THE ISOMETRIES OF $H^{p}(K)$

PEI-KEE LIN

(Received 11 July 1989)

Communicated by S. Yamamuro

Abstract

Let $1 \leq p<\infty, p \neq 2$ and let K be any complex Hilbert space. We prove that every isometry T of $H^{p}(K)$ onto itself is of the form $$
(T F)(z)=U(F \circ \phi(z)) \cdot(d \phi / d z)^{1 / p} \quad\left(F \in H^{p}(K),|z|<1\right),
$$ where U is a unitary operator on K and ϕ is a conformal map of the unit disc onto itself. 1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 46 E 15, 46 E 30. Keywords and phrases: Hardy space, isometry, Hilbert space, conformal map.

1. Introduction

Let D be the open unit disc in the complex plane and let E be any complex Banach space. Then the Banach space $H^{p}(E), 1 \leq p \leq \infty$, consists of all $F: D \rightarrow E$ such that $\left\langle F, e^{*}\right\rangle$ belongs to the Hardy class H^{p} for all $e^{*} \in E^{*}$, and the norm of F is given by

$$
\begin{aligned}
\|F\|_{p} & =\lim _{r \rightarrow 1^{-}}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|F\left(r e^{i \theta}\right)\right\|^{p} d \theta\right\} \quad \text { if } 1 \leq p<\infty, \\
\|F\|_{\infty} & =\underset{|z|<1}{\operatorname{ess} \sup }\|F(z)\| .
\end{aligned}
$$

A complex Banach space E is said to have the analytic Radon-Nikodym property, if for each $F \in H^{p}(E), F\left(e^{i \theta}\right)=\lim _{r \rightarrow 1^{-}} F\left(r e^{i \theta}\right)$ exists almost everywhere (for more detail see [1] and [4]). (It is known that the L_{p}-spaces,

[^0]$1 \leq p<\infty$, have the analytic Radon-Nikodym property.) If E has the analytic Radon-Nikodym property and if $F \in H^{p}(E)$, then the norm of F is
\[

$$
\begin{aligned}
\|F\|_{p} & =\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|F\left(e^{i \theta}\right)\right\|^{p} d \theta\right\}^{1 / p} \quad \text { if } 1 \leq p<\infty \\
\|F\|_{\infty} & =\underset{0 \leq \theta \leq 2 \pi}{\operatorname{ess} \sup }\left\|F\left(e^{i \theta}\right)\right\| .
\end{aligned}
$$
\]

The linear isometries of H^{p} were first studied by deLeeuw, Rudin, and Wermer [6]. They proved that if T is a surjective isometry on H^{1} (respectively, H^{∞}), then there are a conformal map ϕ of the unit disk onto itself and a unimodular complex number b such that

$$
T f=b \cdot(d \phi / d z) \cdot f \circ \phi \quad \text { (respectively, } T f=b \cdot f \circ \phi) .
$$

Later, F. Forelli [7] extended this result to H^{p} for $p \neq 2$. He proved that
Theorem A. If $p \neq 2$ and if T is a linear isometry of H^{p} onto H^{p}, then there is a conformal map ϕ of the unit disk onto itself and a unimodular complex number b such that

$$
T f=b \cdot(d \phi / d z)^{1 / p} \cdot f \circ \phi
$$

The isometries of the vector valued H^{p} function spaces were studied by M. Cambern. He [2] showed that if K is a complex Hilbert space and if T is a surjective isometry on $H^{\infty}(K)$, then there are a conformal map ϕ of the unit disc onto itself and a unitary operator U on K such that for any $F \in H^{\infty}(K)$ and any $z \in D$,

$$
T F(z)=U(F \circ \phi(z))
$$

Recently, M. Cambern and K. Jarosz [3] proved a similar result holds on $H^{1}(K)$ if K is a finite dimensional complex Hilbert space. In this article, we extend this result to $H^{p}(K), 1 \leq p<\infty$. The main result of this article is the following theorem.

Main Theorem. Let $1 \leq p<\infty, p \neq 2$, and let K be any complex Hilbert space. If $T: H^{p}(K) \rightarrow H^{p}(K)$ is a surjective isometry, then there exist a unitary operator U on K, and a conformal map ϕ from the disc onto the disc such that

$$
(T F)(z)=U(F \circ \phi(z)) \cdot(d \phi / d z)^{1 / p}(z) \quad\left(F \in H^{p}(K),|z|<1\right) .
$$

