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Surface gravity waves induce a drift on objects floating on the water’s surface. This study
presents laboratory experiments investigating the drift of large two-dimensional floating
objects on deep-water, unidirectional, regular waves, with wave steepness ranging from
0.04 to 0.31 (0.04 < kaw < 0.31, where k is the wavenumber and aw the wave amplitude).
The objects were carefully designed to have a rectangular cross-section with a constant
aspect ratio; their size varied from 2.6 % to 27 % of the incident wavelength. We observed
Lagrangian behaviour for small objects. Small and large objects exhibited fundamentally
different drift behaviour at high compared with low wave steepness, with a regime shift
observed at a certain size and wave steepness. The scaling of object drift with steepness
depends on the relative size of the object. For small objects, drift scales with steepness
squared, whereas drift becomes a linear function of steepness as the object size increases.
For objects that are relatively large but smaller than 13–16% of a wavelength (low to
high steepness), we provide experimental evidence supporting the mechanisms of drift
enhancement recently identified by Xiao et al. (J. Fluid Mech., vol. 980, 2024, p. A27) and
termed the ‘diffraction-modified Stokes drift’. This enhanced drift behaviour, compared
with the theoretical Stokes drift for infinitely small fluid parcels, is attributed to changes
in the objects’ oscillatory motion and local wave amplitude distribution (standing wave
pattern) due to the presence of the object. In the case of larger objects, similar to Harms
(J. Waterw. Port Coast. Ocean Eng., vol. 113(6), 1987, pp. 606–622), we relate the critical
size at which drift is maximised to their vertical bobbing motion. We determine the domain
of validity for both Stokes drift and the diffraction-modified Stokes drift model of Xiao
et al. (J. Fluid Mech., vol. 980, 2024, A27) in terms of relative size and wave steepness
and propose an empirical parametrisation based on our experimental data.
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1. Introduction
The assessment of mass transport in the ocean plays a crucial role in determining the
migration of sediments, pollutants (Iwasaki et al. 2017; Dobler et al. 2019), tracking buoys
(Nath 1978; DeBok & Roehrig 1981; Wilson 1982; Tanizawa, Minami & Imoto 2001),
ice floes (Arikainen 1972; Perrie & Hu 1997; Meylan et al. 2015), as well as trajectory
forecasting for search and rescue operations (Röhrs et al. 2012; Breivik et al. 2013).
The recent surge in interest in this topic is driven by the alarming increase in plastic
pollution, which requires effective management and clean-up, beginning with an improved
understanding of their global transport patterns (Law et al. 2010; Eriksen et al. 2014; Van
Sebille et al. 2015; Law 2017; Van Sebille et al. 2020). In this study, we investigate the
drift motion of large floating objects induced by surface gravity waves.

1.1. Reasons for enhanced drift
The orbit of a fluid particle in waves is not fully closed over a wave cycle, resulting in a net
drift in the direction of wave propagation known as Stokes drift (Stokes 1847). To study
the transport of floating objects, several studies have superimposed the Stokes drift onto
the Eulerian current field obtained from ocean general circulation models or observations
(see Van Sebille et al. (2020) for a review). There are three reasons why this approach may
not result in a correct prediction of the drift of floating objects in the real ocean. First, this
approach ignores the modification of the Eulerian-mean flow by the surface waves: on the
rotating Earth, the Stokes–Coriolis force drives an Eulerian mean. This so-called Ekman–
Stokes flow needs to be added to the Stokes drift to properly estimate the wave-induced
Lagrangian-mean flow, which is the flow responsible for transporting objects floating on
the ocean surface (Higgins, Vanneste & van den Bremer 2020b). On the time and spatial
scales associated with typical laboratory experiments, this Ekman–Stokes flow does, of
course, not arise. Second, it has been shown that the drift at the surface of a breaking wave
is much larger than the prediction of classical Stokes drift for non-breaking waves (Deike,
Pizzo & Melville 2017), as confirmed in experiments (Lenain, Pizzo & Melville 2019;
Sinnis et al. 2021), and breaking may make a significant contribution to the Lagrangian
drift of realistic wave fields (Pizzo, Melville & Deike 2019). In the context of irregular
waves, Eeltink et al. (2023) have recently proposed a stochastic differential equation
that uses a Brownian motion to capture the non-breaking drift-diffusion effect associated
with a random non-breaking sea state and a compound-Poisson process to capture the
rapid jumps in particle position that take place during wave breaking. Third, unlike an
idealised fluid particle (that is, a perfect Lagrangian tracer), floating marine objects exhibit
significant variations in size, which can lead to non-Lagrangian drift behaviour (Nath
1978; Santamaria et al. 2013; Ren et al. 2015; Calvert et al. 2021; DiBenedetto, Clark
& Pujara 2022).

