THE ISOMETRIES OF $H^p(K)$

PEI-KEE LIN

(Received 11 July 1989)

Communicated by S. Yamamuro

Abstract

Let $1 \le p < \infty$, $p \ne 2$ and let K be any complex Hilbert space. We prove that every isometry T of $H^p(K)$ onto itself is of the form

$$(TF)(z) = U(F \circ \phi(z)) \cdot (d\phi/dz)^{1/p} \qquad (F \in H^p(K), |z| < 1),$$

where U is a unitary operator on K and ϕ is a conformal map of the unit disc onto itself.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 46 E 15, 46 E 30. Keywords and phrases: Hardy space, isometry, Hilbert space, conformal map.

1. Introduction

Let D be the open unit disc in the complex plane and let E be any complex Banach space. Then the Banach space $H^p(E)$, $1 \le p \le \infty$, consists of all $F: D \to E$ such that $\langle F, e^* \rangle$ belongs to the Hardy class H^p for all $e^* \in E^*$, and the norm of F is given by

$$\begin{split} \|F\|_{p} &= \lim_{r \to 1^{-}} \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} \|F(re^{i\theta})\|^{p} d\theta \right\} &\quad \text{if } 1 \leq p < \infty \,, \\ \|F\|_{\infty} &= \underset{|z| < 1}{\text{ess sup}} \, \|F(z)\|. \end{split}$$

A complex Banach space E is said to have the analytic Radon-Nikodym property, if for each $F \in H^p(E)$, $F(e^{i\theta}) = \lim_{r \to 1^-} F(re^{i\theta})$ exists almost everywhere (for more detail see [1] and [4]). (It is known that the L_p -spaces,

This research was supported in part by NSF.

^{© 1991} Australian Mathematical Society 0263-6115/91 \$A2.00 + 0.00

 $1 \le p < \infty$, have the analytic Radon-Nikodym property.) If E has the analytic Radon-Nikodym property and if $F \in H^p(E)$, then the norm of F is

$$||F||_{p} = \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} ||F(e^{i\theta})||^{p} d\theta \right\}^{1/p} \quad \text{if } 1 \le p < \infty,$$

$$||F||_{\infty} = \underset{0 \le \theta \le 2\pi}{\text{ess sup}} ||F(e^{i\theta})||.$$

The linear isometries of H^p were first studied by deLeeuw, Rudin, and Wermer [6]. They proved that if T is a surjective isometry on H^1 (respectively, H^{∞}), then there are a conformal map ϕ of the unit disk onto itself and a unimodular complex number b such that

$$Tf = b \cdot (d\phi/dz) \cdot f \circ \phi$$
 (respectively, $Tf = b \cdot f \circ \phi$).

Later, F. Forelli [7] extended this result to H^p for $p \neq 2$. He proved that

THEOREM A. If $p \neq 2$ and if T is a linear isometry of H^p onto H^p , then there is a conformal map ϕ of the unit disk onto itself and a unimodular complex number b such that

$$Tf = b \cdot (d\phi/dz)^{1/p} \cdot f \circ \phi.$$

The isometries of the vector valued H^p function spaces were studied by M. Cambern. He [2] showed that if K is a complex Hilbert space and if T is a surjective isometry on $H^\infty(K)$, then there are a conformal map ϕ of the unit disc onto itself and a unitary operator U on K such that for any $F \in H^\infty(K)$ and any $z \in D$,

$$TF(z) = U(F \circ \phi(z)).$$

Recently, M. Cambern and K. Jarosz [3] proved a similar result holds on $H^1(K)$ if K is a finite dimensional complex Hilbert space. In this article, we extend this result to $H^p(K)$, $1 \le p < \infty$. The main result of this article is the following theorem.

MAIN THEOREM. Let $1 \le p < \infty$, $p \ne 2$, and let K be any complex Hilbert space. If $T: H^p(K) \to H^p(K)$ is a surjective isometry, then there exist a unitary operator U on K, and a conformal map ϕ from the disc onto the disc such that

$$(TF)(z) = U(F \circ \phi(z)) \cdot (d\phi/dz)^{1/p}(z) \qquad (F \in H^p(K), |z| < 1).$$

Let ϕ be a conformal map of the unit disk onto itself, and let U be a unitary operator on a complex Hilbert space K. If

$$TF(z) = U(F \circ \phi(z)) \cdot (d\phi/dz)^{1/p}(z)$$

for all $F \in H^p(K)$, then T satisfies the following conditions.