Let ϕ be a conformal map of the unit disk onto itself, and let U be a unitary operator on a complex Hilbert space K. If

$$
T F(z)=U(F \circ \phi(z)) \cdot(d \phi / d z)^{1 / p}(z)
$$

for all $F \in H^{p}(K)$, then T satisfies the following conditions.
(a) If $\left\langle e_{1}, e_{2}\right\rangle=0$, then $\left\langle T\left(f e_{1}\right)\left(e^{i \theta}\right), T\left(g e_{2}\right)\left(e^{i \theta}\right)\right\rangle=0$ a.e. for all $f, g \in H^{p}$.
($\left.\mathrm{a}^{\prime}\right)$ If $\left\langle e_{1}, e_{2}\right\rangle=0$, then $\left\langle T\left(z^{n} e_{1}\right)\left(e^{i \theta}\right), T\left(z^{m} e_{2}\right)\left(e^{i \theta}\right)\right\rangle=0$ a.e. for all $n, m \geq 0$.
(b) $\left|\left\langle T(f e)\left(e^{i \theta}\right), T(g e)\left(e^{i \theta}\right)\right\rangle\right|=\left\|T(f e)\left(e^{i \theta}\right)\right\| \cdot\left\|T(g e)\left(e^{i \theta}\right)\right\|$ a.e. (that is $T(f e)\left(e^{i \theta}\right)$ and $T(g e)\left(e^{i \theta}\right)$ are linearly dependent a.e.) for all $e \in K$ and $f, g \in H^{p}$.
$\left(\mathbf{b}^{\prime}\right)\left|\left\langle T\left(z^{n} e\right)\left(e^{i \theta}\right), T\left(z^{m} e\right)\left(e^{i \theta}\right)\right\rangle\right|=\left\|T\left(z^{n} e\right)\left(e^{i \theta}\right)\right\| \cdot\left\|T\left(z^{m} e\right)\left(e^{i \theta}\right)\right\|$ a.e. for all $e \in K$ and $n, m \geq 0$
(c) For any $e \in K$, there is $e^{\prime} \in K$ such that $T\left(H^{p} e\right)=H^{p} e^{\prime}$. Moreover, if $T\left(H^{p} e_{1}\right)=H^{p} e_{3}, T\left(H^{p} e_{2}\right)=H^{p} e_{4}$, and $\left\langle e_{1}, e_{2}\right\rangle=0$, then $\left\langle e_{3}, e_{4}\right\rangle=0$.
Clearly, (a) implies (a^{\prime}), (b) implies (b^{\prime}), and (c) implies (a) and (b). Since $\left\{z^{n}: n \geq 0\right\}$ spans H^{p}, (a^{\prime}) implies (a) and (b^{\prime}) implies (b). By Theorem A, one can show that if T is a surjective isometry on $H^{p}(K)$ which satisfies (c), then T satisfies the conclusion of the Main Theorem (see Section 3). Hence, we only need to show every surjective isometry on $H^{p}(K)$ satisfies (c). However, we do not know any direct proof. In Section 2, we establish the following proposition.

Proposition 1. Suppose that $1 \leq p<\infty$, and $p \neq 2$. If K is a complex Hilbert space and if T is a linear isometry of $H^{p}(K)$ onto $H^{p}(K)$, then T satisfies (\mathbf{a}^{\prime}).

If $1 \leq p<2$, we provide a direct proof of Proposition 1. But we do not know whether there is a direct proof if $2<p<\infty$. In this case, we first show that T satisfies (\mathbf{b}^{\prime}), and then use (b) to prove Proposition 1. In Section 3, we use the conclusion of Proposition 1 to show that every surjective isometry on $H^{p}(K)$ satisfies (c), and then give the proof of the Main Theorem.

2. The proof of Proposition 1

In this section, we will assume that (i) $1 \leq p<\infty$ and $p \neq 2$, (ii) K is a complex Hilbert space, and (iii) T is a surjective isometry of $H^{p}(K)$ onto itself. Before proving Proposition 1, we need the following fact.

FACT 1. Suppose that $1 \leq p<2$. If f_{1}, f_{2} are any two positive functions in L^{p} such that $f_{2}>0$ a.e. and $\left\|f_{1}\right\|_{p}=1=\left\|f_{2}\right\|_{p}$, then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f_{1}^{2}(t)}{f_{2}^{2-p}(t)} d t \geq 1
$$

Moreover, equality holds if and only if $f_{1}=f_{2}$ a.e.
Proof of Proposition 1 When $1 \leq p<2$. Let e_{1} and e_{2} be any two nonzero vectors in K. If $\left\|r e_{2}\right\|<\left\|e_{1}\right\|$, then

$$
\begin{aligned}
\| e_{1}+ & r e^{i x} e_{2} \|^{p}=\left(\left\|e_{1}\right\|^{2}+r^{2}\left\|e_{2}\right\|^{2}+r\left(e^{-i x}\left\langle e_{1}, e_{2}\right\rangle+e^{i x}\left\langle e_{2}, e_{1}\right\rangle\right)\right)^{p / 2} \\
& =\left\|e_{1}\right\|^{p}\left(1+\frac{r}{\left\|e_{1}\right\|^{2}}\left(r\left\|e_{2}\right\|^{2}+\left(e^{-i x}\left\langle e_{1}, e_{2}\right\rangle+e^{i x}\left\langle e_{2}, e_{1}\right\rangle\right)\right)\right)^{p / 2} \\
& =\left\|e_{1}\right\|^{p} \sum_{j=0}^{\infty}\binom{p / 2}{j}\left(\frac{r}{\left\|e_{1}\right\|^{2}}\right)^{j}\left(r\left\|e_{2}\right\|^{2}+\left(e^{-i x}\left\langle e_{1}, e_{2}\right\rangle+e^{i x}\left\langle e_{2}, e_{1}\right\rangle\right)\right)^{j} \\
& =\sum_{j=0}^{\infty}\binom{p / 2}{j}\left\|e_{1}\right\|^{p-2 j} r^{j}\left(r\left\|e_{2}\right\|^{2}+\left(e^{-i x}\left\langle e_{1}, e_{2}\right\rangle+e^{i x}\left\langle e_{2}, e_{1}\right\rangle\right)\right)^{j}
\end{aligned}
$$