This non-Lagrangian drift behaviour is the subject of the present paper. Studies that have
examined the drift of non-Lagrangian particles or ‘objects’ can be classified into those that
ignore the disturbance of the wave field by the object and those that take this disturbance
into account. Typically, the effect of the object on the wave field can be neglected when
the relative size of the object (characterised by l/λ, the ratio of the object’s characteristic
dimension l to the incident wavelength λ) is smaller than 0.2 (Isaacson 1979).
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1.2. Drift of objects that do not disturb the wavefield
Beginning with studies that have ignored the disturbance of the wave field by the object
and focusing on fully submerged particles, Eames (2008) and Santamaria et al. (2013) used
the Maxey–Riley equations (Maxey & Riley 1983) to examine how far slightly positively
or negatively buoyant objects are transported by regular waves as they either rise to the
free surface or sink. Santamaria et al. (2013) predicted that positively buoyant objects in
deep-water waves experience an increase in drift owing to their inertia (see DiBenedetto
et al. (2022) for an extension to finite depth). Also considering fully submerged objects,
DiBenedetto & Ouellette (2018) showed that non-spherical objects have a preferential
orientation under waves, confirming this result numerically (DiBenedetto & Ouellette
2018) and experimentally (DiBenedetto, Koseff & Ouellette 2019), but not examining
the effect of the object’s inertia or its modified drift. Even without direct modification
of the drift, the orientation changes the drag on slightly negatively buoyant objects,
which results in objects of different shapes being transported different distances before
‘raining out’ (DiBenedetto, Ouellette & Koseff 2018). Taking a similar approach, Pujara &
Thiffeault (2023) have shown that wave action reduces the vertical dispersion of particles
but increases horizontal dispersion.

Turning to floating objects, but still ignoring the disturbance of the wave field they
cause, theoretical models that apply forces derived from the wave field onto a moving
object, assuming the wave field is unaffected by the presence of the object itself (e.g.
through Morison’s equation (Morison, Johnson & Schaaf 1950)) are thus commonly used
to study the drift motion of small objects (Rumer, Crissman & Wake 1979; Shen &
Ackley 1991; Shen & Zhong 2001; Grotmaack & Meylan 2006; Huang, Huang & Law
2016). Calvert et al. (2021) used a perturbation expansion in wave steepness to derive a
closed-form solution for the enhanced drift of a floating sphere, extending the models of
Rumer et al. (1979) and Huang et al. (2016). Calvert et al. (2021) attributed the enhanced
drift to two physical mechanisms: the increased vertical oscillatory (linear) motion of the
floating sphere and the (viscous) drag-induced phase difference between the motion of the
inertial sphere and that of an idealised Lagrangian particle, giving rise to a net horizontal
component of the buoyancy force when averaged over a wave cycle.

1.3. Drift of objects that do disturb the wavefield
In those models that do take the disturbance to the wave field by the (floating) object into
account, the object’s surfaces are often treated as part of the boundary of the fluid domain,
and the problem is approached based on potential-flow theory (Haskind 1946; Faltinsen
1993; Newman 2018). Apart from the (linear) oscillatory (unsteady) exciting forces leading
to (linear) oscillatory motion, objects exposed to waves also experience steady (i.e. wave-
averaged) nonlinear forces, giving rise to a slow drift motion in the direction of wave
propagation. This steady second-order force is often referred to as the (mean) drift force
and affects the trajectories of objects in waves (Suyehiro 1924; Watanabe 1938; Havelock
1942; Skejic & Faltinsen 2008). There are three main approaches to calculating the drift
force: the near-field formulation (Pinkster & Hooft 1976; Pinkster & Van Oortmerssen
1977), which solves for the second-order disturbance in the near field by direct integration
of pressure on the surface of the wetted body; the far-field formulation (Newman 1967),
which is derived from conservation of momentum and thus sets the change in momentum
(flux) of the fluid equal to the mean force acting on the object; and the middle-field
formulation (Chen 2007), which applies momentum conservation to a fluid control volume
and introduces control surfaces around the body.
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All three approaches focus on the calculation of a force when the object’s drift speed is
zero and/or on the calculation of motion when an object is moored. They do not (directly)
predict the drift of a freely floating object. Typically, the objects considered are three-
dimensional with relatively large sizes, often comparable to the wavelength. Moreover,
few studies (e.g. Newman 1967) have examined cases in following waves where objects
are travelling in the direction of wave propagation (cf. ships), characterised by heading
angles of 0◦ (most of the cases are in oblique waves or head waves). A floating object
travelling with a constant velocity on the surface of otherwise calm water experiences a
non-viscous (i.e. potential-flow) drag, reflecting the energy required to push the fluid out
of the way of the object, known as the wave-making resistance (Michell 1898; Havelock
1909). In principle and analogously to this wave-making resistance, the so-called wave
drift damping force (Nossen, Grue & Palm 1991; Aranha 1994), which acts on a slowly
drifting object, could balance the drift force discussed above, perhaps aided by a further
viscous or turbulent drag term in realistic flows, leading to force equilibrium and resulting
in steady drift motion. However, the authors are unaware of existing work that uses such
an equilibrium of drift and drift damping forces to obtain estimates of the (enhanced) drift
of floating objects, and note that the required analysis would not be straightforward based
solely on existing work (e.g. Nossen et al. 1991; Aranha 1994).

To consider the effect of diffraction on the wave-induced drift of freely floating objects
Xiao et al. (2024) used a two-dimensional (2-D) hybrid numerical solver, which deals
with both viscosity and wave–body interaction, to predict significant drift enhancement of
large (5–10 % of the wavelength) floating rectangular boxes. The drift enhancement was
explained in small part by the effect of viscosity (as by Calvert et al. 2021), but in large
part by the standing wave pattern generated by the presence of the (oscillating and drifting)
object in the wave field. To explain their numerical results, Xiao et al. (2024) derived a
‘diffraction-modified Stokes drift’ akin to Stokes (1847), but based on the combination of
incident, diffracted and radiated wave fields, which are based on potential-flow theory and
obtained using the boundary element method (BEM). This ‘diffraction-modified Stokes
drift’ could explain both qualitatively and quantitatively the increase in drift predicted by
the hybrid numerical model.