- (a) If $\langle e_1, e_2 \rangle = 0$, then $\langle T(fe_1)(e^{i\theta}), T(ge_2)(e^{i\theta}) \rangle = 0$ a.e. for all $f, g \in H^p$.
- (a') If $\langle e_1, e_2 \rangle = 0$, then $\langle T(z^n e_1)(e^{i\theta}), T(z^m e_2)(e^{i\theta}) \rangle = 0$ a.e. for all $n, m \ge 0$.
- (b) $|\langle T(fe)(e^{i\theta}), T(ge)(e^{i\theta})\rangle| = ||T(fe)(e^{i\theta})|| \cdot ||T(ge)(e^{i\theta})||$ a.e. (that is $T(fe)(e^{i\theta})$ and $T(ge)(e^{i\theta})$ are linearly dependent a.e.) for all $e \in K$ and $f, g \in H^p$.
- (b') $|\langle T(z^n e)(e^{i\theta}), T(z^m e)(e^{i\theta})\rangle| = ||T(z^n e)(e^{i\theta})|| \cdot ||T(z^m e)(e^{i\theta})||$ a.e. for all $e \in K$ and n, m > 0
- (c) For any $e \in K$, there is $e' \in K$ such that $T(H^p e) = H^p e'$. Moreover, if $T(H^p e_1) = H^p e_3$, $T(H^p e_2) = H^p e_4$, and $\langle e_1, e_2 \rangle = 0$, then $\langle e_3, e_4 \rangle = 0$.

Clearly, (a) implies (a'), (b) implies (b'), and (c) implies (a) and (b). Since $\{z^n : n \ge 0\}$ spans H^p , (a') implies (a) and (b') implies (b). By Theorem A, one can show that if T is a surjective isometry on $H^p(K)$ which satisfies (c), then T satisfies the conclusion of the Main Theorem (see Section 3). Hence, we only need to show every surjective isometry on $H^p(K)$ satisfies (c). However, we do not know any direct proof. In Section 2, we establish the following proposition.

PROPOSITION 1. Suppose that $1 \le p < \infty$, and $p \ne 2$. If K is a complex Hilbert space and if T is a linear isometry of $H^p(K)$ onto $H^p(K)$, then T satisfies (a').

If $1 \le p < 2$, we provide a direct proof of Proposition 1. But we do not know whether there is a direct proof if 2 . In this case, we first show that <math>T satisfies (b'), and then use (b) to prove Proposition 1. In Section 3, we use the conclusion of Proposition 1 to show that every surjective isometry on $H^p(K)$ satisfies (c), and then give the proof of the Main Theorem.

2. The proof of Proposition 1

In this section, we will assume that (i) $1 \le p < \infty$ and $p \ne 2$, (ii) K is a complex Hilbert space, and (iii) T is a surjective isometry of $H^p(K)$ onto itself. Before proving Proposition 1, we need the following fact.

FACT 1. Suppose that $1 \le p < 2$. If f_1 , f_2 are any two positive functions in L^p such that $f_2 > 0$ a.e. and $\|f_1\|_p = 1 = \|f_2\|_p$, then

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{f_1^2(t)}{f_2^{2-p}(t)} dt \ge 1.$$

Moreover, equality holds if and only if $f_1 = f_2$ a.e.

