FREE DISTRIBUTIVE P-ALGEBRAS: A NEW APPROACH[†] by TIBOR KATRIŇÁK

(Received 12 December, 1996)

It is well known (Lee [13]) that the class of all distributive p-algebras $\mathbf{B} = \mathbf{B}_{\omega}$ is a variety and that the class of all subvarieties of **B** forms a chain

$$\mathbf{B}_{-1} \subseteq \mathbf{B}_0 \subseteq \mathbf{B}_1 \subseteq \ldots \subseteq \mathbf{B}_n \subseteq \ldots \subseteq \mathbf{B}_{\omega}$$

where \mathbf{B}_{-1} is the trivial class, \mathbf{B}_0 is the class of Boolean algebras, and \mathbf{B}_1 is the class of Stone algebras.

Urquhart [14] described the finitely generated free algebras in all classes \mathbf{B}_n for $1 \le n \le \omega$ (see Berman and Dwinger [4] or Köhler [12]). The free Stone algebras were studied by Balbes and Horn [3], Chen [5] and Katriňák [9],[10]. Davey and Goldberg [7] gave a characterization of the free algebras $FDp_n(X)$ in the classes \mathbf{B}_n , $1 \le n \le \omega$, using the topological duality of Priestley.

In this paper we give an intrinsic algebraic characterization of $FDp_n(X)$ for all $1 \le n \le \omega$. We shall use the method of constructing the free extensions of posets in the class of distributive lattices and preserving some prescribed bounds (Dean [6]). This method has successfully been used to determine the free p-algebras $Fp_n(X)$ in [11].

1. Preliminaries. A (distributive) *p*-algebra is an algebra $L = (L; \lor, \land, *, 0, 1)$, where $(L; \lor, \land, 0, 1)$ is a bounded (distributive) lattice and the unary operation * is characterized by

$$a \le b^*$$
 if and only if $a \land b = 0$

In any p-algebra L we can define the set of *closed* elements

$$B(L) = \{x \in L : x = x^{**}\}$$

It is known that $(B(L); +, \wedge, *, 0, 1)$ is a Boolean algebra, where

$$a+b=(a^*\wedge b^*)^*$$

As we mentioned above, the class $\mathbf{B} = \mathbf{B}_{\omega}$ of all distributive p-algebras is equational (see [2] or [8]). The subvariety \mathbf{B}_n , $1 \le n < \omega$, is defined by the following identity

$$(L_n)(x_1 \wedge \ldots \wedge x_n)^* \vee (x_1^* \wedge \ldots \vee x_n)^* \vee \ldots \vee (x_1 \wedge \ldots \wedge x_n^*)^* = 1$$

(cf. [13]). Similarly as in [11], we shall work in the class of distributive lattices with the free extensions of posets preserving some bounds (see [6]): Consider a poset $(T; \leq)$ with families \mathcal{L} and \mathcal{U} of finite subsets of T such that

[†]The support of the VEGA MS SR is gratefully acknowledged.

Glasgow Math. J. 40 (1998) 333-342.

- (i) $p \le q$ in T implies $\{p, q\} \in \mathcal{L}$ and $\{p, q\} \in \mathcal{U}$,
- (ii) $S \in \mathcal{L}(S \in \mathcal{U})$ implies that there exists $\inf_T S(\sup_T S)$.

Following [6] a distributive lattice $FD(T; \mathcal{L}, \mathcal{U})$ is called a *free distributive lattice* generated by T (a *free distributive extension of* T) and preserving bounds from \mathcal{L} and \mathcal{U} , if it satisfies the following conditions:

- (i) $T \subseteq FD(T; \mathcal{L}, \mathcal{U})$ and for $a, b \in T, a \leq b$ in T if and only if $a \leq b$ in $FD(T; \mathcal{L}, \mathcal{U})$;
- (ii) For $S \in \mathcal{L}$, $\inf_T S = \bigwedge (s : S \in S)$ and for $S \in \mathcal{U}$, $\sup_T S = \bigvee (s : s \in S)$;
- (iii) $[T] = FD(T; \mathcal{L}, \mathcal{U})$, i.e. T generates $FD(T; \mathcal{L}, \mathcal{U})$;

(iv) Let *M* be a distributive lattice and let $\varphi : T \to M$ be an isotone mapping with the properties $\varphi(\sup_T s) = \bigvee(\varphi(s) : s \in S)$ for every $S \in \mathcal{U}$ and $\varphi(\inf_T S) = \bigwedge(\varphi(s) : s \in S)$. Then there exists a (lattice) homomorphism $\eta : FD(T; \mathcal{L}, \mathcal{U}) \to M$ extending φ , i.e. $\eta \upharpoonright T = \varphi$.