1.4. Relative object size and steepness: previous experimental studies
Experimental investigations of the wave-induced motion and drift of floating objects
have been conducted for nearly half a century. Table 1 provides a summary of relevant
experimental studies, including the present paper. This table shows that the drift of an
object depends on its relative size. The drift of very small objects is equal to the theoretical
Stokes drift. However, as the objects become larger, enhanced drift is observed (we refer
to drift as ‘enhanced’ in this paper when it is larger than the theoretical Stokes drift).
Nath (1978) reported Lagrangian drift behaviour for small discs and spheres on regular
waves but found enhanced drift for larger objects with deep drafts (such as spar-type
buoy drifters) in low wave steepness. Measurements by Murray, Guy & Muggeridge
(1983) suggested that the maximum horizontal drift attained by floating spheres differs
substantially from that of a water particle only when l/λ> 12.5 %. Similar conclusions
were drawn by Alsina, Jongedijk & van Sebille (2020) regarding the drift of floating
spherical particles with l/λ ranging from 0.1 % to 1.4 %, which were not enhanced. Calvert
et al. (2021) suggested that the drift of a sphere increases with its relative size, and
enhanced drift was found for objects as small as l/λ= 6%. Le Boulluec, Forest & Mansuy
(2008) found that, regardless of shape, the drift velocity increases with relative size of the
object l/λ, considering a range of relative size from 6% to 50%.
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2-D: Third dimension l/λ [%] h/ l Shape ρ [kg/m3] kd kaw Wave type

Harms (1987) 6 mm gap 5.8–106.5 0.01–0.68 Rectangular box 920 >1.7 0.06–0.30 R
Tanizawa et al.
(2001)

10 cm gap 12.7–63.6 0.56 Rectangular box 887 0.8–5 0.03–0.20 R+IR

Huang and Law
(2013)

5 cm gap 61.0–308.0 0.01–0.05 Rectangular box 720 2.6–12.9 0.04–0.32 R

He et al. (2016) 2 cm gap 9.2–30.4 0.67 Rectangular box 500 0.7–2.5 0.04–0.30 R
Present paper Plastic bearings 2.6–27.1 0.67 Rectangular box,

sphere
636 2.8–4.1 0.03–0.32 R

3-D:
Nath (1978) — 0.2–176.5 0.17,0.23,1 Sphere, disk and

deep-draft buoy
>= 500 1.1–14.1 >0.02 R

Murray et al. (1983) — 11–53 — Cylinder, sphere and
cube

900 2.6–12.3 0.02–0.06 R+WG

Tanizawa et al.
(2001)

— 3.0–60.8 1.00 Spherical buoy >500 >2.8 0.06–0.4 R+IR

Le Boulluec et al.
(2008)

— 10.0–100.0 0.24–0.50 Rectangular container
and cylinder

175–954 >4.0 — R+IR

Huang et al. (2011) — 12.8–15.8 0.15, 0.23 Square, circular and
elliptical plates

960 3.2–4.0 0.04–0.15 R

Meylan et al. (2015) — 8.0–80.0 0.04 Thin plastic disk 891 1.0–10.1 >0.006 R
Alsina et al. (2020) — 0.1–1.4 1.00 Spherical particles 760–1340 0.3–3.0 0.06–0.22 R
Calvert et al. (2021) — 1.9–5.1 1.00 Sphere 508–809 3.1 0.1 WG

Table 1. Summary of previous laboratory studies of wave-induced drift of freely floating objects on waves. Some values not explicitly provided in the cited papers were
obtained from digitised figures or estimated using the linear dispersion relationship. In 2-D experiments, the ‘third dimension’ shows the approach used to ensure the
experiment’s 2-D nature. l represents the length of the object in the direction of wave propagation, λ the wavelength, h the height of the object, ρ the density of the object, k
the wavenumber, d the water depth, and aw the wave amplitude. The wave types R, IR, and WG correspond to regular waves, irregular waves, and wave groups, respectively.
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Drift behaviour is also influenced by the incident wave steepness. Tanizawa et al.
(2001) reported Lagrangian drift behaviour for a spherical buoy with a relative size of
l/λ= 6% at low wave steepness, while enhanced drift was observed for all objects with
l/λ> 10% across various wave steepnesses. They proposed that, for small objects, drift
is proportional to the square of the wave steepness, and as the object size increases, drift
gradually becomes linearly proportional to the wave steepness. Huang, Law & Huang
(2011) also found enhanced drift behaviour for objects with l/λ ranging from 12.8% to
15.8%, and the magnitude of this drift enhancement increased with wave steepness.

1.5. 3-D versus 2-D objects
All the experimental studies mentioned above are three-dimensional (3-D), meaning that
while the wave conditions may be unidirectional, the objects do not span the entire wave
crest. The scarcity of 2-D studies can be attributed to the greater experimental difficulty
in designing objects that are truly 2-D and capable of moving freely in a wave tank,
especially for very small objects. Additionally, lateral variations in surface elevation for
unidirectional waves pose challenges. Previous 2-D studies have typically used models
that occupy the full width of the flume, with a small gap between the walls and models to
ensure free movement.