PROOF OF PROPOSITION 1 WHEN $1 \le p < \overline{2}$. Let e_1 and e_2 be any two nonzero vectors in K. If $||re_2|| < ||e_1||$, then

$$\begin{split} \|e_1 + re^{ix}e_2\|^p &= (\|e_1\|^2 + r^2\|e_2\|^2 + r(e^{-ix}\langle e_1\,,\,e_2\rangle + e^{ix}\langle e_2\,,\,e_1\rangle))^{p/2} \\ &= \|e_1\|^p \left(1 + \frac{r}{\|e_1\|^2}(r\|e_2\|^2 + (e^{-ix}\langle e_1\,,\,e_2\rangle + e^{ix}\langle e_2\,,\,e_1\rangle))\right)^{p/2} \\ &= \|e_1\|^p \sum_{j=0}^\infty \binom{p/2}{j} \left(\frac{r}{\|e_1\|^2}\right)^j (r\|e_2\|^2 + (e^{-ix}\langle e_1\,,\,e_2\rangle + e^{ix}\langle e_2\,,\,e_1\rangle))^j \\ &= \sum_{j=0}^\infty \binom{p/2}{j} \|e_1\|^{p-2j} r^j (r\|e_2\|^2 + (e^{-ix}\langle e_1\,,\,e_2\rangle + e^{ix}\langle e_2\,,\,e_1\rangle))^j \,, \end{split}$$

and so

$$\begin{split} \frac{1}{2\pi} \int_{0}^{2\pi} \|e_{1} + re^{ix}e_{2}\|^{p} dx \\ &= \sum_{j=0}^{\infty} \sum_{l=0}^{\lfloor \frac{j}{2} \rfloor} \binom{p/2}{j} \binom{j}{2l} \binom{2l}{l} r^{2j-2l} \|e_{1}\|^{p-2j} \|e_{2}\|^{2j-4l} |\langle e_{1}, e_{2} \rangle|^{2l}. \end{split}$$

This implies

$$\lim_{r \to 0} \frac{1}{r^2} \left(\frac{1}{2\pi} \int_0^{2\pi} \|e_1 + re^{ix} e_2\|^p dx - \|e_1\|^p \right)$$

$$= \frac{p}{2} \left(\|e_1\|^{p-2} \|e_2\|^2 + \frac{p-2}{2} \|e_1\|^{p-4} |\langle e_1, e_2 \rangle|^2 \right).$$

Let $F = T(z^m e_1)$ and $G = T(z^n e_2)$. Then $||F(e^{i\theta})|| \neq 0$ a.e. By Fatou's Lemma and the Fubini Theorem,

$$\begin{split} &\frac{p}{4\pi} \int_{0}^{2\pi} \|F(e^{i\theta})\|^{p-2} \|G(e^{i\theta})\|^{2} + \frac{p-2}{2} \|F(e^{i\theta})\|^{p-4} |\langle F(e^{i\theta}), G(e^{i\theta})\rangle|^{2} \, d\theta \\ &\leq \liminf_{r \to 0} \frac{1}{4r^{2}\pi^{2}} \int_{0}^{2\pi} \int_{0}^{2\pi} \|F(e^{i\theta}) + re^{ix} G(e^{i\theta})\|^{p} - \|F(e^{i\theta})\|^{p} \, dx \, d\theta \\ &= \liminf_{r \to 0} \frac{1}{4r^{2}\pi^{2}} \int_{0}^{2\pi} \int_{0}^{2\pi} \|F(e^{i\theta}) + re^{ix} G(e^{i\theta})\|^{p} - \|F(e^{i\theta})\|^{p} \, d\theta \, dx \\ &= \liminf_{r \to 0} \frac{1}{2r^{2}\pi} \int_{0}^{2\pi} \|F + re^{ix} G\|_{p}^{p} - \|F\|_{p}^{p} \, dx \\ &= \liminf_{r \to 0} \frac{1}{2r^{2}\pi} \int_{0}^{2\pi} \|z^{m} e_{1} + re^{ix} z^{n} e_{2}\|_{p}^{p} - \|z^{m} e_{1}\|_{p}^{p} \, dx \\ &= \liminf_{r \to 0} \frac{((1+r^{2})^{p/2} - 1)}{r^{2}} = \frac{p}{2}. \end{split}$$

But $||F||_p = ||z^m e_1||_p = 1 = ||z^n e_2||_p = ||G||_p$. By Fact 1, we have $||F(e^{i\theta})|| = ||G(e^{i\theta})||$ a.e. and $\langle F(e^{i\theta}), G(e^{i\theta}) \rangle = 0$ a.e.

Now, we assume 2 , and we need the following lemma.

