J. Austral. Math. Soc. (Series A) 36 (1984), 30—52

RECURSIVE CAUSAL MODELS

HARRI KHIVERI, T. P. SPEED and J. B. CARLIN

(Received 30 October 1981)

Communicated by R. L. Tweedie

Abstract

The notion of a recursive causal graph is introduced, hopefully capturing the essential aspects of the
path diagrams usually associated with recursive causal models. We describe the conditional indepen-
dence constraints which such graphs are meant to embody and prove a theorem relating the fulfilment
of these constraints by a probability distribution to a particular sort of factorisation. The relation of
our resuits to the usual linear structural equations on the one hand, and to log-linear models, on the
other, is also explained.
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Introduction

In his initial exposition of path analysis, Wright (1921) introduced into statistics
the basic idea of directed graphs whose vertices represent continuous random
variables and edges some notion of correlation and causation. Apart from simply
depicting the general nature of the linear structural equations which define the
causal relations under study, these graphs are also used to write down those
partial correlations which must vanish when the equations and the associated
distributional assumptions take a standard form, see Blalock (1962). Furthermore,
the path analysis rules of Wright (1921, 1934) involve tracing paths in the graph
as part of an algorithm giving equations relating the variances and covariances of
the random variables. More recently, Goodman (1973a,b) has drawn similar
graphs whose vertices correspond to discrete random variables and edges to a
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notion of interaction in a probability model of the log-linear type. He has pointed
out that in certain examples, these models embody conditional independence
constraints on the distribution of the random variables.

In a different context we find that Markov fields over finite undirected graphs
(that is, probability distributions for random variables identified with the vertices
of such graphs which satisfy certain independence constraints defined by the
graph) have intimate connexions with the theory of log-linear models, see Dar-
roch et al. (1980). A fundamental result in the theory relates Markov fields to
so-called nearest-neighbour Gibbs states, and this turns out to include a descrip-
tion of a large class of independence or Markov models for discrete random
variables, see also Speed (1978). Can we do likewise with directed graphs, and
does this tie up with path analysis?

Up until now there has been little consistency in the use of graphs in path
analysis. Some authors include all possible edges between exogenous variables,
making them undirected or bidirectional as they think appropriate, whilst others
don’t; some include undirectional edges associated with errors in the equations,
whereas most authors don’t do so, and so on. The difference here are partly
explained by varying assumptions concerning the correlation structure on the
exogenous variables or the errors in the equations, but there still remains a
diversity of practices even when—and this is not always easy to determine—dif-
ferent writers’ intentions concerning these issues appear to be the same.

If a standard form of causal graph could be agreed upon, the question of
exactly which conditional independence constraints it should be regarded as
embodying could then be addressed. These would not depend upon whether or
not discrete or continuous random variables were associated with the vertices.
Given a satisfactory answer to this question, we would then attempt to describe
all joint probability distributions which satisfy the appropriate independence
constraints. If successful, the resulting unification of discrete and continuous
models, together with the standardisation of terminology and fundamental resuits
which would ensue, should prove of value to those interested in defining, fitting,
testing and interpreting causal probability models of data. This has been our
program,

In Section 2 we define what we call a recursive causal graph, hopefully
capturing the essence of the path diagrams associated with recursive causal
models. These graphs permit neither causal cycles nor simultaneity. We describe
the separation properties which help define the independence constraints the
graph is meant to embody, and our main theorem relates the fulfilment of these
constraints by a probability distribution to a particular sort of factorisation. This
theorem is analysed in more detail in Section 3 for Gaussian and Section 4 for
multinomial distributions. The relationship of our results to the usual linear
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structural equations on the one hand, and to log-linear models, on the other, is
also explained in these last two sections. A much more extensive discussion of
these ideas with reference and illustrations can be found in Kiiveri and Speed
(1982).

2. General results

Our aim in this section is to prove a general result characterising the distribu-
tion of what we will be calling a recursive causal system of random variables
(equivalently, a recursive causal (probability) model). Such systems (models) will
always be associated with a particular kind of graph and we begin by collecting
up some preliminaries concerning these graphs.

2.1. Causal graphs. A causal graph is an ordered pair ® = (V(&®), E(®))
consisting of a finite set V(®) = V(&) U V,(®) of vertices and a finite set
E(®) = E (®) U E(®) of edges, with vertices in V,(®) being termed exogenous
and those in V,(®) endogenous; edges in E (&) are undirected ones, that is,
unordered pairs of distinct exogenous vertices, whilst edges in E, (&) are directed
ones, that is, ordered pairs of distinct vertices, the second element of which is an
endogenous vertex. In what follows we denote vertices by natural numbers:
1,2,3,... or h, i, j; edges are unordered or ordered pairs of vertices and depicted
in the usual way, namely 1 — 2 (undirected) and i — j (directed) respectively.

ExampiE 1. If V(8))= (1,2}, V(®,)= (3,4}, E(®,)={1—2}, and
E(®)={2-3,3-4,1- 4}, then &, may be depicted as in Figure 1.

2 3

FIGURE |

We will be adapting standard graph-theoretic notions to our context in which
directed and undirected edges coexist, and it is hoped that no confusion will result
from so doing. A directed [undirected] chain in a causal graph & is a sequence
ig, iy,...,1, of vertices such thati, | — i, [i,_, —i,]for/=1,2,...,m, and such
a chain is called a cycle if iy, = i,. All of the causal graphs which we consider in
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this paper are recursive, where this term means that the graph in question has no
directed cycles.