Harms (1987) conducted systematic 2-D laboratory measurements on the drift of ice
floes, which exhibit significant variations in size. He proposed an empirical formula for
wave-induced drift based on the ratio of wave period to the object’s natural roll period,
wave steepness, and the length of the floe. His formula suggests that the object’s drift
changes with its relative size, and there is a critical size, the value of which depends on
the object’s aspect ratio (typically approximately l/λ= 50% for an object with h/ l =
0.08, where h is its height and l its length, and density ρ = 920 kg m−3). When the
object is smaller than the critical size, the drift increases approximately linearly with its
relative size. However, when the object is larger than the critical size, the drift decreases
substantially and nonlinearly with further increases in relative size. The value of this
critical size does not vary significantly with wave steepness. For objects with different
aspect ratios (but the same density), when the relative size is smaller than the critical size
for all objects, the drift increases as the submergence increases with increasing h/ l. This
finding is consistent with the measurements of Huang & Law (2013), which focused on
relatively large objects with l/λ> 60%. Tanizawa et al. (2001) and He, Ren & Qiu (2016)
also observed enhanced drift for intermediate sizes (l/λ ranging from 10 % to 60 %), and
the relationship between drift velocity and wave steepness shifted from a quadratic to a
linear relationship. Specifically, He et al. (2016) found that the ratio of the magnitudes of
the quadratic components to the linear components shifted from 10 to 0 for objects ranging
from l/λ= 9% to 30%.

1.6. Present paper
This paper reports the results from laboratory experiments examining the enhanced
wave-induced drift, large, 2-D, rectangular floating objects. We set out to make two
contributions.

First, this paper aims to observe and study experimentally the mechanism for enhanced
drift described by the diffraction-modified Stokes drift theory proposed by Xiao et al.
(2024). To do so, we perform a comparison with the numerical results of Xiao et al.
(2024). While documenting the dependence of enhanced drift on different parameters, the
experimental literature surveyed above has not examined the mechanism(s) explaining the
drift enhancement or the relationships between drift velocity and the oscillatory motion of
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objects, nor has it examined the surface elevation in the vicinity of the object. We aim to
do this here.

Second, we explore a gap in the parameter space that the existing literature has left
open. To the best of the authors’ knowledge, the drift behaviour of objects with relative
sizes ranging from l/λ< 6% to l/λ= 27% has not been examined in 2-D experiments
previously. In an effort to address this gap and explore object sizes ranging from very
small to intermediate size, near or crossing the critical size reported by Harms (1987),
we conduct 2-D laboratory experiments investigating the drift behaviour of objects with
relative sizes in the range l/λ= 2.6–27% in regular deep-water waves. In the ocean,
relative size depends on both the size of the litter and the wavelength. On the one hand,
pollutants in the ocean greatly vary in size. While most of the litter is small, such as
microplastics (<5 mm) (Setälä et al. 2014; Cózar et al. 2014), there is also large litter, such
as wreckage of vessels and ships, which can be tens of meters in length (Carlton et al.
2018). On the other hand, typical ocean wavelength consists of scales from 10 cm to 1 km
(Lefevre & Cotton 2001; Toffoli & Bitner-Gregersen 2017). As a result, our experiments
cover the range from tiny pieces of litter in long waves to large debris in shorter waves.

In this paper, we have chosen to perform experiments with 2-D objects (i.e., objects
spanning the entire regular wave crest) for two reasons. Most importantly, 2-D experiments
allow a mechanism that probably also occurs in 3-D, but is strongest in 2-D to be isolated,
namely the diffraction-modified Stokes drift of Xiao et al. (2024), which is proposed
in a 2-D context therein. Secondly, while most real-world applications are 3-D, specific
applications, such as ice floes (Arikainen 1972; EI-Tahan et al. 1983; Wadhams 1983;
Harms 1987), are distinctly 2-D. Ice floes can take the form of so-called ice edge bands,
which are 2-D-like (typically, 10 km in length and 1 km in width (Wadhams 1983)).
To ensure two-dimensionality in our experiments, we utilise carefully designed objects
equipped with low-friction bearings.

The outline of the paper is as follows. In § 2 we present our experimental method,
followed by a brief introduction to the theoretical model of Xiao et al. (2024) and
the empirical parametrisation of Harms (1987) in § 3. We present our experimental
results in § 4, where we also propose a new empirical parametrisation, and compare our
experimental results to the theoretical model of Xiao et al. (2024) and the empirical
parametrisation of Harms (1987). Finally, we draw conclusions in § 5.

2. Experimental method

2.1. Wave flume and camera set-up
Experiments were conducted in the Wave and Current Flume at the University of Oxford,
UK. The flume is 10 m long, 1.1 m wide and 1 m deep with working water depth of 0.85 m.
Figure 1 provides a diagram of the experimental set-up. Waves were generated using three
hinged flap-type wavemakers, located at one end of the flume. At the other end, a wave-
absorbing beach was positioned. It is important to note that the flume is not fully closed,
and includes pumps and a pipe system for fluid recirculation underneath the flume that
can be used to create a current. Although a current was not actively generated in the
present experiments, the presence of the pipe system allows fluid recirculation during wave
generation, which may influence the Eulerian current in the flume (it does not provide the
no-flow boundary condition a closed tank would provide, see § 2.2). To measure wave
properties, seven resistance-type wave gauges were distributed along the flume, sampling
the surface elevation at a rate of 128 Hz. The gauges were mounted on a steel frame in
five rows. The distances of the rows from the wavemaker were as follows: 2.14 m, 4.59 m,
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Figure 1. Schematic layout of the wave flume and experimental set-up, indicating the positions of the two
cameras, the coordinate system, and the dimensions of the floating object.

6.02 m, 6.32 m, and 6.59 m. Within the rows located at distances of 6.02 m and 6.32 m,
two pairs of gauges were placed to assess any lateral variation in the wave field. For each
pair of gauges, one was positioned at y = 0.0 m (the middle of the flume), while the other
was located at y = 0.275 m, away from the middle position.