LEMMA 2. Let $m \neq n$, and let e be any nonzero element in K. If $F = T(z^m e)$ and $G = T(z^n e)$, then $||F(e^{i\theta})|| = ||G(e^{i\theta})||$ a.e., and

$$|\langle F(e^{i\theta}), G(e^{i\theta})\rangle| = ||F(e^{i\theta})|| \cdot ||G(e^{i\theta})|| \quad a.e.$$

PROOF. By (*), there exists A > 0 such that for any two nonzero vectors e_1 and e_2 in K,

$$\frac{1}{2\pi} \int_{0}^{2\pi} \|e_{1} + re^{ix} e_{2}\|^{p} - \|e_{1}\|^{p} dx \le Ar^{2} \|e_{1}\|^{p-2} \|e_{2}\|^{2}$$

whenever $\|e_1\| > 2r\|e_2\|$. On the other hand, if $\|e_1\| \le 2r\|e_2\|$, then

$$\frac{1}{2\pi} \int_0^{2\pi} \|e_1 + re^{ix}e_2\|^p - \|e_1\|^p \, dx \le (3^p + 1)r^p \|e_2\|^p.$$

So

$$\frac{1}{2\pi r^{2}} \int_{0}^{2\pi} \|F(e^{i\theta}) + re^{ix} G(e^{i\theta})\|^{p} - \|F(e^{i\theta})\| dx
\leq \max(A, 3^{p} + 1) (\|F(e^{i\theta})\|^{p-2} \|G(e^{i\theta})\|^{2} + \|G(e^{i\theta})\|^{p})$$

for all 0 < r < 1. By the dominated convergence theorem,

$$\begin{split} \frac{p}{4\pi} \int_{0}^{2\pi} \|F(e^{i\theta})\|^{p-2} \|G(e^{i\theta})\|^{2} + \frac{p-2}{2} \|F(e^{i\theta})\|^{p-4} |\langle F(e^{i\theta}), G(e^{i\theta})\rangle|^{2} d\theta \\ &= \lim_{r \to 0} \frac{1}{4r^{2}\pi^{2}} \int_{0}^{2\pi} \int_{0}^{2\pi} \|F(e^{i\theta}) + re^{ix} G(e^{i\theta})\|^{p} - \|F(e^{i\theta})\|^{p} dx d\theta \\ &= \lim_{r \to 0} \frac{1}{4r^{2}\pi^{2}} \int_{0}^{2\pi} \int_{0}^{2\pi} \|F(e^{i\theta}) + re^{ix} G(e^{i\theta})\|^{p} - \|F(e^{i\theta})\|^{p} d\theta dx \\ &= \lim_{r \to 0} \frac{1}{2r^{2}\pi} \int_{0}^{2\pi} \|F + re^{ix} G\|_{p}^{p} - \|F\|_{p}^{p} dx \\ &= \lim_{r \to 0} \frac{1}{2r^{2}\pi} \int_{0}^{2\pi} \|z^{m} e + re^{ix} z^{n} e\|_{p}^{p} - \|z^{m} e\|_{p}^{p} dx \\ &= \lim_{r \to 0} \frac{1}{4r^{2}\pi^{2}} \int_{0}^{2\pi} \int_{0}^{2\pi} |1 + re^{ix + i(n-m)\theta}|^{p} - 1 d\theta dx \\ &= \lim_{r \to 0} \frac{1}{4r^{2}\pi^{2}} \int_{0}^{2\pi} \int_{0}^{2\pi} |1 + re^{ix + i(n-m)\theta}|^{p} - 1 dx d\theta = \frac{p^{2}}{4}. \end{split}$$

This implies

$$p = \frac{1}{\pi} \int_0^{2\pi} \|F(e^{i\theta})\|^{p-2} \|G(e^{i\theta})\|^2 + \frac{p-2}{2} \|F(e^{i\theta})\|^{p-4} |\langle F(e^{i\theta}), G(e^{i\theta}) \rangle|^2 d\theta.$$

By Hölder inequality, we have $||F(e^{i\theta})|| = ||G(e^{i\theta})||$ a.e. and

$$|\langle G(e^{i\theta}), F(e^{i\theta})\rangle| = ||F(e^{i\theta})||^2$$
 a.e.