and so

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|e_{1}+r e^{i x} e_{2}\right\|^{p} d x
$$

(*)

$$
=\sum_{j=0}^{\infty} \sum_{l=0}^{\left[\frac{j}{2}\right]}\binom{p / 2}{j}\binom{j}{2 l}\binom{2 l}{l} r^{2 j-2 l}\left\|e_{1}\right\|^{p-2 j}\left\|e_{2}\right\|^{2 j-4 l}\left|\left\langle e_{1}, e_{2}\right\rangle\right|^{2 l}
$$

This implies

$$
\begin{aligned}
\lim _{r \rightarrow 0} & \frac{1}{r^{2}}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|e_{1}+r e^{i x} e_{2}\right\|^{p} d x-\left\|e_{1}\right\|^{p}\right) \\
& =\frac{p}{2}\left(\left\|e_{1}\right\|^{p-2}\left\|e_{2}\right\|^{2}+\frac{p-2}{2}\left\|e_{1}\right\|^{p-4}\left|\left\langle e_{1}, e_{2}\right\rangle\right|^{2}\right)
\end{aligned}
$$

Let $F=T\left(z^{m} e_{1}\right)$ and $G=T\left(z^{n} e_{2}\right)$. Then $\left\|F\left(e^{i \theta}\right)\right\| \neq 0$ a.e. By Fatou's Lemma and the Fubini Theorem,

$$
\begin{aligned}
\frac{p}{4 \pi} & \int_{0}^{2 \pi}\left\|F\left(e^{i \theta}\right)\right\|^{p-2}\left\|G\left(e^{i \theta}\right)\right\|^{2}+\frac{p-2}{2}\left\|F\left(e^{i \theta}\right)\right\|^{p-4}\left|\left\langle F\left(e^{i \theta}\right), G\left(e^{i \theta}\right)\right\rangle\right|^{2} d \theta \\
& \leq \liminf _{r \rightarrow 0} \frac{1}{4 r^{2} \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left\|F\left(e^{i \theta}\right)+r e^{i x} G\left(e^{i \theta}\right)\right\|^{p}-\left\|F\left(e^{i \theta}\right)\right\|^{p} d x d \theta \\
& =\liminf _{r \rightarrow 0} \frac{1}{4 r^{2} \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left\|F\left(e^{i \theta}\right)+r e^{i x} G\left(e^{i \theta}\right)\right\|^{p}-\left\|F\left(e^{i \theta}\right)\right\|^{p} d \theta d x \\
& =\liminf _{r \rightarrow 0} \frac{1}{2 r^{2} \pi} \int_{0}^{2 \pi}\left\|F+r e^{i x} G\right\|_{p}^{p}-\|F\|_{p}^{p} d x \\
& =\liminf _{r \rightarrow 0} \frac{1}{2 r^{2} \pi} \int_{0}^{2 \pi}\left\|z^{m} e_{1}+r e^{i x} z^{n} e_{2}\right\|_{p}^{p}-\left\|z^{m} e_{1}\right\|_{p}^{p} d x \\
& =\liminf _{r \rightarrow 0} \frac{\left(\left(1+r^{2}\right)^{p / 2}-1\right)}{r^{2}}=\frac{p}{2} .
\end{aligned}
$$

But $\|F\|_{p}=\left\|z^{m} e_{1}\right\|_{p}=1=\left\|z^{n} e_{2}\right\|_{p}=\|G\|_{p}$. By Fact 1 , we have $\left\|F\left(e^{i \theta}\right)\right\|=$ $\left\|G\left(e^{i \theta}\right)\right\|$ a.e. and $\left\langle F\left(e^{i \theta}\right), G\left(e^{i \theta}\right)\right\rangle=0$ a.e.

Now, we assume $2<p<\infty$, and we need the following lemma.