For each j € V,(®) we write D;= {h € V(8): h-j}, imd refer to the
elements of D; as direct causes of j; D; U {j} is denoted by D;. Similarly if we
write B, for j and the set of vertices k connected toj via a chainj - j, - --- = k,
then 4, = V(S)\ B, is termed the set of vertices anterior to j € V(®); we also
write A, = A; U {j}. The undirected graph with vertices V(&) and edges E,(®)
will be denoted by & , the subgraph on the exogenous vertices. More generally,
the subgraph of & defined by any subset B C V of vertices will be denoted by
(B)g; its vertices are the elements of B and its edges those in % both of whose
elements belong to B.

An important object associated with any causal graph & is what we call the
underlying undirected graph &* which has the same set of vertices V(& *) = (),
whilst its edges E(®*) are the undirected ones E (&) of & together with the
additional undirected ones connecting pairs of vertices between which a directed
edge exists in &, that is, E(&%)=E (&)U E,,(@), where En(@) denotes the
directed edges of & with their direction omitted.

A triple i, j and k of distinct vertices in & is said to be in configuration {>] if
i > k,j— k but i and j are not connected by any edge, directed or undirected.
This notion, which first appeared in Wermuth (1980), plays a key role in
determining the admissible independence statements associated with a causal

graph.
If a, b and d are disjoint sets of vertices of & we say that a and b are separated
by d in & if any chain i = iy, i,,...,i, = j connecting a vertex i € a with a

vertex j € b necessarily intersects 4. Further, we say that a4, b and d are in
configuration [>] if there is a chain in & from an element i € a to an element
J € b which includes a triple i, j & d and k € d in configuration [>]in &.

Some of our induction arguments will make use of what we will call an extreme
endogenous vertex in a causal graph &, where i* € V(®) is extreme if no
directed edge i* — j exists in E (®). Clearly Z, = V(@) for such vertices. An
easy induction argument proves the validity of the following

LEMMA 1. Every causal graph has at least one extreme endogenous vertex.

2.2. Factorisation of joint densities. Our main result below concerns factorisa-
tions of the joint density p(x,y) of an array (X;Y) = (X,: h € V(®); Y
J € V,(®)) indexed by the vertices of a causal graph &, and it will be convenient
to use certain suggestive abbreviations for joint, marginal and conditional densi-
ties. (All joint distributions will be given via strictly positive densities with respect
to a product measure. In fact all the examples we discuss below are either
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Gaussian or discrete (multinomial), and these conditions are then satisfied.) In
order to illustrate our abbreviations we return to Example 1.

EXAMPLE | (continued). Associated with the (recursive) causal graph &, we will
have four random variables ( X|, X,; Y3, Y,), the X’s being termed exogenous and
the Y ’s endogenous variables. Our later discussion will involve the assumption of
independence of Y; and X, given X, and also of Y, and X, given (X, Y;); we
abbreviate the conditions to 1 L 3/2 and 2 L 4/1, 3. Similarly the factorisations
of the joint density p of the variables which are equivalent to these independence
assertions:

(x,, x ) = p(l,2)(xla xz)P{z,s)(xz’ ¥s)
P2\ X1 X2, V3 P(z)(xz)

and

P(1,2,3)(x|’ X725 J’3)P(1,3,4)(x1’ V3> Va)
p(l,3)(xl’ »3)

P(xl’ X2 V35 Vs) =

are abbreviated to

_ (12)(23) _ (123)(134)
(123) = T and (1234) = —m)—-—

Finally, the factorisation which embodies both of these conditions:

p(xi, x5, ¥35 Ya) :P(I,Z)(xl’ xz)Psqz()’a|x2)P4|(1,3)()’4|x1’ »)

is abbreviated to

(1234) = (12)(3]2)(4]13).

This illustration should explain how our abbreviations are intended to be read.

We will be making considerable use of the notions and results concerning
Markov random fields over finite undirected graphs which can be found in
Darroch et al. (1980) and Speed (1978, 1979). A distribution (V) for a set of
random variables indexed by an undirected graph & = (V,, E) is said to be
Markov over &, if it satisfies either of the conditions:

Local Markov Condition: For each h € V, the conditional distribution
(R V\{h}) of X, given all the X,, g # h, coincides with (#|9h), the conditional
distribution of X, given all X, with g € 0h = {i: {h, i} € E,}.
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Global Markov Condition: For disjoint subsets a, b and d of V, such that d
separates a from b in V,, we have

(aU d)(bU d)
(d) '

An extension of the global Markov condition to disjoint subsets a,...,a,, and d
with a, and a, separated by d (1 < k </ =<m) is readily found to be equivalent to
the condition stated here. The general equivalence of the local and global Markov
conditions over an arbitrary finite graph does not seem to be explicit in the
published literature. It is well known for discrete random variables, where it
follows from a characterisation of all corresponding probability distributions, see
Speed (1979) for this result (and many references to equivalent ones), while the
remarks on page 194 of that paper show how to get the general result.