PROOF OF PROPOSITION 1 WHEN $2 . By Lemma 2, for any <math>e \in K$, $T(z^m e)(e^{i\theta})$ and $T(z^n e)(e^{i\theta})$ are linearly dependent for almost all $\theta \in [0, 2\pi]$. Since $\{z^n : n \ge 0\}$ spans H^p , for any $e \in K$ and any $f, g \in H^p$, $T(fe)(e^{i\theta})$ and $T(ge)(e^{i\theta})$ are linear dependent for almost all $\theta \in [0, 2\pi]$. Hence, for each $e \in K \setminus \{0\}$, $T|_{H^p e}$ induces an isometry from H^p into L^p . By the proof of [7, Theorem 1], there is a function h_e such that

- (1) $|h_a(e^{i\theta})| = 1$ a.e.,
- (2) for each $n \in \mathbb{N}$, $T(z^n e) = h_e^n T(1_p e)$.

Clearly, if $h_e = h_{e'}$, then $h_e = h_{\alpha e + \beta e'}$ for all $\alpha, \beta \in \mathbb{C}$.

(1) Let e, e' be any two unit elements in K. We claim that $h_e = h_{e'}$. Since

$$h_e T(1_D e) + h_{e'} T(1_D e') = T(ze + ze') = h_{e+e'} T(1_D (e + e')),$$

and

$$h_e T(1_D e) + i h_{e'} T(1_D e') = T(ze + i ze') = h_{e+ie'} T(1_D (e + i e')),$$

for almost all $\theta \in [0, 2\pi]$ we have

$$\begin{split} & \|T(1_D e)(e^{i\theta})\|^2 + \|T(1_D e')(e^{i\theta})\|^2 \\ & \quad + h_e(e^{i\theta})\overline{h}_{e'}(e^{i\theta})\langle T(1_D e)(e^{i\theta}), \ T(1_D e')(e^{i\theta})\rangle \\ & \quad + h_{e'}(e^{i\theta})\overline{h}_e(e^{i\theta})\langle T(1_D e')(e^{i\theta}), \ T(1_D e)(e^{i\theta})\rangle \\ & = \|T(1_D e)(e^{i\theta})\|^2 + \|T(1_D e')(e^{i\theta})\|^2 + \langle T(1_D e)(e^{i\theta}), \ T(1_D e')(e^{i\theta})\rangle \\ & \quad + \langle T(1_D e')(e^{i\theta}), \ T(1_D e)(e^{i\theta})\rangle \end{split}$$

and

$$\begin{split} \|T(1_D e)(e^{i\theta})\|^2 + \|T(1_D e')(e^{i\theta})\|^2 \\ &- i h_e(e^{i\theta}) \overline{h}_{e'}(e^{i\theta}) \langle T(1_D e)(e^{i\theta}), T(1_D e')(e^{i\theta}) \rangle \\ &+ i h_{e'}(e^{i\theta}) \overline{h}_e(e^{i\theta}) \langle T(1_D e')(e^{i\theta}), T(1_D e)(e^{i\theta}) \rangle \\ &= \|T(1_D e)(e^{i\theta})\|^2 + \|T(1_D e')(e^{i\theta})\|^2 - i \langle T(1_D e)(e^{i\theta}), T(1_D e')(e^{i\theta}) \rangle \\ &+ i \langle T(1_D e')(e^{i\theta}), T(1_D e)(e^{i\theta}) \rangle. \end{split}$$

So

$$\langle T(1_D e)(e^{i\theta}), T(1_D e')(e^{i\theta}) \rangle = h_e(e^{i\theta}) \overline{h}_{e'}(e^{i\theta}) \langle T(1_D e)(e^{i\theta}), T(1_D e')(e^{i\theta}) \rangle.$$

Replacing e' by e' + re for some $r \in \mathbb{R}$ if necessary, we may assume that

$$\langle T(1_D e)(e^{i\theta}), T(1_D e')(e^{i\theta}) \rangle \neq 0$$
 a.e.

Therefore, $h_e = h_{e'}$ a.e., and if $F \in H^p(K)$, then $T(z^n F) = h_e^n T(F)$.