Lemma 2. Let $m \neq n$, and let e be any nonzero element in K. If $F=$ $T\left(z^{m} e\right)$ and $G=T\left(z^{n} e\right)$, then $\left\|F\left(e^{i \theta}\right)\right\|=\left\|G\left(e^{i \theta}\right)\right\|$ a.e., and

$$
\left|\left\langle F\left(e^{i \theta}\right), G\left(e^{i \theta}\right)\right\rangle\right|=\left\|F\left(e^{i \theta}\right)\right\| \cdot\left\|G\left(e^{i \theta}\right)\right\| \quad \text { a.e. }
$$

Proof. By (*), there exists $A>0$ such that for any two nonzero vectors e_{1} and e_{2} in K,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|e_{1}+r e^{i x} e_{2}\right\|^{p}-\left\|e_{1}\right\|^{p} d x \leq A r^{2}\left\|e_{1}\right\|^{p-2}\left\|e_{2}\right\|^{2}
$$

whenever $\left\|e_{1}\right\|>2 r\left\|e_{2}\right\|$. On the other hand, if $\left\|e_{1}\right\| \leq 2 r\left\|e_{2}\right\|$, then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|e_{1}+r e^{i x} e_{2}\right\|^{p}-\left\|e_{1}\right\|^{p} d x \leq\left(3^{p}+1\right) r^{p}\left\|e_{2}\right\|^{p} .
$$

So

$$
\begin{aligned}
& \frac{1}{2 \pi r^{2}} \int_{0}^{2 \pi}\left\|F\left(e^{i \theta}\right)+r e^{i x} G\left(e^{i \theta}\right)\right\|^{p}-\left\|F\left(e^{i \theta}\right)\right\| d x \\
& \quad \leq \max \left(A, 3^{p}+1\right)\left(\left\|F\left(e^{i \theta}\right)\right\|^{p-2}\left\|G\left(e^{i \theta}\right)\right\|^{2}+\left\|G\left(e^{i \theta}\right)\right\|^{p}\right)
\end{aligned}
$$

for all $0<r<1$. By the dominated convergence theorem,

$$
\begin{aligned}
\frac{p}{4 \pi} & \int_{0}^{2 \pi}\left\|F\left(e^{i \theta}\right)\right\|^{p-2}\left\|G\left(e^{i \theta}\right)\right\|^{2}+\frac{p-2}{2}\left\|F\left(e^{i \theta}\right)\right\|^{p-4}\left|\left\langle F\left(e^{i \theta}\right), G\left(e^{i \theta}\right)\right\rangle\right|^{2} d \theta \\
& =\lim _{r \rightarrow 0} \frac{1}{4 r^{2} \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left\|F\left(e^{i \theta}\right)+r e^{i x} G\left(e^{i \theta}\right)\right\|^{p}-\left\|F\left(e^{i \theta}\right)\right\|^{p} d x d \theta \\
& =\lim _{r \rightarrow 0} \frac{1}{4 r^{2} \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left\|F\left(e^{i \theta}\right)+r e^{i x} G\left(e^{i \theta}\right)\right\|^{p}-\left\|F\left(e^{i \theta}\right)\right\|^{p} d \theta d x \\
& =\lim _{r \rightarrow 0} \frac{1}{2 r^{2} \pi} \int_{0}^{2 \pi}\left\|F+r e^{i x} G\right\|_{p}^{p}-\|F\|_{p}^{p} d x \\
& =\lim _{r \rightarrow 0} \frac{1}{2 r^{2} \pi} \int_{0}^{2 \pi}\left\|z^{m} e+r e^{i x} z^{n} e\right\|_{p}^{p}-\left\|z^{m} e\right\|_{p}^{p} d x \\
& =\lim _{r \rightarrow 0} \frac{1}{4 r^{2} \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|1+r e^{i x+i(n-m) \theta}\right|^{p}-1 d \theta d x \\
& =\lim _{r \rightarrow 0} \frac{1}{4 r^{2} \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|1+r e^{i x+i(n-m) \theta}\right|^{p}-1 d x d \theta=\frac{p^{2}}{4}
\end{aligned}
$$

This implies

$$
p=\frac{1}{\pi} \int_{0}^{2 \pi}\left\|F\left(e^{i \theta}\right)\right\|^{p-2}\left\|G\left(e^{i \theta}\right)\right\|^{2}+\frac{p-2}{2}\left\|F\left(e^{i \theta}\right)\right\|^{p-4}\left|\left\langle F\left(e^{i \theta}\right), G\left(e^{i \theta}\right)\right\rangle\right|^{2} d \theta
$$

By Hölder inequality, we have $\left\|F\left(e^{i \theta}\right)\right\|=\left\|G\left(e^{i \theta}\right)\right\|$ a.e. and

$$
\left|\left\langle G\left(e^{i \theta}\right), F\left(e^{i \theta}\right)\right\rangle\right|=\left\|F\left(e^{i \theta}\right)\right\|^{2} \quad \text { a.e. }
$$

Proof of Proposition 1 when $2<p<\infty$. By Lemma 2, for any $e \in K, T\left(z^{m} e\right)\left(e^{i \theta}\right)$ and $T\left(z^{n} e\right)\left(e^{i \theta}\right)$ are linearly dependent for almost all $\theta \in[0,2 \pi]$. Since $\left\{z^{n}: n \geq 0\right\}$ spans H^{p}, for any $e \in K$ and any $f, g \in H^{p}, T(f e)\left(e^{i \theta}\right)$ and $T(g e)\left(e^{i \theta}\right)$ are linear dependent for almost all $\theta \in[0,2 \pi]$. Hence, for each $e \in K \backslash\{0\},\left.T\right|_{H^{p} e}$ induces an isometry from H^{p} into L^{p}. By the proof of [7, Theorem 1], there is a function h_{e} such that
(1) $\left|h_{e}\left(e^{i \theta}\right)\right|=1$ a.e.,
(2) for each $n \in \mathbb{N}, T\left(z^{n} e\right)=h_{e}^{n} T\left(1_{D} e\right)$.