(aUbud) =

2.3. The main theorem. This subsection is devoted to the statement and proof of
the main result of the paper. It is a fairly natural extension of the corresponding
result for purely undirected graphs, although it cannot go too far without some
restrictions on the type of probability densities under consideration. Each of the
important cases—the Gaussian and the multinomial—is discussed later in the
paper, and it turns out that statement (1) of the theorem is the lead-in to a
reasonable parametrisation, that is, a complete description, of all such probability
densities in these two cases. In a sense the theorem together with Proposition 4
below provides a directed analogue of the Hammersley-Clifford or NNG = M
theorem, so-called in Speed (1979).

THEOREM. Let & be a recursive causal graph and (X;Y) a system of random
variables indexed by the vertices of &:

(X;Y) = (X,: h € V(®); Y;:j € V,(®)).

The following are equivalent for a strictly positive joint density (V'):
(1) The recursive causal factorisation:
(1) (V) is Markov over the undirected graph & _; and

(i)
(RCF) )= 11 (iD).
JEV,
(2) The Global Markov property for causal graphs:
For all families a,, a,,...,a,,,d of m+ 1 =3 pairwise disjoint subsets of V
satisfying _
(i) UT'a,Ud =V, or, for somej € V,, Ul'a,Ud=A4;
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and
(i) for Y < k <1< m the sets a, and a, are separated by d in &, or (A;), as
the case may be, and are not in configuration [>] in ( A;) g,
we have

_M{(a,ud)

(M) (Gaua)-Tilay
1 (a)™"

(3) As in (2) above but with the = in (i) replaced by C ;

(4) The Local Markov property for causal graphs:

@) (V) is locally Markov over the undirected graph & ,; and

(i) Forallj eV,

(/_{;) — (51)(‘41)

(LM) RS

As an illustration of the theorem, we return to our example.

ExaMmPLE 1 (continued). We have already asserted the equivalence of the
factorisation (1234) = (12)(3|2)(4|13) with the pair of factorisations (123) =
(12)(23)/(2) and (1234) = (123)(134)/(13). These assertions—which are easily
checked directly—can now be regarded as an instance of the theorem just stated;
for example, 4, = {1,2,3,4}, D, = {1,3)}, whilst D, = {1, 3,4}.

REMARK. Each assertion in the statement of the theorem has essentially two
parts: one concerning (V) relative to &, and one concerning other aspects of
(V) in relation to &. The assertions concerning (V,) and & are either the same
or equivalent by the basic theorem concerning Markov probabilities over undi-
rected graphs referred to in Section 2.2, and will not be referred to any further in
the proof which follows.

PROOF. (1) implies (2). We do this by induction on the cardinality | V,| of V,
assuming that |V, |= p = 1. Let us suppose that |V, |= g = 1, that is, assume

(1) (V) = (V)P + 11D,41),

and suppose that q,, a,,...,a,, and _d satisfy (i) and (ii) of (2) with union A_p ‘-
To begin the proof we show that D, C a,. U d for some /* € {1,...,m}. If
p+1€dand D,,, C d the result is obvious, so we consider the case when there
exists an i € D, | and i & d. For this i there is a (unique) /* such that i € a,..

Now suppose that we haveaj € D, , andj € a,for/ # [*. Then a/, a;. and d are
in configuration [>], contradicting our assumption. Hence D, ., C a,. U d in this
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case. On the other hand if p + 1 € a,. for some /* and i € D, , satisfies i € g,
for I+ I*, we contradict the separation assumption. Hence D, Ca, U d in
both cases and the assertion follows.

Our proof (of the case ¢ = 1) is now completed separately for each of the cases
p+1l1€dandp+ 1 &d. Let us start with the latter, observing that in this case
{ap 1= 1*}Y U {a\{p + 1}} is a family of m pairwise disjoint subsets of (V)
separated by d C V,. By the undirected global Markov property

«(a,Ud)-(a,Vd +1

(2) ( Ua,UdUa,.\{p+1}) LY (g, ) (a’:—l \{p +1})
I=10* (d)

and this part of the proof would be completed if we could include the singleton

{p + 1} in those parts above where it is excluded. Integrate out all variables from
both sides of equation (1) except those in (a,. U d); we obtain

3) (apUd)=(a,ud\{p+1})(p+1|D,,.,).

In a similar way we can integrate our variables' from both sides of (1) until its
left-hand side coincides with that of equation (2) except that p + 1 remains, and
we get

(4) (LIJa,Ud)=(Ua,UdUa,.\{p+1})(p+1|Dp+l).

1=1*

The desired result now follows from equations (2), (3) and (4).

The remaining case is when p + 1 € d. Here we put d* = d\{p + 1} and
observe that d* separates a,,...,q,, in V, and so we have again by the undirected
global Markov property:

,(a, U d*)
(5) (V) =~
(d*)
Now we can integrate out variables from both sides of equation (1) to obtain
(apUd)=(apUad*)(p+ lle+1)
and this combines with equations (5) and (1) to give
IM,.+(a,Ud*)(asUd)
©) (v) = A= SR 20
(d*)

Finally, we integrate all variables except those in a, U d, [ # I*, out of equation
(6) and get down to

(a,U d) 2(0—1(:1)*;1—*)@), 115,

TThere are none in this case (g = 1) but there will be in the inductive step (g > 1).
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This, together with equation (5), gives us what we want. Thus the induction
argument has begun.