2. The poset associated with a set. In order to see how to introduce this concept, we begin by observation of four facts formulated in Lemmas 1-4.

LEMMA 1. Let L be a distributive p-algebra. Then the following statements are equivalent:

(i) L satisfies the identity $(L_n), 1 \le n < \omega$;

(ii) $(x_1 \wedge \ldots \wedge x_{n+1})^* = (x_2 \wedge \ldots \wedge x_{n+1})^* \vee \ldots \vee (x_1 \wedge \ldots \wedge x_n)^*;$

(iii) $(x_1 \vee \ldots \vee x_{n+1})^{**} = (x_2 \vee \ldots \vee x_{n+1})^{**} \vee \ldots \vee (x_1 \vee \ldots \vee x_n)^{**}$

(iv) $a_1 \vee \ldots \vee a_{n+1} = t = a_1 + \ldots + a_{n+1}$, whenever $a_1, \ldots, a_{n+1} \in B(L)$ and $a_i + a_j = t$ for any $i \neq j$.

Proof. The equivalence of (i), (ii) and (iii) can be found in Wafker [15]. Assume now (iii). Take $t = a_1 + \ldots + a_{n+1}$ for $a_1, \ldots, a_{n+1} \in B(L)$ satisfying $a_i + a_j = t$ if $i \neq j$. We shall prove (iv.). For n = 1 it follows from (iii). Assume $n \ge 2$. Let $x_i = a_1 \wedge \ldots \wedge a_{i-1} \wedge a_{i+1} \wedge \ldots \wedge a_{n+1}$. Then

$$a_i = (x_1 \vee \ldots \vee x_{i-1} \vee x_{i+1} \vee \ldots \vee x_{n+1})^{**} = x_1 + \ldots + x_{i-1} + x_{i+1} + \ldots + x_{n+1}$$

by distributivity and the assumption. Clearly,

$$(x_1 \vee \ldots \vee x_{n+1})^{**} = (a_1 \vee \ldots \vee a_{n+1})^{**} = t$$

Therefore,

$$t = a_1 \vee \ldots \vee a_{n+1}$$

by (iii).

Conversely, suppose that (iv) is true. Take $x_1, \ldots, x_{n+1} \in L$ and put

$$a_i = (x_1 \vee \ldots \vee x_{i-1} \vee \ldots \vee x_{n+1})^{**}.$$

It is easy to verify that

$$(x_1^{**} + \ldots + x_{i-1}^{**} + x_{i+1}^{**} + \ldots + x_{n+1}^{**}) + (x_1^{**} + \ldots + x_{j-1}^{**} + x_{j+1}^{**} + \ldots + x_{n+1}^{**})$$

= $a_1 + a_j = x_1^{**} + \ldots + x_{n+1}^{**}$
= $(x_1 \lor \ldots \lor x_{n+1})^{**} = t$

for $i \neq j$, and this implies (iii).

LEMMA 2. Let the distributive p-algebra L be generated by a subset X, i.e. [X] = L. Then the set $X^{**} = \{z \in L : z = x^{**}, x \in X\}$ generates B(L) in the class of Boolean algebras, i.e. $[X^{**}]_{Bool} = B(L)$.

LEMMA 3. Let $L = FDp_n(X)$ be a free p-algebra freely generated by X in the variety \mathbf{B}_n , $1 \le n \le \omega$. Then $B(L) = FB(X^{**})$ (= the free Boolean algebra freely generated by X^{**}).

LEMMA 4. Let L be a distributive p-algebra generated by as subset X. Then $X \cup B(L)$ generates L in the class of (distributive) lattices, i.e. $L = [X \cup B]_{Lat}$.