Clearly, if $h_{e}=h_{e^{\prime}}$, then $h_{e}=h_{\alpha e+\beta e^{\prime}}$ for all $\alpha, \beta \in \mathbb{C}$.
(1) Let e, e^{\prime} be any two unit elements in K. We claim that $h_{e}=h_{e^{\prime}}$. Since

$$
h_{e} T\left(1_{D} e\right)+h_{e^{\prime}} T\left(1_{D} e^{\prime}\right)=T\left(z e+z e^{\prime}\right)=h_{e+e^{\prime}} T\left(1_{D}\left(e+e^{\prime}\right)\right)
$$

and

$$
h_{e} T\left(1_{D} e\right)+i h_{e^{\prime}} T\left(1_{D} e^{\prime}\right)=T\left(z e+i z e^{\prime}\right)=h_{e+i e^{\prime}} T\left(1_{D}\left(e+i e^{\prime}\right)\right)
$$

for almost all $\theta \in[0,2 \pi]$ we have

$$
\begin{aligned}
\| T\left(1_{D} e\right) & \left(e^{i \theta}\right)\left\|^{2}+\right\| T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right) \|^{2} \\
& +h_{e}\left(e^{i \theta}\right) \bar{h}_{e^{\prime}}\left(e^{i \theta}\right)\left\langle T\left(1_{D} e\right)\left(e^{i \theta}\right), T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right)\right\rangle \\
& +h_{e^{\prime}}\left(e^{i \theta}\right) \bar{h}_{e}\left(e^{i \theta}\right)\left\langle T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right), T\left(1_{D} e\right)\left(e^{i \theta}\right)\right\rangle \\
= & \left\|T\left(1_{D} e\right)\left(e^{i \theta}\right)\right\|^{2}+\left\|T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right)\right\|^{2}+\left\langle T\left(1_{D} e\right)\left(e^{i \theta}\right), T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right)\right\rangle \\
& +\left\langle T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right), T\left(1_{D} e\right)\left(e^{i \theta}\right)\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\| T\left(1_{D} e\right) & \left(e^{i \theta}\right)\left\|^{2}+\right\| T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right) \|^{2} \\
& -i h_{e}\left(e^{i \theta}\right) \bar{h}_{e^{\prime}}\left(e^{i \theta}\right)\left\langle T\left(1_{D} e\right)\left(e^{i \theta}\right), T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right)\right\rangle \\
& +i h_{e^{\prime}}\left(e^{i \theta}\right) \bar{h}_{e}\left(e^{i \theta}\right)\left\langle T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right), T\left(1_{D} e\right)\left(e^{i \theta}\right)\right\rangle \\
= & \left\|T\left(1_{D} e\right)\left(e^{i \theta}\right)\right\|^{2}+\left\|T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right)\right\|^{2}-i\left\langle T\left(1_{D} e\right)\left(e^{i \theta}\right), T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right)\right\rangle \\
& +i\left\langle T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right), T\left(1_{D} e\right)\left(e^{i \theta}\right)\right\rangle
\end{aligned}
$$

So

$$
\left\langle T\left(1_{D} e\right)\left(e^{i \theta}\right), T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right)\right\rangle=h_{e}\left(e^{i \theta}\right) \bar{h}_{e^{\prime}}\left(e^{i \theta}\right)\left\langle T\left(1_{D} e\right)\left(e^{i \theta}\right), T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right)\right\rangle
$$

Replacing e^{\prime} by $e^{\prime}+r e$ for some $r \in \mathbb{R}$ if necessary, we may assume that

$$
\left\langle T\left(1_{D} e\right)\left(e^{i \theta}\right), T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right)\right\rangle \neq 0 \quad \text { a.e. }
$$

Therefore, $h_{e}=h_{e^{\prime}}$ a.e., and if $F \in H^{p}(K)$, then $T\left(z^{n} F\right)=h_{e}^{n} T(F)$.
(2) Since T is an onto mapping, there is $F \in H^{p}(K)$ such that $T(F)=$ $1_{D} e$. So $T(z F)=h_{e} 1_{D} e$ and $h_{e} \in H^{\infty}$.
(3) By (2) there exist two inner functions h and h^{\prime} such that for any $g \in$ H^{∞} and $F \in H^{p}(K), T(g F)=g \circ h \cdot T(F)$ and $T^{-1}(g F)=g \circ h^{\prime} \cdot T^{-1}(F)$. From $T T^{-1}(F)=F=T^{-1} T(F)$, we find

$$
g \circ h^{\prime} \circ h \cdot F=g \cdot F=g \circ h \circ h^{\prime} \cdot F
$$