Suppose now that the implication has been proved for all recursive causal
graphs & having | V, |< g vertices, ¢ > 1, and let us consider such a graph with
| V,, |= q. Take an extreme endogenous vertex j* € V(&) and consider the smaller
graph &* with j* and its incident edges removed from &. This satisfies our
induction hypothesis, and we now prove the induction step in much the same way
that the induction argument was begun. For this reason we present the argument
only in outline.

Given a system a,,...,a,, d satisfying (i) and (ii) of (2) in the statement with
U,a,U d = A, we first note that if j* & A4, then the result follows from our
inductive hypothesis. Thui we need only consider the case j* € 4;, and hgre we
readily observe that i € 4, also holds for all i € D, that is, that D. CA;. An
earlier argument now proves that D, C a,. U d for a unique /*, and the first part
of this proof is indicated.

The remainder of the proof of the induction step goes as before. If j* & 4 then
the {a,, [  I*}, a;\{j*} and d satisfy the conditions (i) and (ii) of (2) in &* and
the induction hypothesis together with the earlier argument completes the proof.
On the other hand, if j* € d, then {a,; /= 1,...,m} and d* = d\{j*} can be
used; again the details are the same as in the earlier argument. Thus the induction
step and so the whole implication is proved.

(2) implies (3). This implication will be proved if we can extend any system
{a,,...,a,} and d satisfying 2(i) and (ii) with only C in 2(i), to a system
{af,...,a}} andd with a} D a,, I = 1,...,m satisfying 2(i) and (ii) but with = in
2(i). For then the variables in a}\ a;,, / = 1,...,m may be integrated out to prove
that the desired factorisation for the original sets is a consequence of that for the
enlarged sets.

The desired extension is a purely graph-theoretic matter. We begin with a
system {a,,...,a,,} and d satisfying 2(i) and (ii), but with U,a, U d C 4, say.
Consider the class of all systems {b,,...,b,} and d which satisfy all the relevant
separation properties of 2(i) and (ii), and further, b, D a,, /= 1,...,m. This is
clearly a finite non-empty class and so must possess elements maximal in the
componentwise ordering. Let £: {a},...,a}} and d, be such a maximal system,
and suppose that U, a} U d C 4. Then there exists j* belonging to 4; but not to
U, a} U d, and for each [, 1 <[ < m, the system £, {a*,...,a} U {(j*},...,a%)
and d, must violate one or the other of the restrictions of 2(ii). Let us consider £,.
Then there exists k € {2,...,m} and a chain j, = j*,...,j, € a which either fails
to intersect d, and so violates the separation requirement of 2(ii), or meets d in
configuration [>], thereby violating the other requirement of 2(ii). In a similar
way we may consider £,; there will exist / € {1,...,m}\{k} and a chain

https://doi.org/10.1017/51446788700027312 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700027312

f10] Recursive causal models 39

Jo =J*-...Jj; € a} which violates either the separation or the configuration [>]
requirement of 2(ii). This gives us four cases, each of which leads to a contradic-
tion, and so we conclude that no such j* exists.

To see this, suppose that the separation requirement is violated in both cases.
Then we will have a chain from j, € af toj; € af (viaj*) which does not meet d,
contrary to our hypothesis about £*. The other three possibilities are dealt with in
a similar manner and our conclusion follows.

Thus any maximal system £ has union the whole of A‘J and the remainder of the
proof that (2) implies (3) is as outlined at the beginning.

(3) implies (4). This is immediate: simply take m = 2, a, = {j}, a, = A\ D,
and d = D, in (GM) and (LM) follows.

(4) implies (1). Once more we use induction on | V(®)|. When |V, |= 1, that is,
when V, = { p + 1}, the factorisation (LM) with j = p + 1 is just (RCF). Thus
our induction argument can begin.

Suppose now that the implication is true for all  with | V,(®)|< q, ¢ > 1, and
that we have a & with | V,(®)|= g. Take an extreme endogenous vertex, j* say,
and notice that 4. = V\{j*}. Thus (LM) with j = j* gives us

_(n\N(D)
V) =55

J

= (V\{/*D)(j*D;)

whilst our inductive hypothesis gives us

wm\*H=0) I UID).

JEVN{*}

These last two equations combine to give (RCF) for the whole of V.

Our next result incorporates the work of Wermuth (1980) into the present
framework. Decomposable graphs are defined and discussed in Darroch et al.
(1980); they are simple graphs possessing no cycles of length n = 4 without
chords.

COROLLARY. Suppose that the recursive causal graph ® of the theorem has no
configuration [>). Then each of the conditions (RCF), (GM) and (LM) is equivalent
to:

(UM) The joint distribution (V') is Markov over the underlying undirected graph
®*~.

Moreover, if & _ is decomposable, then & is also decomposable.

PROOF. Let us suppose that a joint distribution (V) over such a & satisfies the
equivalent conditions of the theorem. Choose an extreme exogenous vertex j*,
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noting once more that Ij. = V. Then for any system a,,...,a,, and d for which a,
and a, are separated by d in 8%, 1 < k </ < m, we conclude that a,,...,a,, are
mutually conditionally independent given 4 under (V). But this is just the
Markov property of (V) over &*.

To prove the converse we need to check that there are no additional independen-

cies arising from a system a,,...,a,, and d whose union is contained in 4, j not
extreme. Suppose that d separates these (pairwise) in (4, ) g« but not in &* Then
there is a chain a; 3 ji,....J,— 1, Jps Jp+15- - - 2J; € @, cOnnecting some pair a, and

a, from the system which involves a j, & 4, that is, j, € E,. Supposing, as we
may, that the chain under discussion is a minimal length one having this property,
we will derive a contradiction.