Lemmas 2-4 are straightforward consequences of [11; Lemmas 2-4]. We recall that a poset associated with a set X was defined in [11] as follows:

DEFINITION 1. Let X be a set. Take a disjoint copy $\overline{X} = {\overline{x} : x \in X}$ and construct a free Boolean algebra $FB(\overline{X})$. We can assume $X \cap FB(\overline{X}) = \emptyset$. Now we define the poset $P(X) = (P(X); \leq)$ associated with X as follows:

(i) P(X) is bounded, i.e. $0 \le u \le 1$ for every $u \in P(X)$ and $0, 1 \in FB(\overline{X})$;

(ii) $a \le u$ and $0 \ne a \in FB(\bar{X})$ if and only if $u \in FB(\bar{X})$ and $a \le u$ in $FB(\bar{X})$;

(iii) $x \leq \bar{x}$ for every $x \in X$;

(iv) $x \le u$ for $x \in X$ if and only if $\overline{x} \le u$ or x = u.

Denote by $FB(\bar{X})$ the free Boolean algebra $(FB(\bar{X}); +, ., ', 0, 1)$. It remains to be said which existing glb's and lub's in P(X) should be preserved.

DEFINITION 2. Let P(X) be the poset associated with the given set X. Set

(i) $\mathcal{L} = \mathcal{L}_{\omega} = \mathcal{L}_1 = \ldots = \mathcal{L}_n \ldots$ and $A \in \mathcal{L}$ if and only if A is a finite subset of $FB(\bar{X})$ or $A = \{a, b\} \subseteq P(X)$ and $a \leq b$ in P(X);

(ii) $\mathcal{U} = \mathcal{U}_{\omega}$, where $A \in \mathcal{U}$ if and only if $A = \{a, b\} \subseteq P(X)$ and $a \leq b$ in P(X);

(iii) $A \in \mathcal{U}_n$ for $1 \le n < \omega$ if and only if $A \in \mathcal{U}$ or $A = \{a_1, \ldots, a_{n+1}\}$ such that $a_1, \ldots, a_{n+1} \in FB(\bar{X})$ and $a_1 + \ldots + a_{n+1} = a_i + a_j$ for any $i \ne j$.

Now we shall show that the lattice $FD(P(X); \mathcal{L}_n, \mathcal{U}_n)$ for $1 \le n \le \omega$ do exist. Note that $a \land b = a \cdot b$ for any $a, b \in FB(\overline{X})$ in $FD(P(X); \mathcal{L}_n, \mathcal{U}_n)$.

First we need a new concept from Balbes [1]. Suppose that we have a set I. Let (E) denote a set of lattice inequalities of the form.

$$x_{i_1} \wedge \ldots \wedge x_{i_n} \leq y_{j_1} \vee \ldots \vee y_{j_m}$$

where $\{i_1, \ldots, i_n\}, \{j_1, \ldots, j_m\} \subseteq I$. A distributive lattice L is called (E)-free if there exists a subset $A = \{a_i\}_{i \in J}$ of L with $I \subseteq J$ such that.

(i) [A] = L;

(ii) the set $\{a_i\}_{i \in J}$ satisfies (E) i.e.

$$a_{i_1} \wedge \ldots \wedge a_{i_n} \leq a_{j_1} \vee \ldots \vee a_{j_m}$$

for every inequality from (E);

(iii) whenever $\{b_i\}_{i \in J}$ is a subset of a distributive lattice M such that $\{b_i\}_{i \in J}$ satisfies (E), then there exists a homomorphism $f: L \to M$ such that $f(a_i) = b_i$ for all $i \in J$.

THEOREM 1. Let P(X) be the poset associated with a set X. Then $FD(P(X); \mathcal{L}_n, \mathcal{U}_n)$ exists for every $1 \le n \le \omega$.

Proof. First we set I = P(X). Now we define the set (E_n) of inequalities in $\{x_i\}_{i \in I}$ as follows:

(a) $x_i \le x_j$ if and only if $i \le j$ in P(X);

(b) $x_{i_j} \wedge \ldots \wedge x_{i_k} \leq x_j$ if and only if $\{i_1, \ldots, i_k\} \subseteq FB(\bar{X})$ and $j = i_1 \ldots i_k$ in $FB(\bar{X})$; (c) $x_t \leq x_{j_1} \vee \ldots \vee x_{j_{n+1}}$ if and only if $t = j_1 + \ldots + j_{n+1}$ for $j_1, \ldots, j_{n+1} \in FB(\bar{X})$ and $t = j_i + j_k$ whenever $i \neq k$.