- (2) Since T is an onto mapping, there is $F \in H^p(K)$ such that $T(F) = 1_D e$. So $T(zF) = h_e 1_D e$ and $h_e \in H^\infty$.
- (3) By (2) there exist two inner functions h and h' such that for any $g \in H^{\infty}$ and $F \in H^{p}(K)$, $T(gF) = g \circ h \cdot T(F)$ and $T^{-1}(gF) = g \circ h' \cdot T^{-1}(F)$. From $TT^{-1}(F) = F = T^{-1}T(F)$, we find

$$g \circ h' \circ h \cdot F = g \cdot F = g \circ h \circ h' \cdot F.$$

So $h \circ h' = I = h' \circ h$ and h is a conformal map of the unit disk onto itself. (4) Since h is an onto conformal mapping, for any $f \in H^{\infty}$ there is $g \in H^{\infty}$ such that $f = g \circ h$. Hence, if e, e' are any two unit vectors in K, and g is any function in H^{∞} , then we have

$$\begin{split} &\frac{1}{2\pi} \int_{0}^{2\pi} |f(e^{i\theta})|^{p} ||T(1_{D}e)(e^{i\theta})||^{p} d\theta \\ &= ||fT(1_{D}e)||_{p}^{p} = ||T(ge)||_{p}^{p} \\ &= ||T(ge')||_{p}^{p} = ||fT(1_{D}e')||_{p}^{p} \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} |f(e^{i\theta})|^{p} ||T(1_{D}e')(e^{i\theta})||^{p} d\theta. \end{split}$$

Since $\{|g|: g \in H^{\infty}\}$ spans real L^{∞} , $||T(1_D e)(e^{i\theta})|| = ||T(1_D e')(e^{i\theta})||$ a.e.

(5) Now, suppose that $\langle e, e' \rangle = 0$. Then there exists a measure zero subset A of $[0, 2\pi]$ such that if $\theta \notin A$ and $\alpha \in \mathbb{Q}$, then

$$\|\cos \alpha T(1_D e)(e^{i\theta}) + \sin \alpha T(1_D e')(e^{i\theta})\| = \|T(1_D e)(e^{i\theta})\|.$$

By continuity,

$$\|\cos \alpha T(1_D e)(e^{i\theta}) + \sin \alpha T(1_D e')(e^{i\theta})\| = \|T(1_D e)(e^{i\theta})\|$$

whenever $\alpha \in \mathbb{R}$ and $\theta \notin A$. So we have $\langle T(1_D e)(e^{i\theta}), T(1_D e')(e^{i\theta}) \rangle = 0$.

REMARK 1. Let $T\colon H^p(K)\to H^p(K)$ be an onto isometry. If e_1 and e_2 are linearly independent, then $T(fe_1)(e^{i\theta})$ and $T(fe_2)(e^{i\theta})$ are linearly independent for almost for θ .

3. Proof of Theorem

Before proving the Main Theorem, we need another lemma.

LEMMA 3. For any unit vector e in K, there exists a unit vector e' such that $T(H^p e) = H^p e'$.

PROOF. Let $\{e_j\colon j\in J\}$ be an orthonormal basis of K. For any unit vector $e\in K$, there exist $F_j\in T(H^pe_j)$, such that $1_De=\sum_{j\in J}F_j$. Clearly, $F_j=0$ except for countably many j. Hence, we may assume that J is countable and $F_j(e^{i\theta})$'s are orthogonal. So for any $\theta\in[0,2\pi]$, we have

- (i) $\sum_{i \in J} \langle F_i(e^{i\theta}), e \rangle = 1_D$,
- (ii) $\sum_{j \in J} ||F_j(e^{i\theta})||^2 = 1$.
- (1) For each $j \in J$, $\langle F_j(e^{i\theta}), e \rangle$ is an analytic function and for any $\theta \in [0, 2\pi]$

$$1 = \left\| \sum_{j \in J} \overline{\operatorname{sgn}(\langle F_j(e^{i\theta}), e \rangle)} F_j(e^{i\theta}) \right\| \ge \sum_{j \in J} |(\langle F_j(e^{i\theta}), e \rangle)| \ge 1.$$

So $\langle F_i(e^{i\theta}), e \rangle$ is a non-negative constant function for each $j \in J$.