Since @ has no instance of configuration [>] we cannot have j, | - j, < J, 1y,
and so0 j, > j,_;, say, holds. Then j,_, - j,_, must also hold, for if j,_, = j,_,
then we would need to have j,_, — j, or j, = j,_, to avoid a configuration [>],
but this would contradict minimality of the length of the path. This argument
continues down to j, — j,. At no stage can j,, 0 < r < p, belong to V,, for every
one of them belongs to E; by construction. But this is just our contradiction, for
Jo € a, C A; was part of our assumptions. Thus separation in { 4, ) coincides with
separation in &* and the first part of the corollary is proved.

The decomposability of &* is proved by induction on | V,(®)|. Suppose that
| V,|= 1. By assumption the graph &* without p + 1 and its incident edges
contains no r-cycles, r = 4. This must continue to be the case when p + 1 and its
incident edges are included, for an r-cycle, r = 4, involving p + 1 must include a
configuration [>] with p + 1 at its apex. The inductive step is proved in a similar
way with the role of p + 1 in the foregoing taken by an extreme endogenous
vertex. This completes the proof of the corollary.

ExampLE 2. Let V(&,) ={1,2,3} and V,(&,) = {4,5}, with &, being as
depicted in Figure 2(i) below.

2 - 4
——
1 3 5
FIGURE 2(i)
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2 4

1 3 5
FIGURE 2(ii)

Then any joint distribution (12345) satisfying the causal Markov constraints of
&, also satisfies those of &%, and conversely.

ExaMpLE 3. The graph Figure 3(i) below arises as part of the causal system
described as two-wave two-variables, see Kiiveri and Speed (1982).

Z | M |
1 3 1 3
FIGURE 3(i) FIGURE 3(ii)

The associated causal factorisation is (1234) = (1)(2|1)3|1)(4|123) and this
corresponds to the single conditional independence constraint 2 and 3 indepen-
dent given 1. It is clear that there is one instance of configuration [>], involving
4, and so the Markov constraint of the underlying undirected graph Figure 3(ii),
namely 2 and 3 independent given 1 and 4, do not coincide with the causal
Markov constraints. To see this directly we note that Gaussian random variables

with covariance matrix 2 of the form given below satisfy the causal constraints of
Figure 3(i) but not those of Figure 3(ii).

4 3 2 1

4 2 -2 1] 4
=E=|_2 2 1 -1|3, Z='=
2
1

-2 1 2 -1
1 -1 -1 1

— et e P
DO = DO — W
NN == N
S S S
— N W A

3. Gaussian distribution
The most thoroughly studied causal systems or causal models are those in

which the underlying distributions are Gaussian, see Joreskog (1977) and Wermuth
(1980), although many people treat the subject as an aspect of regression and
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correlation analysis, not requiring a complete specification of the joint distribu-
tion of the random variables under study, see Kang and Seneta (1980) and
references therein. It is not hard to see that all the (conditional) independence
statements concerning our variables can be interpreted on terms of zero ( partial)
correlations, if we assume only that the random variables have a finite covariance
matrix. The structure of £~ in 3.1 also lends itself to deriving recursive systems of
linear equations, and it is to this topic which we now turn. A byproduct of our
analysis is a proof of one form of the familiar path analysis rules. General
references in this area include Boudon (1965), Duncan (1966, 1975), Goldberger
and Duncan (1973), Moran (1963) and Simon (1953, 1954).

Throughout this section £ = (o0,,) will denote the covariance matrix of the
random variables (X;Y), arranged in some order beginning with the p exogenous
( X-) variables followed by the g endogenous (Y-) variables. The matrix = will be
partitioned in a way compatible with (X;Y) but we place its elements in the
reverse of the usual order, that is, with ¢,, in the bottom right-hand corner. All
mean values will be taken to be zero.

3.1. Factorisation of =~'. Most of the results in Section 3 relate to our particular
parametrisation of 3 which is a variant of the Choleski-type factorisation used in
Wermuth (1980). No use is made of the graph & in this first lemma; we are
simply dealing with p + g random variables labelled as above.

LEMMA 2. The inverse covariance matrix 7' of the Gaussian system (X;Y) of

random variables has a unique representation ="' = LAL" where L and A have the
SJorm
c o] q ¥ o0 q
L=1|B I|P A=1]0 il 4
q p q p

with C lower-triangular and having + 1s downs the diagonal, ¥ diagonal, with
positive elements, and ® positive definite, I denoting the p X p identity matrix.

PrOOF. The easiest way to get this result—which is just a modification of the
familiar Choleski decomposition of =-!, involving the treatment of the first p
variables en bloc is to define the matrices L and 4 and check that H™' = LALT
actually coincides with =-!. We do this as follows:

Forj>p,i<j, Lit= =By, i-vi+1,. 1y
forp<j<p-+agq, V= 0, s
and forl<g, h<p, ¢, = 0y
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Here B;,., is the partial regression coefficient of the jth variable on the ith,
eliminating the variables with indices in the set @, and g;;. , is the residual variance
of the jth variable after eliminating those with indices in a.