By [1; Theorem 1.9], there exists an (E_n) -free distributive lattice H_n . The properties of H_n can be summarized in other words as follows [1; Theorem 1.8]:

(i) there exists an order preserving embedding $\varepsilon : P(X) \to H_n$;

(ii) $\{\varepsilon(i) : i \in P(X)\}$ satisfies (E_n) ;

(iii) whenever $\{b_i\}_{i \in I} \subseteq M$ and M is a distributive lattice such that $\{b_i\}_{i \in I}$ satisfies (E_n) , then there exists a homomorphism $f: H_n \to M$ such that $f(\varepsilon(i)) = b_i$.

Now it is easy to verify that $H_n = FD(P(X2); \mathcal{L}_n, \mathcal{U}_n)$, and the proof is complete.

REMARK 1. Following [1; Theorem 1.9] the lattice H_n from the proof of Theorem 1 can be constructed as follows: Consider mappings

$$s: P(X) \to \mathbf{2} = (\{0, 1\})$$

i.e. $s \in 2^{P(X)}$. We say that $s \in 2^{P(X)}$ satisfies the inequality

$$x_{i_i} \wedge \ldots \wedge x_{i_n} \leq x_{j_1} \vee \ldots \vee x_{j_m}$$

for $i_1, ..., i_n, j_1, ..., j_m \in P(X)$, if

$$s(i_1) = \ldots = s(i_n) = 1$$
 and $s(j_1) = \ldots = s(j_m) = 0$.

Let $Iq(E_n)$ denote the set of $s \in 2^{P(X)}$ which satisfy the inequalities from (E_n) .

Now, define $A_i^{(n)} = \{s \in 2^{P(X)} : s(i) = 1 \text{ and } s \in 2^{P(X)} - Iq(E_n)\}, i \in P(X)$. The sublattice of $2^{P(X)}$ generated by the set $\{A_i^{(n)} : i \in P(X)\}$ is a bounded distributive lattice. This lattice, $[\{A^{(n)} : i \in P(X)\}]$, is H_n .

Our next task is to establish that $FD(P(X); \mathcal{L}_n, \mathcal{U}_n)$ is isomorphic to $FDp_n(X)$. For the sake of clarity we shall adapt [11; Lemmas 5-7] for the distributive case.

LEMMA 5. Let P(X) denote the poset associated with a set X. Then there exists a (unique) lattice-epimorphism

$$\pi : H_n = \mathrm{FD}(P(X); \mathcal{L}_n, \mathcal{U}_n) \to \mathrm{FB}(X)$$

for every $1 \le n \le \omega$ such that

(i) $\pi(x) = \bar{x}$ for every $x \in X$, (ii) $\pi(a) = a$ for every $a \in FB(\tilde{X})$, (iii) $u \le \pi(u)$ for every $u \in H_n$, (iv) $u \le a$ and $a \in FB(\tilde{X})$ implies $\pi(u) \le a$.

https://doi.org/10.1017/S0017089500032687 Published online by Cambridge University Press

Now, we are in position to formulate the next result.

THEOREM 2. Let P(X) denote the poset associated with a set X. Then the free distributive palgebra $FDp_n(X)$ in the class \mathbf{B}_n , $1 \le n \le \omega$, and the distributive lattice $H_n = FD(P(X); \mathcal{L}_n, \mathcal{U}_n)$ are isomorphic as lattices. More precisely, H_n can be considered as a p-algebra such that

(i) $u^* = \pi(u)'$ for every $u \in H_n$, (ii) $H_n = [X]$, (iii) $B(H_n) \simeq (FB(\bar{X}); +, ., ', 0, 1)$, (iv) $H_n \in \mathbf{B}_n$, i.e. H_n satisfies the identity (L_n) .

The proofs of Lemma 5 and Theorem 2 are essentially the same as of [11; Lemmas 5–7] and of [11; Theorem 1] (see also Lemma 1).

3. Construction of $FDp_n(X)$. Theorem 2 lacks a certain simplicity which it ought to have. Our work in this section will remedy this defect.

The following definition is crucial.