Two E 2–4K Ultra-HD Cinematic Cameras (Z-CAM-E1503) equipped with a Panasonic
12 mm–60 mm digital interchangeable lens were used to measure the movement of the
floating objects at 50 frames per second (fps), as depicted in figure 1. Side Camera 1 was
positioned at the same height as the still-water level, located 12 m away from the flume.
In this configuration, the camera’s field of view encompassed the entire length of the
flume, and it was horizontally orientated normally to the region of interest including the
water surface. Its calibrated camera images were used to measure the drift and oscillatory
motion of the floating objects (introduced below) in the (x, z)-plane. Top-side Camera 2
was mounted 0.65 m above the still-water level, facing down the wave flume towards the
wavemakers. In this set-up, the camera’s field of view covered approximately 4 m of the
flume length. Camera 2 was specifically used to measure the drift of small yellow balls in
the (x, y)-plane, as these balls were not visible from the side of the flume due to their size.
To ensure proper illumination and consistent lighting conditions for all experiments, three
LG-600SC daylight dimmable LED lights (not shown in figure 1) were strategically placed
along the length of the flume. These lights illuminated the ends of the objects, which were
painted yellow. This illumination scheme also facilitated consistent lighting conditions
for subsequent image processing. Optical distortion and pixel scale quantification were
achieved by capturing calibration images of a 13 by 10 chequerboard with 50 mm square
size using the cameras.

1008 A18-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

76
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.76


Journal of Fluid Mechanics

f (Hz) aw (m) k ε = kaw kd λ (m) �aw [%] R [%]

0.90 0.012–0.094 3.28 0.04–0.31 2.79 1.91 1.27 4.19
1.00 0.010–0.079 4.03 0.04–0.32 3.43 1.56 1.80 4.03
1.05 0.009–0.072 4.44 0.04–0.32 3.78 1.41 2.23 6.91
1.10 0.007–0.064 4.87 0.03–0.31 4.14 1.29 2.58 5.33

Table 2. Experimental matrix showing the different wave parameters. We have examined a total of 48 wave
conditions, combining four different frequencies, each with 12 different wave steepness values ranging from
0.04 to 0.32. The wave steepness interval was 0.02 for ka values between 0.04 and 0.2, and 0.04 for ka
values between 0.2 and 0.31. The table includes the following parameters: f (wave frequency), aw (measured
wave amplitude), k (wavenumber), ε (wave steepness), d (water depth), and λ (wavelength). The term �aw

represents the lateral variation of the wave amplitude calculated by measuring the wave amplitude using two
pairs of gauges positioned at x = 6.02 m, y = 0.0 m; x = 6.02 m, y = 0.275 m; x = 6.32 m, y = 0.0 m; and
x = 6.32 m, y = 0.275 m. The average value across all wave steepness values is reported. R = aI /aR refers to
the reflection coefficient, which corresponds to the ratio of the incident wave amplitude aI to the reflected wave
amplitude aR .

The parameters describing the waves used in our experiments are presented in table 2.
Initially, we conducted experiments with wave gauges installed in the flume, without
any objects, to measure the undisturbed wave field. These experiments also allowed us
to quantify any unabsorbed reflections and lateral variation of the wave field within
the flume. The lateral variation for a single frequency was calculated by determining
the relative difference in amplitude measured by the gauges. A reflection analysis
based on the methods described by Goda & Suzuki (1976) and Mansard (1980) was
performed. As shown in table 2, the lateral variation was found to be low and the wave
reflection coefficients were predominantly below 5%, with a maximum value of 10%. For
experiments involving the measurement of object motion, the wave gauges were removed.
At the beginning of each experiment, the objects were placed in the quiescent flume 1.5 m
away from the wavemakers. Waves were then continuously generated until the objects
reached a position 1 m from the beach, when the wavemakers were turned off. Recording
of the camera and the wavemaker started and ended simultaneously. In cases where large
drift speeds were expected (i.e. for large objects in steep waves), the experiments were
repeated 2–3 times to ensure a minimum duration of 35 wave periods of data after the
drift has reached a quasi-steady state. Following each experiment, a 10-min wait time
was observed to allow the flume to settle. To assess the repeatability of our experiments,
we conducted additional experiments for four out of the twelve values of input wave
steepness (kaw = 0.06, 0.10, 0.20 and 0.32) for each frequency and each object. For these
experiments, we performed five repeats, which are analysed in Appendix B.

2.2. Floating objects
To ensure that our experiments were as close to 2-D as possible, we carefully designed the
width b of our floating objects to match that of the flume. To minimise friction between
objects and the walls, and to reduce the potential for rotation about the z-axis, we installed
bearings (Xiros polymer ball transfer unit BB-515-B180-POM) at each end of the objects.
Without a certain amount of restraint, smaller objects are prone to twisting caused by
small lateral perturbations in the wave-induced forces. The bearings were specifically
chosen for their low friction properties. The three dimensions of the objects are denoted
as the length l parallel to the x-axis, the width b parallel to the y-axis and the height
h parallel to the z-axis, and diagrams showing these dimensions are given in figures 1
and 2, which also depict the layout of the bearings that are fixed to the ends of each object
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Figure 2. Shapes, bearing layouts, and dimensions of the objects used: (a) Object 0 – small yellow
polypropylene balls with a diameter of 2 cm and a density of ρ = 920 kg m−3), serving as Lagrangian tracers;
(b) Object 1– including flange; (c) Object 2 – including flange; (d) Object 3 – structure with six bearings;
(e) Object 4 – structure with six bearings; (f ) Object 5 – structure with nine bearings. (g) Top view of the
objects with flanges (Objects 1 and &2). The flanges are made of perspex sheet and have a width of 0.15 m, a
height of 0.1 m, and thickness of 0.006 m.