Writing L = (1;;), ® = (¢,,) and ¥ = diag(y;) (where we have added in 0s and
1s to the definition of L) we readily see that if H™' = LAL”, then HL = L™ 747\
Beginning with the bottom right-hand p X p-block and continuing recursively we
can check easily from this equation that £ = H. We omit the details.

Uniqueness is easily proved and again the details are omitted.

It is worthwhile gathering up some formulae associated with this decomposition
of 7! they are all easily checked.

E-lz[c 0][?-‘ 0 Mcf BT]:[cqr-'cT Cy'BT

B Ilio o'jlo 1 BY-'CT BV 'BT + !
s :[c-T —C‘TBTH‘I' olfct o
0 1 0 @Jl_pct' 1
:[c-wc-‘ + C-TBT®BC"! —C‘TBT(D]
~®BC"! ) '
Forj>p,

J Vv, ifk=j,
A, = J
El Fitc ik {0 ifk <.

The factorisation described in the preceding lemma will be called the (L; A4) or
(L; ¥, ®) or (C, B; ¥, ®) decomposition of ! in what follows. Notice that it
does depend on the ordering of the random variables.

For our main result in this section we need the notion of a strict ordering of the
vertices of a recursive causal graph & compatible with the graph structure, which is
an ordering @: V — {1,2,...,| V|} such that

@ @(V) = {1,2,...,| ¥, I}, (ii) (i) < p(j) whenever j € ¥, and i > .

It is not hard to see that for any recursive causal graph & there is always at
least one compatible strict ordering of V().

The following result concerns random variables (X; Y) indexed by the vertices
of a recursive causal graph & and ordered in the same way as these vertices. Their
joint Gaussian distribution has density ps, corresponding to mean 0 and covari-
ance matrix X.

PROPOSITION 1. The distribution pys satisfies the equivalent conditions of the
theorem if and only if for all strict orderings of V(®) compatible with &, the
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elements of the associated (L; ¥, ®) factorisation of =" satisfy the zero constraints
forallg,heV, jE V,andi €V

(i) ¢%" =0 whenever {g,h} & E(®);
(ZC)
(ii) 1,;,=0 whenever(i,j) & E|().

REMARK. It is clear from this result that the (L; ¥, ®) parametrisation is a
natural one for describing the causal Markov property of a Gaussian distribution.
Statistical matters such as the fitting and testing of such models with this
parametrisation are discussed in Kiiveri (1982).

ProOF. We will compare the density py, where 2 has the (C, B; ¥, ®)
factorisation, with (1) of the main theorem. Suppose that L and ® satisfy the zero
constraints (i) and (ii) when some strict ordering is used for labelling the Xs and
Ys, and hence the elements of 2. Then a little simplification shows that -21log py
involves the log of two determinants plus

2

ieD; heD;

2¢8hxgxh+2‘l’j_ yt 2c iyt > binxy
g:h J

But as soon as we recall the interpretations of y;, c;; and b, given in Lemma 2 this

is seen to be just the —2log(¥") in the form (RCF)
The converse is proved by reversing the above argument.

ExaMPLE 1 (continued). The (L; A) factorisation of the inverse covariance
matrix =" of four random variables (X,, X,; Y;, ¥,) whose Gaussian distribution
satisfies the causal Markov constraints of &, has the form

10:0 0| 4 + 0:0 0] 4
*x 1,0 0 0 +,0 0] 3

L= 6'1:'1‘6 2, A=1|7% o‘fl e | 2
*+ 0,0 1411 0 0 + 1
4 3 2 1 4 3 2 1

where * (resp. +) denote freely-varying real (resp. positive) numbers, and the
lower right-hand 2 X 2 submatrix of A must be positive definite. For example, the
element /;, of L is in fact —B,;.|,, whilst /,, = ~B4, 13 = 0. Similarly /,3 = -88;; ,
= 0, whilst a,, = 64,153
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EXAaMPLE 2 (continued). The ( L; A) factors here have the form

1 0:0 0 0| S5 + 0; 0 0 0S5
0 1,0 0 0] 4 0O +:10 0 01 4
L= « x;1°0° 0 3 4= 00, % a3
0 *:O 1 0) 2 0 0: * + * 2
[0 0,0 0 1] 1 |0 0, x =+ +]1

5 4 3 2 1 5 4 3 2 1

but we note that it is not necessary to use these matrices with Example 2 since &,
is decomposable. In such cases the non-causal Markov constraints coincide with
the causal ones, and positive definite matrices £~' having zeros in the positions
corresponding to those {g, h} & E (®), and those (i, j) € E(®) with i € D,
give a more compact description of the associated distribution ps. This coincides
with the approach of N. Wermuth (1980), see the expression for =! associated
with &, (or &%) below.

[+ 5
0 + 4

si=|* * + 3
0 * * + 2
LO * * + 1
5 3 2 1

3.2. Structural equations. We can now describe the connexion between our
approach to recursive causal systems of random variables and the much more
familiar one used in econometrics and elsewhere involving linear equations. Let us
begin with a system (X; Y) of p + ¢ Gaussian random variables having covariance
matrix 2 as in 3.1. The following is an easy consequence of L.emma 2.