DEFINITION 3. Let P(X) denote the poset associated with a set X. A subset $\emptyset \neq S \subseteq P(X)$ is said to be an *n*-order-filter $(1 \le n \le \omega)$ if

(i) S is increasing, i.e. S = [S),

(ii) $S \cap FB(\bar{X})$ is a filter (= dual ideal) of the Boolean algebra $FB(\bar{X})$,

(iii) $t = a_1 + \ldots + a_{n+1} \in S$ and $t = a_i + a_j$ for any $i \neq j$ imply $a_i \in S$ for some $1 \le i \le n+1$, whenever $1 \le n < \omega$ and $a_1, \ldots, a_{n+1} \in FB(\bar{X})$.

REMARK 2. It is easy to see that a k-order-filter is an n-order-filter, whenever $k \le n$. For the sake of simplicity we shall often say "order-filter" instead of " ω -order-filter". Next we shall consider mappings $s: P(X) \to 2$. Let Ker(s), for $s \in 2^{P(X)}$, denote the set $\{i \in P(X) : s(i) = 1\}$.

LEMMA 6. Let P(X) be the poset associated with a set X. Then $s \in 2^{P(X)} - Iq(E_n)^1$ if and only if Ker(s) is an n-order-filter $(1 \le n \le \omega)$.

Proof. Suppose that $s \in 2^{P(X)} - Iq(E_n)$. Consider $Ker(s) = S \subseteq P(X)$. Let $i \leq j$ in P(X) and $i \in Ker(s)$. Since s does not satisfy

 $x_i \leq x_j$

and s(i) = 1, we get s(j) = 1. Thus, $j \in Ker(s)$ and Ker(s) is increasing. Similarly, $i_1, i_2 \in S \cap FB(\bar{X})$ and $j = i_1.i_j$ in $FB(\bar{X})$ imply $j \in S$, because s does not satisfy

$$x_{i_1} \wedge x_{i_2} \leq x_j.$$

Assume now that $1 \le n < \omega$ and $t = a_1 + \ldots + a_{n+1} \in S$ such that $a_i + a_j = t$ for any $i \ne j$ and $a_1, \ldots, a_{n+1} \in FB(\bar{X})$. Since s does not satisfy

$$x_t \leq x_{a_1} \vee \ldots \vee x_{a_{n+1}}$$

¹The symbol – refers to the set-theoretic difference.

for $t = a_1 + \ldots + a_{n+1}$ and s(t) = 1, we get $(a_i) = 1$ for some $1 \le i \le n+1$. Thus, Ker(s) is an *n*-order-filter of P(X).

The converse statement follows easily from properties of *n*-order-filters, and the proof is complete.

We now denote the set of all *n*-order-filters S containing the given order-filter $M \subseteq P(X)$ by $u^{(n)}(M)$. $u^{(n)}(i)$ will simply mean $u^{(n)}(\{i\})$. Since $u^{(n)}(i)$ is a family of subsets of P(X), we can write $u^{(n)}(i) \subseteq 2^{P(X)}$. Let $K_n(X)$ denote the (distributive) sublattice of $2^{P(X)}$ generated by $\{u^{(n)}(i) : i \in P(X)\}$, i.e. $K_n(X) = [\{u^{(n)}(i) : i \in P(X)\}]$.

LEMMA 7. Let P(X) denote the poset associated with a set X. Then there exists a lattice isomorphism $\varphi : FDp_n(X) \to K_n(X), 1 \le n \le \omega$, such that

(i) the restriction $\varphi \upharpoonright P(X)$ is an order-isomorphism between P(X) and $\{u^{(n)}(i) : i \in P(X)\};$

(ii) the restriction $\varphi \upharpoonright FB(X)$ is an order-isomorphism between FB(X) and $\{u^{(n)}(i) : i \in FB(X)\}$. Moreover, there exists a lattice epimorphism

$$\tau: K_n(X) \to \left\{ u^{(n)}(i) : i \in FB(\bar{X}) \right\}$$

such that

(iii) $\tau^{(n)}(x) = u^{(n)}(\bar{x})$ for every $x \in X$; (iv) $\tau(u^{(n)}(a)) = u^{(n)}(a)$ for every $a \in FB(\bar{X})$; (v) $v \leq \tau(v)$ for every $v \in K_n(X)$; (vi) $u^{(n)}(i) \subseteq u^{(n)}(a)$ and $a \in FB(\bar{X})$ imply $\tau(u^{(n)}(i)) \subseteq u^{(n)}(a)$ for any $i \in P(X)$. *Proof.* According to Lemma 6, the mapping

 $s \rightarrow Ker(s)$

is an order-isomorphism between $2^{P(X)} - Iq(E_n)$ and the set of all *n*-order-filters of P(X). Therefore, by Remark 1, H_n and $K_n(X)$ are isomorphic as lattices. Eventually, by Theorem 2, there exists a lattice isomorphism

$$\varphi: \mathrm{FD}p_n(X) \to K_n(X)$$

It is easy to verify that this isomorphism satisfies (i) and (ii). The last conditions and Lemma 5 imply (iii)-(iv).