Object numbers b (m) l (m) h (m) hd (m) Number of bearings

0 0.02 0.02 0.02 — —
1 1.066 0.050 0.033 0.021 9
2 1.066 0.100 0.066 0.042 6
3 1.076 0.161 0.106 0.067 6
4 1.076 0.201 0.131 0.084 4
5 1.076 0.350 0.235 0.149 4

Table 3. Object dimensions. Object 0 spherical ball, functioning as a current drogue. The number of bearings
indicates the number installed at each end of the object. Objects 1–5 are solid and were constructed from teak
wood. The density of these objects is ρ = 6.36 × 102 kg m−3.

(see Appendix A for additional details). The draft (submergence depth) of an object hd is
the vertical distance from its bottom to the free surface when the object is afloat in still
water. The values of the dimensions of the objects are provided in table 3. The smallest
objects with length l less than 0.16 m (objects 1 and 2), were fitted with 6-mm-thick
perspex flanges on their ends to provide enough surface area to mount four bearings and to
prevent the objects from rotating about the z-axis. To increase the range of relative object
sizes l/λ, alongside varying the size of objects themselves, we also varied the wavelength
of the incident waves (see table 4). Figure 3 provides a side and a top view of the smallest
and largest objects in the flume.

To determine the strength of Eulerian-mean currents at the surface, we also carried
out reference experiments, in which we used small floating balls with a relative size of
l/λ= 1.6%, as shown in figure 2(a). Previous studies have shown that objects that are this
small (l/λ= 1.6%) behave as Lagrangian tracers and are thus transported at the speed of
the Stokes drift in the absence of Eulerian-mean currents (Harms 1987; Alsina et al. 2020;
Calvert et al. 2021). Thus, their drift corresponds to that of a Lagrangian particle and may
be used to determine the strength of Eulerian-mean currents at the surface. In doing so, we
further avoid the complexity of directly measuring the Eulerian-mean current (e.g. through
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Object
number

0 1 1 1 1 2 3 4 3 4 5 5 5 5

f (Hz) 0.9 0.9 1.0 1.05 1.1 0.9 0.9 0.9 1.1 1.1 0.9 1.0 1.05 1.1
l (m) 0.02 0.050 0.05 0.05 0.05 0.100 0.161 0.201 0.161 0.201 0.350 0.350 0.350 0.350
λ (m) 1.91 1.91 1.56 1.41 1.29 1.91 1.91 1.91 1.29 1.29 1.91 1.56 1.41 1.29
l/λ [%] 1.1 2.6 3.2 3.6 3.9 5.2 8.4 10.5 12.5 15.6 18.3 22.4 24.8 27.1

Table 4. Matrix of relative object size l/λ. For each relative object size, experiments with 12 different values
of incident wave steepness were performed.

(a)

(b)

Figure 3. Side and top view of two objects in the wave flume. (a) On the left is the small object with l = 0.05 m,
and on the right is the large object with l = 0.35 m. (b) On the left is the small object with l = 0.05 m and on
the right is the large object with l = 0.35 m.

particle image velocimetry) as these are very challenging to measure near the surface and
around a moving object.

2.3. Data acquisition
Our goal is to examine the wave-induced drift of floating objects, investigate the effects
of relative size and wave steepness, and understand the underlying mechanisms of drift
enhancement by analysing the objects’ oscillatory motions and local surface elevation
amplitude distribution in their vicinity. To achieve this, we first measured the wave
amplitude for each wave condition in the flume using the mean value obtained from all
seven wave gauges. This measured wave amplitude is used to calculate wave steepness
and, subsequently, the theoretical Stokes drift. Next, we extracted the objects’ trajectories
and the local surface elevation from the calibrated camera images. Image-processing
techniques were used to calibrate the images, perform object tracking, and obtain the
horizontal and vertical trajectories of the objects (only the horizontal trajectory for the
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small yellow balls). We used edge detection and curve line extraction methods to obtain
the free surface elevation.

2.3.1. Image processing and object tracking
The small yellow balls were tracked using the CSRT algorithm in OpenCV in Python
using images from Camera 2, allowing us to obtain their (x, y)-locations in pixel space.
Care was taken to identify potential issues such as sphere collision and loss of tracking.
The 2-D objects were tracked from the side of the flume using images from Camera 1. As
the objects passed the vertical upright members of the wave flume structure, the camera’s
view of the objects was partially or entirely obscured depending on object size. This loss
of sight meant that it was not possible to use the CSRT tracker for tracking objects from the
side of the flume. Instead, the objects, which were painted yellow, were identified using an
HSV mask in the HSV Colour space with OpenCV for each frame, followed by temporal
advancement of the frame to get the time history of object motion. To remove background
noise, unwanted stationary yellow elements were removed from the frame in a preliminary
step. After applying the HSV mask, we extracted the contours of rectangular boxes with
fixed sizes for each object. From these contours, we identified the position of the object’s
centre and calculated its roll angle in pixel space (we define the rotation of our objects
around the y-axis as its roll motion). This method, in which we enforced that the tracked
objects have a constant shape and size, meant it was possible to maintain tracking of the
objects when they were partially obscured. Once the object trajectories were identified
in pixel space, they were undistorted and transformed into physical space. The calibrated
Camera 1 had an overall mean reprojection error of approximately 0.09 pixels (0.2 mm),
while Camera 2 had a mean reprojection error of 0.46 pixels (0.6 mm). Examples of the
horizontal trajectories are provided in figure 4(a).