LEMMA 3. If 7' is decomposed into (C, B; ¥, ®) as in Lemma 2, then X and Y
satisfy the linear structural equations

(SE) C'Y+BTX=U,

where U and X are independent Gaussian vectors with covariance matrices ¥ and ®.
Conversely, if X and Y satisfy a system such as (SE), if U and X are independent
with covariance matrices ¥ and ®, and further, if C is lower triangular with +1s
down its diagonal and ¥ is diagonal, then the matrices B, C, ¥ and ® combine as in
Lemma 2 to give =7'.
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PrOOF. This result is an immediate consequence of Lemma 2 and the formulae
which follow it.

REMARKS. (i) It is perhaps more usual with structural equations to specify that
(SE) hold with C, ¥ having the properties stated, and that only the conditional
distribution of U given X be Gaussian (with mean zero and covariance matrix ¥).
In other words, either X is not regarded as a random vector, or it is, but no
assumptions are made about its distribution. In the latter case such a specification
still corresponds to =~! having the form LAL” with L and A having their usual
structure. For if CTY + B7X is normal with zero mean and covariance matrix ¥,
given X, then Y has mean —~C7"BTX and covariance matrix C-"¥C! given X,
whence Var(Y) = C-"¥C~! + C-TBT®BC~' and Cow(Y, X) = —~C-"B7®, where
® = E(XXT) is assumed to be finite. These formulas may be compared with those
following Lemma 2 and the assertion will then be evident.

A consequence of the remarks just made is the following: any conditional
independence statements concerning (X;Y) involving X-variables only in the
conditioning which are valid when the whole system is jointly Gaussian are also
valid if we assume only that Y given X (equivalently, U given X in the above)
Gaussian.

(ii) All of the foregoing extends to the case in which only second-order
assumptions concerning U given X are made; simply replace conditional indepen-
dence statements by the corresponding zero partial correlation ones.

Turning now to the Markov properties enjoyed by (X; Y) when they satisfy a
set of equations such as (SE) under the further assumptions stated in Lemma 3,
we have the following immediate consequence of Proposition 1.

PROPOSITION 2. A Gaussian system (X;Y) satisfying the equations (SE) with U
independent of X and having covariance matrices ¥, ® respectively, C lower-triangu-
lar with +1s down the diagonal and ¥ diagonal, also satisfies the equivalent
conditions of the theorem if and only if L = (§ 9) and ® satisfy the zero constraints
(ZC) of Proposition 1.

In other words, we can use the theorem to draw causal graph associated with
any system of structural equations such as (SE) having zeros in the lower-triangu-
lar matrix C (and also in the inverse of the covariance matrix of the exogenous
variables), and then make direct conditional independence statements concerning
the endogenous variables (and also the exogenous variables) valid under the
further assumption that Y | X [(X; Y)] is Gaussian. Once more we remark that the
same argument yield zero partial correlation statements which are generally valid.
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3.3. Path analysis. There is now quite a large literature on path analysis but few
precise formulations or proofs of the so-called path analysis rule, see Kang and
Seneta (1980) for references. Suppose that (X;Y) is a Gaussian system of random
variables indexed by the vertices of a recursive causal graph @& in the manner of
our earlier discussion. The path regression coefficient associated with an edge i — j
of E(®) is simply the coefficient —/;;, that is, Bii-pagiy = By () hereafter
abbreviated to B;;, and one form of the basic rule expresses the covariance o,;
between any of the variables at vertex i € V and j € V, in terms of path
regression coefficients and covariances o,,, g, h € V,, of pairs of exogenous
variables. A more refined rule, which will not be given here, applies when the
graph structure assumed involves a decomposable graph &, on the exogenous
vertices. For in that case we can further decompose the covariance o, g, h €
V.(®) into sums of products of covariances which are associated with edges

{8, h} € E(G).

PROPOSITION 3. In the notation introduced above

%i; = ;Bhlhz “Bu nOnn, Bhn T Bhon,,

+ EBiliz T Bi,_,i,"i,i,ﬁim.‘, B
2

vio—1

where 2 is the sum over all non-self-intersecting paths
1
izhl — (_hr—l‘_hr—hr+l—‘)hr+2_) et _’hu:j, r= l,u>r+2,

and 3 is the sum over all non-self-intersecting paths
2

i=ije e ci—i > oi =j, s=l,v=s+2,
REMARK. In terms of path-tracing we are in effect supposing that every pair g, h
of exogenous vertices is connected by an edge (unless o,, = 0). This will in
general be inconsistent with the edge structure E (&) assumed over V, (&), but as
we have already indicated a completely satisfactory but rather more complicated
reformulation of the rules exist when &, is decomposable. In practice it is
common to have one or the other of the extreme cases: all exogenous variables
arbitrarily correlated, or all mutually independent, and in both of these our

reformulation is unnecessary.

PROOF. By induction on | V,(&)|. If | V,(&)|= 1 then we need only consider
04 p+1 Where p =| V,(®)|. By the formula following Lemma 2

Oh.p+l — E Bp+l,gogh = Bp+l,hohh + 2 Bp+l,gogh'
gEV, g#*h
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The first term is seen to correspond to 3, if h —» p + 1 € E (&) whilst the second
sum corresponds to 3,, being over all paths of the formh — g, g - p + 1.

Now assume that the result holds for all causal graphs with fewer than
q =|V(®)|, g > 1, endogenous vertices, and let us consider an extreme exoge-
nous vertex j* of &. We need only check that o, ;. takes the form of our statement,
for all other covariances have that form by the inductive hypothesis. Once more
we use the formula following Lemma 2, and this time it reads

;o = > ,Bj.ko,-k.
kED,
But for k € D;., i € V\{Jj*} our inductive hypothesis tells us that (in an obvious
notation)

whence

(k) (k)
— {ﬁ,-.kzw,.kz}:zd
1 2 1 2

kED,

completing the proof of the inductive step and so the proposition.