(2) If $\langle F_k(e^{i\theta}), e \rangle = 0$, then

$$1 \le \left\| \sum_{j \ne k} F_j \right\|_p \le \left\| \sum_{j \in J} F_j \right\|_p = 1.$$

The second inequality holds if and only if $F_k \neq 0$. So we must have $F_k = 0$ if $\langle F_k(e^{i\theta}), e \rangle = 0$.

- (3) Let e' be a nonzero element in K and k be a fixed element in J. We claim that if there exists an $f \in H^p$ such that $m\{\theta \colon \|T(fe_k)(e^{i\theta}) e'\| < 1/n\} > 0$ for every $n \in \mathbb{N}$, then $1_D e' \in T(H^p e_k)$. With loss of generality, we may assume $\|e'\| = 1$. Since there exist $F_j \in T(H^p e_j)$ such that $\sum_{j \in J} F_j = 1_D e'$, by Proposition 1, there exists a measurable set A such that
 - (iii) m(A) = 0,
- (iv) if $\theta \notin A$, then $\{F_j(e^{i\theta}): j \in J\}$ (respectively $\{T(fe_k)(e^{i\theta})\} \cup \{F_j(e^{i\theta}):$

 $j \neq k$) is orthogonal.

Hence, if $\theta \notin A$, then there exist $1 \ge a \ge 0$, $b \in \mathbb{C}$ and $z, y \in K$ which satisfy

(v) $\langle z, e' \rangle = 0 = \langle y, e' \rangle$,

(vi) $F_k(e^{i\theta}) = ae' + z$, $\sum_{j \neq k} F_j(e^{i\theta}) = (1-a)e' - z$, and $T(fe_k)(e^{i\theta}) = be' + y$.

So we have

$$b(1-a) - \langle z, y \rangle = \left\langle \sum_{j \neq k} F_j(e^{i\theta}), F_k(e^{i\theta}) \right\rangle = 0,$$

$$a(1-a) - \|z\|^2 = \left\langle T(fe_k)(e^{i\theta}), f_k(e^{i\theta}) \right\rangle = 0.$$

If ||be' + y - e'|| < 1/n, then $|b| \ge 1 - 1/n$, $||y|| \le 1/n$,

$$\frac{\|z\|}{n} \ge |\langle z, y \rangle| = |b(1-a)| \ge \left(1 - \frac{1}{n}\right) (1-a),$$

$$\|z\| \ge (n-1)(1-a), \quad a(1-a) = \|z\|^2 \ge (n-1)^2 (1-a)^2.$$

So we have $a \ge (n-1)^2/n^2$. But $\langle F_k, e' \rangle$ is a constant function, so $\langle F_k, e' \rangle \equiv 1$. By (1) and (2), $F_j \equiv 0$ for all $j \ne i$, and $F_k \equiv 1$.

Suppose that there exist e_1' , $e_2' \in K$ and f_1 , $f_2 \in H^p$ such that

$$m\{\theta: ||T(f_1e)(e^{i\theta}) - e_1'|| < 1/n\} > 0$$

(respectively, $m\{\theta: \|T(f_2e)(e^{i\theta}) - e_2'\| < 1/n\} > 0$) for all $n \in \mathbb{N}$. By (3), $1_De_1'$ and $1_De_2'$ are in $T(H^pe)$. But T^{-1} is a surjective isometry from $H^p(K)$ onto $H^p(K)$. By Remark 1, e_1' and e_2' are linearly dependent. And we have proved the lemma.

PROOF OF THEOREM. Let e be any unit vector in K. By Lemma 3, there exists a unit vector e' such that $T(fe) = \langle T(fe), e' \rangle e'$. We define the operator (it may not be linear) U by U(ce) = ce' for all $c \in \mathbb{C}$.