2.3.2. Edge detection to measure the free surface elevation
It was not possible to operate wave gauges while the objects were in the flume, as they
would obstruct the floating objects. To estimate the instantaneous free surface elevation
while objects were in the flume, we used the images recorded by Camera 1. Surface
elevation was extracted using edge-detection techniques. We set up virtual wave gauges
that travelled with the objects, to obtain measurements of surface elevation a fixed
positions relative to the objects. Specifically, we first determined the location of the objects
for each frame and then established a group of virtual gauges with pre-set x-coordinates.
The distance between the virtual gauges and the objects was kept constant. We set up
60 gauges with their relative position, x − xc, ranging from –1.1λ to 1.1λ, in which x
represents the location of the wave gauges and xc the location of the centre of the object. To
perform edge detection, we found that standard algorithms such as Canny edge detection
and threshold approaches did not yield satisfactory results for our study. Therefore, we
used the Holistically Nested Edge Detection (HED) algorithm, which employs a deep
neural network capable of learning rich hierarchical edge maps (see Xie & Tu 2015 for
more details). We used a pre-trained HED Caffe model to leverage the benefits of the
HED algorithm (see Xie 2015). It is worth noting that while HED preserves boundaries in
the image better than other methods, it produces more blurry boundaries than Canny edge
detection. To enhance the sharpness of the edges, we applied the Zhang–Suen thinning
algorithm using the ‘ximgproc.thinning’ function in OpenCV. By skeletonising the image,
we obtained the surface elevation at the pre-set locations of the virtual wave gauges.
Throughout the experiment, the positions of the objects and virtual wave gauges were
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Figure 4. Example time history of objects’ horizontal trajectories and surface elevation in regular waves with
f = 0.9 Hz. (a) Horizontal trajectories of objects with different relative sizes for kaw = 0.10, where xc is the
horizontal position of the objects’ centre, and Tw denotes the wave period. (b) Local surface elevation of virtual
gauges at various locations for kaw = 0.20, where x is the horizontal position of the virtual gauges, and η is the
local wave elevation. During the extraction process of the surface elevation for virtual wave gauges, the data
are removed when the gauges are obscured by the flume’s structural members or leave the pixel space (that is,
when the position of the wave gauges is beyond the scope of the camera). Extraction begins when the object
reaches xc = 2.3 m and ends when it reaches xc = 8.2 m, away from the wave maker.

updated with each frame as time progressed. Figure 4(b) provides examples of the time
history of several virtual gauges, illustrating the variations in surface elevation.

2.3.3. Data post-processing
We aim to analyse the drift velocity, oscillatory linear motion in both the horizontal
and vertical directions, as well as the magnitudes of local free surface elevations using
the data obtained in §§ 2.3.1 and 2.3.2. The time-average drift and horizontal oscillatory
motions are derived from the horizontal trajectories of the objects. Since it takes time for
the object to accelerate and for its drift to reach a quasi-steady state, in which the drift
speed is constant, we eliminate the initial transient from the data. The time required for
an object to reach a quasi-steady state depends on its size and wave conditions. Generally,
larger objects in larger waves take longer to reach a quasi-steady state due to their greater
inertia and larger motion amplitudes. However, smaller objects move more slowly and are
more sensitive to environmental disturbances such as lateral wave variations and friction.
Consequently, there are some instances where we must wait longer for smaller objects to
achieve a quasi-steady state before collecting data. Typically, the initial transient ranges
from approximately 15 Tw to 30 Tw in duration, although in some cases, we wait up to
100 Tw before commencing data collection. For small objects in low wave steepness, it
may take over an hour for the object to reach the end of the flume, whereas for large
objects in high wave steepness, this process can take as little as 35 s (in such cases,
we conduct 2–3 repeats to ensure data over a sufficient number of wave periods). We
analyse trajectories over durations ranging from approximately 450 Tw to 1000 Tw for
smaller objects and 35 Tw to 160 Tw for large objects. Once the trajectory data are
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obtained, the horizontal motion is filtered by using low- and high-pass frequency filters
to separate the sub-harmonic ( f/ f p ≤ 0.4) motion and linear motions (0.4 < f/ f p ≤ 1.7),
thus removing higher-order motion. The drift velocity is examined by performing a linear
regression of the sub-harmonic motion with time. The amplitude of horizontal oscillatory
motion (corresponding to the x-direction) is determined by performing zero-up-crossing
analysis on the signal and calculating the mean magnitude over the full time duration.
The analysis of vertical oscillatory motions and local wave amplitude distribution of the
surface elevation follows a procedure similar to that of horizontal motions. Each trajectory
and time history of the surface elevation undergoes a manual inspection as part of the
quality-control process.

3. Existing theoretical and empirical models used for comparison
In this section, we outline the two models for drift enhancement (compared with the Stokes
drift) that we will use to compare with our experimental results in § 4. The Stokes drift in
finite water depth can be calculated by

uS = c(awk)2 cosh (2k (d + z))

2sinh2 (kd)
, (3.1)

where c = ω/k is the wave celerity, ω = 2π f the angular frequency and z the vertical
coordinate of the fluid particle. For deep water (kd � 1), (3.1) becomes uS = c(awk)2e2kz .
For the floating objects that we study, we evaluate the Stokes drift at z = 0. The only two
models that we believe are suitable for comparison with our experimental results for large
objects are the diffraction-modified Stokes drift model recently developed by Xiao et al.
(2024) and the empirical formulas for drift enhancement proposed by Harms (1987). We
will summarise the key equations of both models in turn.