The condition (ii) of Lemma 7 shows that $\{u^{(n)}(i) : i \in FB(\bar{X})\}\$ is a Boolean algebra isomorphic to $FB(\bar{X})$. In addition, $u^{(n)}(0)$ and $u^{(n)}(1)$ are the smallest and the greatest elements of it, respectively, and $u^{(n)}(a')$ is the complement of $u^{(n)}(a)$, $a \in FB(\bar{X})$.

We are now in position to state the main facts about *n*-order-filters.

THEOREM 3. Let P(X) denote the poset associated with a set X, let $1 \le n \le \omega$. Then the free distributive p-algebra $FDp_n(X)$ in the class \mathbf{B}_n and the distributive lattice $K_n(X)$ are isomorphic as lattices. More precisely, $K_n(X)$ can be considered as a p-algebra such that

(i) ν* = τ(ν)' for every ν ∈ K_n(X),
(ii) {u⁽ⁿ⁾(i) : i ∈ X} freely generates K_n(X) as a p-algebra in the class B_n,
(iii) B(K_n(X)) = {u⁽ⁿ⁾(i) : i ∈ FB(X)} ≃ FB(X).

The proof follows directly from Lemma 7.

4. Finite Algebras. It is known (see [4] that a finitely generated distributive p-algebra is finite. Obviously, every finite distributive p-algebra is determined by its poset of non-zero join-irreducible elements. Theorem 3 suggests a natural way of describing this set.

LEMMA 8. Let X be a finite set. Assume that $i_1, \ldots, i_k \in P(X)$ and $1 \le n \le \omega$. Then there exists an order-filter $M \subseteq P(X)$ such that

$$u^{(n)}(i_1) \cap \ldots \cap u^{(n)}(i_k) = u^{(n)}(M).$$
(*)

Conversely, for every order-filter $M \subseteq P(X)$ there exists $i_1, \ldots, i_k \in P(X)$ such that (*) is true.

Proof. Let $i_1, \ldots, i_k \in P(X)$ be given. Evidently,

$$[i_j] \subseteq \{i_1, \ldots, i_k\} \cup [\tau(i_1) \ldots \tau(i_k)) = M \subseteq P(X)$$

for every j = 1, ..., k. M is an order-filter and (*) can be easily verified.

On the other hand, let $M \subseteq P(X)$ be an order-filter. Clearly, $M \cap FB(\bar{X}) = [a)$ for some $a \in FB(\bar{X})$. If $M \cap X = \emptyset$, then $u^{(n)}(a) = u^{(n)}(M)$. Let $M \cap X = \{i_1, \ldots, i_k\}$. Evidently, $\tau(i_j) \ge a$ for every $j = 1, \ldots, k$. A simple verification shows that (*) holds true.

Recall that for $t \in FB(\bar{X}) \subseteq P(X)$ and finite X, we can define the *height* function: Let $h_B(t)$ denote the length of a longest maximal chain in $[0, t] \cap FB(\bar{X})$. It is easy to see that $h_B(t)$ is the number of all atoms $a \in FB(\bar{X})$ such that $a \leq t$.

LEMMA 9. Let X be a finite set and let M be an order-filter of P(X). Assume that $M \cap FB(\bar{X}) = [t]$. Then M is an n-order-filter for some $1 \le n < \omega$ if and only if

 $h_B(t) \leq n$

Proof. Suppose that M is an *n*-order-filter and let $1 \le n < \omega$ be the smallest integer with this property. We have to show that $h_B(t) = n$. For t = 0 this is true. Assume that $t \ne 0$. Let a_1, \ldots, a_k be all atoms of $FB(\bar{X})$ with property: $a_j \le t$. Consider elements $b_1 = t \cdot a'_1$, $\ldots, b_k = t \cdot a'_k \in FB(\bar{X})$. Clearly,

 $t = b_1 + \ldots + b_k$ and $b_i + b_j = t$ for any $i \neq j$.

