assume that
M n FB(^) = [/)• Then M is an n-order-filter for some 1 < n < co if and only if

hB(t) < n

Proof. Suppose that M is an /7-order-filter and let 1 < n < co be the smallest integer with
this property. We have to show that hs(t) — n. For t = 0 this is true. Assume that t ̂  0. Let
a\,...,ak be all atoms of FB(^) with property: a, < t. Consider elements b\ = t • a\,
...,bk = ta'k<=FB(X).C\ear\y,

t — b\ + ... + bk and b, + bj = t for any / ^ j .

Since b, < t for all / = 1 , . . . , k, we have

k = hB(t) < n

We now go in the other direction. According to the choice of n there exist distinct
b\,...,bne FB(A') such that

t = b\+... + bn, bj + bj = t

for any / ̂ j and no bj = t. Set
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a\,...,an are distinct and fl,-a/ = 0 in FB(Aj whenever i^O. Since a,^ 0 for all
/ = 1,.. . ,«, we see that n <k = hB{t). Thus hB(t) — n.

Conversely, suppose that hB(t) < n. Take b\,..., bn+\ e FB(A') such that

t = b\ + ... + bn+\ and t = bi + bj whenever i ^j.

We can also assume that b\,..., bn+\ are distinct. Therefore, the elements

ai = t • b \ , . . . , an+x = t • b'n+l

are distinct and a,- • a,- = 0 in FB(X) whenever i ̂ j. Since hs(t) < n we see that a, = 0 for
some 1 < / < n + 1. Hence b,: = t e M and M is an n-order-filter.

As our final result, we have the following theorem.

THEOREM 4. Let P{X) denote the poset associated with a finite set X. Then
A e Kn(X), 1 < n < co, is a join-irreducible element in the lattice Kn(X) if and only if
A = ifn\M)for some n-order-filter M.

Proof. In view of Lemma 8, every element A e Kn(X) can be written in the form

A = u{n\Ml)U...Uu(-"\Mr)

for some order-filters M\,..., Mr c P(X). Suppose now that A e Kn{X) is join-irreducible.
Therefore, A = «(n)(A/) for some order-filter (= o>-order-filter) M of P{X), and the assertion
of the theorem is clear for n = co. We therefore assume that 1 < n < co. Our aim is to show
that there exists an n-order filter T c P{X) such that

A = u(n\M) = u(n\T).

Let [0 = Mr\FB(X). We shall proceed by induction on hB(t).

(I) Suppose that hB(t) < n. It follows by Lemma 9 that M is an n-order-filter. Hence

(II) Assume that hB{t) > n. Moreover, if there exists an order-filter T c P{X) such that
[t]) = TnFB(X),t> tx and

A = uin\M) = u{n\T),

then T is an n-order-filter of P{X). Without loss of generality we can assume that M is no n-
order-filter of P{X). Then there exist distinct elements b\ bn+\ e FB(X) satisfying the
following conditions: /?, < / for every i= 1 , . . . , n + 1 and

t = b\ + ... + bn+\ = bj + bj, whenever i^-j

Form the following order-filters:

M, = r u [*,), ...,Mn+x = YD

We claim that

u(n\M) = u{n\M\) U . . . U «(n)
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Obviously, w(n)(A/) o u^{M{) U . . . DuM(Mn+i). On the other hand, let S € u{n\M).
Since S is an «-order-filter, there is bt e S for some 1 < i < n + 1. It follows from this that
S 2 Mh Therefore, S e «(n)(M,-) and

u(n\M) = M
(n)(M,) U . . . U M(n)(Mn+1),

as claimed. The hypothesis that w(n)(M) is join-irreducible implies that A — H(n)(A/y) for some
1 <j < n + 1. Clearly, \bj) — Mj n (FB(A') and t > bj. By induction hypothesis is Mj an n-
order-filter of P(X) and we can put T — Mj. This shows that for a join-irreducible A e Kn{X)
there exists an M-order-filter T of P(X) with A = w(n)(7).

Conversely, let ,4 = u(n\M) for some n-order-filter M of P{X). Suppose that A = C U D
for some C, D e Kn(X). In view of Lemma 9 we can write

for some order-filters M\,...,Mr of P(X). Since M e A, there is \<j<r such that
M e u(n)(Mj). It follows that A c M(n)(My), and consequently, ^ = «(n)(M/). This shows that
A is join-irreducible in ^(A1).

REMARK 3. Another characterization of join-irreducibles from FDpn(X) for finite X is
given in Urquhart [14]. A transformation which converts n-order-filters into elements of
FDpn(X) can be easily established: Let M c P{X) be an n-order-filter and let
[0 = MnFB(X). Moreover, let

cp : (FB(^); + , . , ' , 0, 1) -> (FB(JT*); +, A,* , 0, 1)

be a Boolean isomorphism given by

<p : x -y x** for x e X.

Define

p(M) = l\(x :xeMC\X)f\<p(t).

Then p(M) is a join-irreducible element in FDpn(X) (in the characterization of [14])
which corresponds to u(n\M).
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