So $h \circ h^{\prime}=I=h^{\prime} \circ h$ and h is a conformal map of the unit disk onto itself.
(4) Since h is an onto conformal mapping, for any $f \in H^{\infty}$ there is $g \in H^{\infty}$ such that $f=g \circ h$. Hence, if e, e^{\prime} are any two unit vectors in K,
and g is any function in H^{∞}, then we have

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{p}\left\|T\left(1_{D} e\right)\left(e^{i \theta}\right)\right\|^{p} d \theta \\
& \quad=\left\|f T\left(1_{D} e\right)\right\|_{p}^{p}=\|T(g e)\|_{p}^{p} \\
& \quad=\left\|T\left(g e^{\prime}\right)\right\|_{p}^{p}=\left\|f T\left(1_{D} e^{\prime}\right)\right\|_{p}^{p} \\
& \quad=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{p}\left\|T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right)\right\|^{p} d \theta
\end{aligned}
$$

Since $\left\{|g|: g \in H^{\infty}\right\}$ spans real $L^{\infty},\left\|T\left(1_{D} e\right)\left(e^{i \theta}\right)\right\|=\left\|T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right)\right\|$ a.e.
(5) Now, suppose that $\left\langle e, e^{\prime}\right\rangle=0$. Then there exists a measure zero subset A of $[0,2 \pi]$ such that if $\theta \notin A$ and $\alpha \in \mathbb{Q}$, then

$$
\left\|\cos \alpha T\left(1_{D} e\right)\left(e^{i \theta}\right)+\sin \alpha T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right)\right\|=\left\|T\left(1_{D} e\right)\left(e^{i \theta}\right)\right\| .
$$

By continuity,

$$
\left\|\cos \alpha T\left(1_{D} e\right)\left(e^{i \theta}\right)+\sin \alpha T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right)\right\|=\left\|T\left(1_{D} e\right)\left(e^{i \theta}\right)\right\|
$$

whenever $\alpha \in \mathbb{R}$ and $\theta \notin A$. So we have $\left\langle T\left(1_{D} e\right)\left(e^{i \theta}\right), T\left(1_{D} e^{\prime}\right)\left(e^{i \theta}\right)\right\rangle=0$.
REMARK 1. Let $T: H^{p}(K) \rightarrow H^{p}(K)$ be an onto isometry. If e_{1} and e_{2} are linearly independent, then $T\left(f e_{1}\right)\left(e^{i \theta}\right)$ and $T\left(f e_{2}\right)\left(e^{i \theta}\right)$ are linearly independent for almost for θ.

3. Proof of Theorem

Before proving the Main Theorem, we need another lemma.
Lemma 3. For any unit vector e in K, there exists a unit vector e^{\prime} such that $T\left(H^{p} e\right)=H^{p} e^{\prime}$.

Proof. Let $\left\{e_{j}: j \in J\right\}$ be an orthonormal basis of K. For any unit vector $e \in K$, there exist $F_{j} \in T\left(H^{p} e_{j}\right)$, such that $1_{D} e=\sum_{j \in J} F_{j}$. Clearly, $F_{j}=0$ except for countably many j. Hence, we may assume that J is countable and $F_{j}\left(e^{i \theta}\right)$'s are orthogonal. So for any $\theta \in[0,2 \pi]$, we have
(i) $\sum_{j \in J}\left\langle F_{j}\left(e^{i \theta}\right), e\right\rangle=1_{D}$,
(ii) $\sum_{j \in J}\left\|F_{j}\left(e^{i \theta}\right)\right\|^{2}=1$.
(1) For each $j \in J,\left\langle F_{j}\left(e^{i \theta}\right), e\right\rangle$ is an analytic function and for any $\theta \in[0,2 \pi]$

$$
1=\left\|\sum_{j \in J} \overline{\operatorname{sgn}\left(\left\langle F_{j}\left(e^{i \theta}\right), e\right\rangle\right)} F_{j}\left(e^{i \theta}\right)\right\| \geq \sum_{j \in J}\left|\left(\left\langle F_{j}\left(e^{i \theta}\right), e\right\rangle\right)\right| \geq 1 .
$$

So $\left\langle F_{j}\left(e^{i \theta}\right), e\right\rangle$ is a non-negative constant function for each $j \in J$.
(2) If $\left\langle F_{k}\left(e^{i \theta}\right), e\right\rangle=0$, then

$$
1 \leq\left\|\sum_{j \neq k} F_{j}\right\|_{p} \leq\left\|\sum_{j \in J} F_{j}\right\|_{p}=1 .
$$