Since $b_i \leq t$ for all i = 1, ..., k, we have

$$k = h_B(t) \le n$$

We now go in the other direction. According to the choice of *n* there exist distinct $b_1, \ldots, b_n \in FB(\bar{X})$ such that

$$t = b_1 + \ldots + b_n, b_i + b_i = t$$

for any $i \neq j$ and no $b_i = t$. Set

$$a_1 = t \cdot b'_1, \ldots, a_n = t \cdot b'_n \in FB(X)$$

 a_1, \ldots, a_n are distinct and $a_i \cdot a_j = 0$ in FB(X) whenever $i \neq 0$. Since $a_i \neq 0$ for all $i = 1, \ldots, n$, we see that $n \leq k = h_B(t)$. Thus $h_B(t) = n$.

Conversely, suppose that $h_B(t) \le n$. Take $b_1, \ldots, b_{n+1} \in FB(\bar{X})$ such that

$$t = b_1 + \ldots + b_{n+1}$$
 and $t = b_i + b_j$ whenever $i \neq j$.

We can also assume that b_1, \ldots, b_{n+1} are distinct. Therefore, the elements

$$a_1 = t \cdot b'_1, \dots, a_{n+1} = t \cdot b'_{n+1} \in FB(X)$$

are distinct and $a_i \cdot a_j = 0$ in FB(\bar{X}) whenever $i \neq j$. Since $h_B(t) \leq n$ we see that $a_i = 0$ for some $1 \leq i \leq n+1$. Hence $b_i = t \in M$ and M is an *n*-order-filter.

As our final result, we have the following theorem.

THEOREM 4. Let P(X) denote the poset associated with a finite set X. Then $A \in K_n(X), 1 \le n \le \omega$, is a join-irreducible element in the lattice $K_n(X)$ if and only if $A = u^{(n)}(M)$ for some n-order-filter M.

Proof. In view of Lemma 8, every element $A \in K_n(X)$ can be written in the form

$$A = u^{(n)}(M_1) \cup \ldots \cup u^{(n)}(M_r)$$

for some order-filters $M_1, \ldots, M_r \subseteq P(X)$. Suppose now that $A \in K_n(X)$ is join-irreducible. Therefore, $A = u^{(n)}(M)$ for some order-filter (= ω -order-filter) M of P(X), and the assertion of the theorem is clear for $n = \omega$. We therefore assume that $1 \le n < \omega$. Our aim is to show that there exists an *n*-order filter $T \subseteq P(X)$ such that

$$A = u^{(n)}(M) = u^{(n)}(T).$$

Let $[t] = M \cap FB(\tilde{X})$. We shall proceed by induction on $h_B(t)$.

(I) Suppose that $h_B(t) \le n$. It follows by Lemma 9 that M is an n-order-filter. Hence T = M.

(II) Assume that $h_B(t) > n$. Moreover, if there exists an order-filter $T \subseteq P(X)$ such that $[t_1) = T \cap FB(\bar{X}), t > t_1$ and

$$A = u^{(n)}(M) = u^{(n)}(T),$$

then T is an *n*-order-filter of P(X). Without loss of generality we can assume that M is no *n*-order-filter of P(X). Then there exist distinct elements $b_1, \ldots, b_{n+1} \in FB(\bar{X})$ satisfying the following conditions: $b_i < t$ for every $i = 1, \ldots, n+1$ and

$$t = b_1 + \ldots + b_{n+1} = b_i + b_i$$
, whenever $i \neq j$

Form the following order-filters:

$$M_1 = Y \cup [b_1], \dots, M_{n+1} = Y \cup [b_{n+1}]$$
 for $Y = M \cap X$.