ExXAMPLE 2 (continued). Applying the rule just given to calculate 0,5 we find
that

045 = Bi023Bs3 + B430338s;

these being the sums over the paths 4 <« 2 — 3 - 5 and 4 < 3 — 5 respectively.

We close this section with some remarks on the relation between the above and
the work of others. Moran (1961) operates within a framework similar to ours,
making Markov-type conditional independence assumptions concerning his sys-
tem of random variables. These (Assumption II) suffice to give him a form of our
Proposition 3, but do not characterise the systems. More recently Kang and
Seneta (1980) prove results which relate closely to the material concerning
Gaussian arrays. Specifically, their Lemma 1 is a second-order version of part of
the main theorem and their Lemma 3 is a more general version of our Proposition
3. Finally, Wermuth (1980) considers the relationship between the pattern of
zeros of =7 !"and that of L in ! = LA~'L7, proving that they are essentially the
same iff the corresponding Gaussian distribution (or graph) is decomposable. It is
in this paper that the condition we term [>] (there called reducible zero pattern)
is introduced.
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4. Discrete distributions

One of the main reasons why an independence formulation of the basic results
of recursive causal models is desirable is their immediate applicablity to discrete
data. In this section we examine the problems of parametrising discrete recursive
causal models, and relate such models to the more familiar log-linear models for
discrete data, see Goodman (1972, 1973a,b) and Fienberg (1977). We begin with
some extra notation and terminology.

Let us suppose that the exogenous variable X, takes value x, from a finite set
X4 b € V,(@®), and similarly that Y, takes values y; from ¥, j € V,(®). Then the
full array (X;Y) takes values (x;y) from II,c, K, XII,c,, ¥ =X X% and
throughout this section we will suppose that for all (x;y) we have the positivity
constraint:

p(x;y) =P(X,=x,,h €V, Y, =y,j€EV,)>0.

If A C V we write x , [resp. y,] for (x,: h € V., N A) [resp. (y;: j €V, N A)]. In
order to relate our main theorem to log-linear models, we need to refer to the
vector space S of all real-valued functions on %X X %, and to the subspaces S(A4),
A C V, of functions depending only on (x,;y,). They have been discussed in
Speed (1979). (There, however, the subspace S(A) is denoted by E,; we have
changed notation to avoid confusion with edge sets.)

For a probability distribution p over X X % and for j € V,, let us write p; for
the marginal distribution of the variables indexed by 4;, and 6, for the conditional
distribution of Y, given (X, ; YA,)- Note that 6, depends only on 4,; indeed

oj :pj/zpj
J

where 3, denotes a summation over all y, € U, Furthermore, write p, for the
marginal distribution over V.

The following reformulation of the main theorem shows that a recursive causal
model for discrete data is, in general, the conjunction of a set of log-linear models
for the full array and certain of its marginals. Recall, see Speed (1978), that a
maximal cliqgue in an undirected graph is a set of vertices each pair of which is
connected by an edge, and is maximal with respect to this property. The set of ail
maximal cliques of &, = (V(®), E (®)) is denoted by C,.

PROPOSITION 4. A probability distribution p satisfies the equivalent conditions of
the main theorem if and only if

(i) log p, € S(C,) = Z{S(a): a € C.}; and forallj € V,,

(ii) log p; € S(4,) + S(D)).

https://doi.org/10.1017/51446788700027312 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700027312

50 Harri Kiiveri, T. P. Speed and J. B. Carlin [21]

Proor. These conditions are just a reformulation of (4) from the main theorem
using the Hammersley-Clifford theorem, see for example the main result of Speed
(1979) for a proof in the present spirit.

Many instances of this result, with a different parametrisation, can be found in
the papers of Goodman (1972, 1913a, b; 1974a,b).
The subspace sum S(A4;) + S(D;) may be written as

s(4,) +[s(D)) e 5(4,)] = s(4,) +[s(D,) e s(D,)].
where ©denotes orthogonal complement in the usual inner product. This fact is a
consequence of the fact that the_ projections onto the various subspaces S(A4) C S
all commute, and El_lat A; N D;= D,. Thus we see that if p; = exp(§; + n;),
§, € S(A4)),m, € S(D;) © S(D)), then 6, may be represented as

6, =expn;/ 2 expm;,
J

and furthermore, the 7; € S(Ej) © S(D;) is unique. Putting this into (1) of the
main theorem we see that a probability p over %X X U which satisfies the causal
Markov constraints has a unique representation

expn,
rp=prll .

Sona’ wheren; € S(D,) © S(D,),j € V,.
JEV, <J Jj

Further, one can easily prove that the {7} are pairwise orthogonal. With p
represented in this form we see that it is possible to restrict even further the
higher-order interactions between an endogenous variable and its direct causes
without disturbing the causal Markov constraints. Thus causal modelling with
discrete data has two aspects: the underlying causal model, and the higher-order
interactions just mentioned.

In closing this section we remark that when & contains no configurations [>]
the causal Markov constraints collapse into a single set of log-linear constraints,
those associated with what Darroch et al. (1980) call a graphical log-linear model.
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