By Lemma 3, the restriction of T to H^pe_1 is a surjective isometry from H^pe_1 into $H^pU(e_1)$. Hence, there exist a conformal map ϕ_1 of the disc onto itself, and a unimodular complex number b_1 such that $T(fe_1) = b_1 \cdot (d\phi_1/dz)^{1/p} \cdot f \circ \phi_1 \cdot U(e_1)$. (Replacing $U(e_1)$ by $b_1U(e_1)$, we may assume that $b_1 = 1$.) If e_2 is any other vector in K, then there exist a conformal map ϕ_2 of the disc onto itself, and a unimodular complex number b_2 such that $T(fe_2) = b_2 \cdot (d\phi_2/dz)^{1/p} \cdot f \circ \phi_2 \cdot U(e_2)$. We claim that $\phi_2 = \phi_1$. Clearly, this is true if e_1 and e_2 are linearly dependent. So we may assume that e_1 and e_2 are linearly independent. By Lemma 3,

$$\begin{split} \left(d\phi_{1}/dz\right)^{1/p} \cdot f \circ \phi_{1} \cdot U(e_{1}) + b_{2} \cdot \left(d\phi_{2}/dz\right)^{1/p} \cdot f \circ \phi_{2} \cdot U(e_{2}) \\ &= T(f(e_{1} + e_{2})) = \left\langle T(f(e_{1} + e_{2})) \, , \, U\left(\frac{e_{1} + e_{2}}{\|e_{1} + e_{2}\|}\right) \right\rangle U\left(\frac{e_{1} + e_{2}}{\|e_{1} + e_{2}\|}\right). \end{split}$$

Since $U(e_1)$ and $U(e_2)$ are linearly independent (by Remark 1), we have $(d\phi_1/dz)^{1/p}f\circ\phi_1$ and $(d\phi_2/dz)^{1/p}f\circ\phi_2$ are linearly dependent. Let f=1. Then we have $(d\phi_2/dz)=d_1(d\phi_1/dz)$ or $\phi_2=d_1\phi_1+d_2$ for some $d_1,d_2\in\mathbb{C}$. But ϕ_1 and ϕ_2 are conformal maps from the unit disc onto itself. This implies $|d_1|=1$ and $d_2=0$. Let f=z+1. We have $(d\phi_1/dz)^{1/p}(\phi_1+1)$ and $d_1(d\phi_1/dz)^{1/p}(d_1\phi_1+1)$ are linearly dependent. But $\phi_1\neq 1$. So d_1 must be 1.

Replace $U(ce_2)$ by $b_2 \cdot c \cdot U(e_2)$. Then we have $T(fe) = (d\phi_1/dz)^{1/p} \cdot f \circ \phi_1 \cdot U(e)$ for any $f \in H^p$ and ||e|| = 1. Hence, for any $a, b \in \mathbb{C}$

$$\begin{split} \left(d\phi_{1}/dz\right)^{1/p} \cdot a \cdot U(e_{1}) + \left(d\phi_{1}/dz\right)^{1/p} \cdot b \cdot U(e_{2}) \\ &= T(ae_{1} + be_{2}) = \left(d\phi_{1}/dz\right)^{1/p} \cdot \left(\|ae_{1} + be_{2}\|\right) \cdot U\left(\frac{ae_{1} + be_{2}}{\|ae_{1} + be_{2}\|}\right) \\ &= \left(d\phi_{1}/dz\right)^{1/p} \cdot U(ae_{1} + be_{2}). \end{split}$$

This implies that U is a linear isometry. Since T is an onto mapping, U must be an onto mapping. So U is a unitary operator.

References

- [1] A. V. Bukhvalov and A. A. Danilevich, 'Boundary properties of analytic and harmonic functions with values in Banach space', Math. Notes 31 (1982), 104-110.
- [2] M. Cambern, 'The isometries of $H^{\infty}(K)$ ', Proc. Amer. Math. Soc. 36 (1972), 173-178.
- [3] M. Cambern and K. Jarosz, 'The isometries of H_x¹, preprint.
 [4] G. A. Edgar, 'Analytic martingale convergence', J. Funct. Anal. 69 (1986), 268-280.
- [5] K. Hoffman, 'Banach spaces of analytic functions' (Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962).
- [6] K. deLeeuw, W. Rudin and J. Wermer, 'The isometries of some function spaces', Proc. Amer. Math. Soc. 11 (1960), 694-698.
- [7] F. Forelli, 'The isometries of H^p ', Canad. J. Math. 16 (1964), 721-728.

Department of Mathematics Memphis State University Memphis, Tennesee 38152 U.S.A.