We claim that

$$u^{(n)}(M) = u^{(n)}(M_1) \cup \ldots \cup u^{(n)}(M_{n+1}).$$

340

341

Obviously, $u^{(n)}(M) \supseteq u^{(n)}(M_1) \cup \ldots \cup u^{(n)}(M_{n+1})$. On the other hand, let $S \in u^{(n)}(M)$. Since S is an *n*-order-filter, there is $b_i \in S$ for some $1 \le i \le n+1$. It follows from this that $S \supseteq M_i$. Therefore, $S \in u^{(n)}(M_i)$ and

$$u^{(n)}(M) = u^{(n)}(M_1) \cup \ldots \cup u^{(n)}(M_{n+1}),$$

as claimed. The hypothesis that $u^{(n)}(M)$ is join-irreducible implies that $A = u^{(n)}(M_j)$ for some $1 \le j \le n+1$. Clearly, $[b_j] = M_j \cap (FB(\bar{X}) \text{ and } t > b_j$. By induction hypothesis is M_j an *n*-order-filter of P(X) and we can put $T = M_j$. This shows that for a join-irreducible $A \in K_n(X)$ there exists an *n*-order-filter T of P(X) with $A = u^{(n)}(T)$.

Conversely, let $A = u^{(n)}(M)$ for some *n*-order-filter M of P(X). Suppose that $A = C \cup D$ for some $C, D \in K_n(X)$. In view of Lemma 9 we can write

$$A = u^{(n)}(M_1) \cup \ldots \cup u^{(n)}(M_r)$$

for some order-filters M_1, \ldots, M_r of P(X). Since $M \in A$, there is $1 \le j \le r$ such that $M \in u^{(n)}(M_j)$. It follows that $A \subseteq u^{(n)}(M_j)$, and consequently, $A = u^{(n)}(M_j)$. This shows that A is join-irreducible in $K_n(X)$.

REMARK 3. Another characterization of join-irreducibles from $FDp_n(X)$ for finite X is given in Urquhart [14]. A transformation which converts *n*-order-filters into elements of $FDp_n(X)$ can be easily established: Let $M \subseteq P(X)$ be an *n*-order-filter and let $[t] = M \cap FB(\bar{X})$. Moreover, let

$$\varphi : (FB(X); +, ., ', 0, 1) \rightarrow (FB(X^{**}); +, \wedge, ^*, 0, 1)$$

be a Boolean isomorphism given by

$$\varphi: \bar{x} \to x^{**}$$
 for $\bar{x} \in \bar{X}$.

Define

$$p(M) = \bigwedge (x : x \in M \cap X) \land \varphi(t).$$

Then p(M) is a join-irreducible element in $FDp_n(X)$ (in the characterization of [14]) which corresponds to $u^{(n)}(M)$.

REFERENCES

1. R. Balbes, Projective and injective distributive lattice, Pacific J. Math. 21 (1967), 405-420.

2. R. Balbes and Ph. Dwinger, Distributive lattices (Univ. Missouri Press, 1974).

3. R. Balbes and A. Horn, Stone lattices, Duke Math. J. 37 (1970), 537-546.

4. J. Berman and Ph. Dwinger, Finitely generated pseudocomplemented distributive lattices, J. Austral. Math. Soc. 19 (1975), 238–246.

5. C. C. Chen, Free Stone extensions of distributive lattice, Nanta Math. 2 (1965), 1-15.

6. R. A. Dean, Free lattices generated by partially ordered sets and preserving bounds, *Canad. J. Math.* 16 (1964), 136–148.

7. B. A. Davey and M. S. Goldberg, The free p-algebra generated by a distributive lattice, Algebra Univ. 11 (1980), 90–100.

8. G. Grätzer, General lattice theory (Akademie-Verlag, 1978).

9. T. Katriňák, Die freien Stoneschen Verbände und ihre Tripelcharakterisierung, Acta Math. Sci. Hungar. 23 (1970), 315–326.

10. T. Katriňák, A new description of the free Stone algebra, Algebra Univ. 5 (1975), 179-189.

11. T. Katriňák, Free p-algebras, Algebra Univ. 15 (1982), 176-186.

12. P. Köhler, The triple method and free distributive pseudocomplemented lattices, *Algebra Univ.* 8 (1978), 139–150.

13. K. B. Lee, Equational classes of distributive pseudocomplemented lattices, *Canad. J. Math.* 22 (1970), 881–891.

14. A Urquhart, Free distributive pseudo-complemented lattices, Algebra Univ. 3 (1973), 13-15.

15. P. Wafker, Generalization of a theorem on distributive pseudocomplemented lattices, (preprint).

KATČ MFF UK Mlynská dolina 84215 Bratislava Slovakia

342