The second inequality holds if and only if $F_{k} \neq 0$. So we must have $F_{k}=0$ if $\left\langle F_{k}\left(e^{i \theta}\right), e\right\rangle=0$.
(3) Let e^{\prime} be a nonzero element in K and k be a fixed element in J. We claim that if there exists an $f \in H^{p}$ such that $m\left\{\theta: \| T\left(f e_{k}\right)\left(e^{i \theta}\right)-\right.$ $\left.e^{\prime} \|<1 / n\right\}>0$ for every $n \in \mathbb{N}$, then $1_{D} e^{\prime} \in T\left(H^{p} e_{k}\right)$. With loss of generality, we may assume $\left\|e^{\prime}\right\|=1$. Since there exist $F_{j} \in T\left(H^{p} e_{j}\right)$ such that $\sum_{j \in J} F_{j}=1_{D} e^{\prime}$, by Proposition 1, there exists a measurable set A such that
(iii) $m(A)=0$,
(iv) if $\theta \notin A$, then $\left\{F_{j}\left(e^{i \theta}\right): j \in J\right\}$ (respectively $\left\{T\left(f e_{k}\right)\left(e^{i \theta}\right)\right\} \cup$ $\left\{F_{j}\left(e^{i \theta}\right)\right.$:
$j \neq k\}$) is orthogonal.
Hence, if $\theta \notin A$, then there exist $1 \geq a \geq 0, b \in \mathbb{C}$ and $z, y \in K$ which satisfy
(v) $\left\langle z, e^{\prime}\right\rangle=0=\left\langle y, e^{\prime}\right\rangle$,
(vi) $F_{k}\left(e^{i \theta}\right)=a e^{\prime}+z, \sum_{j \neq k} F_{j}\left(e^{i \theta}\right)=(1-a) e^{\prime}-z$, and $T\left(f e_{k}\right)\left(e^{i \theta}\right)=$ $b e^{\prime}+y$.
So we have

$$
\begin{aligned}
& b(1-a)-\langle z, y\rangle=\left\langle\sum_{j \neq k} F_{j}\left(e^{i \theta}\right), F_{k}\left(e^{i \theta}\right)\right\rangle=0, \\
& a(1-a)-\|z\|^{2}=\left\langle T\left(f e_{k}\right)\left(e^{i \theta}\right), f_{k}\left(e^{i \theta}\right)\right\rangle=0 .
\end{aligned}
$$

If $\left\|b e^{\prime}+y-e^{\prime}\right\|<1 / n$, then $|b| \geq 1-1 / n,\|y\| \leq 1 / n$,

$$
\begin{aligned}
& \frac{\|z\|}{n} \geq|\langle z, y\rangle|=|b(1-a)| \geq\left(1-\frac{1}{n}\right)(1-a), \\
& \|z\| \geq(n-1)(1-a), \quad a(1-a)=\|z\|^{2} \geq(n-1)^{2}(1-a)^{2} .
\end{aligned}
$$

So we have $a \geq(n-1)^{2} / n^{2}$. But $\left\langle F_{k}, e^{\prime}\right\rangle$ is a constant function, so $\left\langle F_{k}, e^{\prime}\right\rangle \equiv 1$. By (1) and (2), $F_{j} \equiv 0$ for all $j \neq i$, and $F_{k} \equiv 1$.

Suppose that there exist $e_{1}^{\prime}, e_{2}^{\prime} \in K$ and $f_{1}, f_{2} \in H^{p}$ such that

$$
m\left\{\theta:\left\|T\left(f_{1} e\right)\left(e^{i \theta}\right)-e_{1}^{\prime}\right\|<1 / n\right\}>0
$$

(respectively, $m\left\{\theta:\left\|T\left(f_{2} e\right)\left(e^{i \theta}\right)-e_{2}^{\prime}\right\|<1 / n\right\}>0$) for all $n \in \mathbb{N}$. By (3), $1_{D} e_{1}^{\prime}$ and $1_{D} e_{2}^{\prime}$ are in $T\left(H^{p} e\right)$. But T^{-1} is a surjective isometry from $H^{p}(K)$ onto $H^{p}(K)$. By Remark 1, e_{1}^{\prime} and e_{2}^{\prime} are linearly dependent. And we have proved the lemma.

Proof of Theorem. Let e be any unit vector in K. By Lemma 3, there exists a unit vector e^{\prime} such that $T(f e)=\left\langle T(f e), e^{\prime}\right\rangle e^{\prime}$. We define the operator (it may not be linear) U by $U(c e)=c e^{\prime}$ for all $c \in \mathbb{C}$.

By Lemma 3, the restriction of T to $H^{p} e_{1}$ is a surjective isometry from $H^{p} e_{1}$ into $H^{p} U\left(e_{1}\right)$. Hence, there exist a conformal map ϕ_{1} of the disc onto itself, and a unimodular complex number b_{1} such that $T\left(f e_{1}\right)=b_{1}$. $\left(d \phi_{1} / d z\right)^{1 / p} \cdot f \circ \phi_{1} \cdot U\left(e_{1}\right) \cdot$ (Replacing $U\left(e_{1}\right)$ by $b_{1} U\left(e_{1}\right)$, we may assume that $b_{1}=1$.) If e_{2} is any other vector in K, then there exist a conformal map ϕ_{2} of the disc onto itself, and a unimodular complex number b_{2} such that $T\left(f e_{2}\right)=b_{2} \cdot\left(d \phi_{2} / d z\right)^{1 / p} \cdot f \circ \phi_{2} \cdot U\left(e_{2}\right)$. We claim that $\phi_{2}=\phi_{1}$. Clearly, this is true if e_{1} and e_{2} are linearly dependent. So we may assume that e_{1} and e_{2} are linearly independent. By Lemma 3,

$$
\begin{aligned}
& \left(d \phi_{1} / d z\right)^{1 / p} \cdot f \circ \phi_{1} \cdot U\left(e_{1}\right)+b_{2} \cdot\left(d \phi_{2} / d z\right)^{1 / p} \cdot f \circ \phi_{2} \cdot U\left(e_{2}\right) \\
& \quad=T\left(f\left(e_{1}+e_{2}\right)\right)=\left\langle T\left(f\left(e_{1}+e_{2}\right)\right), U\left(\frac{e_{1}+e_{2}}{\left\|e_{1}+e_{2}\right\|}\right)\right\rangle U\left(\frac{e_{1}+e_{2}}{\left\|e_{1}+e_{2}\right\|}\right) .
\end{aligned}
$$

Since $U\left(e_{1}\right)$ and $U\left(e_{2}\right)$ are linearly independent (by Remark 1), we have $\left(d \phi_{1} / d z\right)^{1 / p} f \circ \phi_{1}$ and $\left(d \phi_{2} / d z\right)^{1 / p} f \circ \phi_{2}$ are linearly dependent. Let $f=1$. Then we have $\left(d \phi_{2} / d z\right)=d_{1}\left(d \phi_{1} / d z\right)$ or $\phi_{2}=d_{1} \phi_{1}+d_{2}$ for some $d_{1}, d_{2} \in$ \mathbb{C}. But ϕ_{1} and ϕ_{2} are conformal maps from the unit disc onto itself. This implies $\left|d_{1}\right|=1$ and $d_{2}=0$. Let $f=z+1$. We have $\left(d \phi_{1} / d z\right)^{1 / p}\left(\phi_{1}+1\right)$ and $d_{1}\left(d \phi_{1} / d z\right)^{1 / p}\left(d_{1} \phi_{1}+1\right)$ are linearly dependent. But $\phi_{1} \neq 1$. So d_{1} must be 1 .

Replace $U\left(c e_{2}\right)$ by $b_{2} \cdot c \cdot U\left(e_{2}\right)$. Then we have $T(f e)=\left(d \phi_{1} / d z\right)^{1 / p}$. $f \circ \phi_{1} \cdot U(e)$ for any $f \in H^{p}$ and $\|e\|=1$. Hence, for any $a, b \in \mathbb{C}$

$$
\begin{aligned}
& \left(d \phi_{1} / d z\right)^{1 / p} \cdot a \cdot U\left(e_{1}\right)+\left(d \phi_{1} / d z\right)^{1 / p} \cdot b \cdot U\left(e_{2}\right) \\
& \quad=T\left(a e_{1}+b e_{2}\right)=\left(d \phi_{1} / d z\right)^{1 / p} \cdot\left(\left\|a e_{1}+b e_{2}\right\|\right) \cdot U\left(\frac{a e_{1}+b e_{2}}{\left\|a e_{1}+b e_{2}\right\|}\right) \\
& \quad=\left(d \phi_{1} / d z\right)^{1 / p} \cdot U\left(a e_{1}+b e_{2}\right) .
\end{aligned}
$$

This implies that U is a linear isometry. Since T is an onto mapping, U must be an onto mapping. So U is a unitary operator.

References

[1] A. V. Bukhvalov and A. A. Danilevich, 'Boundary properties of analytic and harmonic functions with values in Banach space', Math. Notes 31 (1982), 104-110.
[2] M. Cambern, 'The isometries of $H^{\infty}(K)$ ', Proc. Amer. Math. Soc. 36 (1972), 173-178.
[3] M. Cambern and K. Jarosz, 'The isometries of $H_{\mathscr{W}}^{1}$ ', preprint.
[4] G. A. Edgar, 'Analytic martingale convergence', J. Funct. Anal. 69 (1986), 268-280.
[5] K. Hoffman, 'Banach spaces of analytic functions' (Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962).
[6] K. deLeeuw, W. Rudin and J. Wermer, 'The isometries of some function spaces', Proc. Amer. Math. Soc. 11 (1960), 694-698.
[7] F. Forelli, 'The isometries of H^{p}, Canad. J. Math. 16 (1964), 721-728.

Department of Mathematics
Memphis State University
Memphis, Tennesee 38152
U.S.A.

[^0]: This research was supported in part by NSF.
 (c) 1991 Australian Mathematical Society $0263-6115 / 91 \$ A 2.00+0.00$