3.1. Diffraction-modified Stokes drift of Xiao et al. (2024)
Xiao et al. (2024) showed that diffraction of the wave field affects wave-induced drift
and cannot be neglected even for objects of l/λ< 10%. They proposed a diffraction-
modified Stokes drift akin to Stokes (1847) but considering the combination of the
incident, diffracted and radiated wave fields. Here, we follow Xiao et al. (2024) and use
a simplified boundary element method (BEM) model based on potential-flow theory to
solve for the linear wave field. The total linear wave field is decomposed into its incident,
diffracted, and radiated parts. If we describe the flow by a linear velocity potential Φ, it
can be written as

Φ(x, z, t) = ΦI (x, z, t) + ΦD(x, z, t) + ΦR(x, z, t), (3.2)

where ΦI , ΦD and ΦR are incident, diffraction and radiation potentials, respectively, then
the diffraction-modified Stokes drift uS,O can be calculated by a second-order accurate
expansion that is analogous to Stokes (1847), as shown by Xiao et al. (2024)

uS,O = ξx
∂2Φ

∂x2 + ξz
∂2Φ

∂x∂z

= ξx

(
∂2ΦI

∂x2 + ∂2ΦR

∂x2 + ∂2ΦD

∂x2

)
+ ξz

(
∂2ΦI

∂x∂z
+ ∂2ΦR

∂x∂z
+ ∂2ΦD

∂x∂z

)
, (3.3)

where ξx = Re{Ax e−ιωt } and ξz = Re{Aze−ιωt } are the linear horizontal and vertical
harmonic oscillatory motions of the object, and the overline denotes averaging over a
wave period. To evaluate (3.3), the linear oscillatory motions, the three potentials, and
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their derivatives are all calculated using a standard BEM model, as described in detail by
Xiao et al. (2024).

Unlike the perturbation expansion in position applied by Stokes (1847) to an
(infinitesimally small) Lagrangian particle to derive the Stokes drift, (3.3) is applied to
an object of finite size. Equation (3.3) requires the evaluation of second derivatives of
the velocity potential at a location where the velocity potential is not defined (i.e. at
ξx = ξx = 0). Ideally, these second derivatives should be evaluated at the object’s centre (of
mass), which is outside of the domain where the potential-flow solutions apply (i.e. outside
of the fluid domain). In practice, however, the second derivatives in (3.3) are determined
based on the velocity potential evaluated at the object’s boundaries, as described in
Appendix A.5 of Xiao et al. (2024). For (3.3) to be a good approximation, the horizontal
and vertical distances between the object’s boundaries and its centre of mass need to be
small. Formally, this requires the ratio of length of the object l and the wavelength λ to be
small for the diffraction-modified Stokes drift model of Xiao et al. (2024) to apply, but not
so small that the effects of diffraction themselves become insignificant.

3.2. Empirical model of Harms (1987)
In addition to the theoretical model of Xiao et al. (2024), we also compare the data
with the empirical formulae proposed by Harms (1987) based on their extensive set of
laboratory experiments for 2-D objects. According to Harms (1987), object drift can be
estimated by

uS,O =

⎧⎪⎨
⎪⎩

0.87
√

gl 2aw

λ

(
Tw

TO,R

)2.81+log 2aw
λ Tw

TO,R
≤ 1.15,

1.15
√

gl 2aw

λ

(
Tw

TO,R

)0.87+log 2aw
λ Tw

TO,R
> 1.15,

(3.4)

where Tw is the wave period and TO,R is the natural period of the roll motion of the
object. Harms (1987) evaluated the natural period of the roll motion of the object TO,R in
the slender-object limit (l/h � 1) and using empirical values of two coefficients obtained
from the literature. This result is valid for the slender objects (l/h > 3) that Harms (1987)
considered, whereas our objects all had an aspect ratio of l/h = 1.5. To estimate the
natural roll period for each object, we conducted numerical simulations using the BEM
model and identified the local peak value of the roll-mode response in waves of different
frequencies. These responses were calculated for a range of frequencies from f = 0.01
to 4 Hz (corresponding to relative size l/λ ranging from nearly 0 to 0.5, which covers the
range of relative sizes considered in our study) with 0.01-Hz increments. We also identified
the frequency corresponding to the peak value of the heave motion within this frequency
range. For standard rectangular floating objects, the natural roll period can be estimated
using (e.g. Baniela 2008)

TO,R = 2π

√
ρh

ρwg

(l2 + h2)

[l2 + 6ρ/ρw(ρ/ρw − 1)h2] (3.5)

where ρ and ρw denote the densities of the object and of water, respectively, and g is the
gravitational acceleration. We estimate the values of the natural roll and heave periods
directly using the BEM. These periods, TO,R,B E M and TO,H,B E M , and the roll period
obtained from (3.5) are listed in table 5 for each object. From the table, it can be seen that
the values of the roll period obtained from (3.5) (TO,R) and from the BEM (TO,R,B E M )
agree closely.
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Object number TO,R,B E M (s) TO,R (s) TO,H,B E M (s)

1 0.61 0.55 0.40
2 0.88 0.78 0.56
3 1.08 0.99 0.72
4 1.15 1.08 0.81
5 1.67 1.53 1.05

Table 5. Estimated natural periods of object heave and roll motion. Object numbers 1–5 correspond to the
objects specified in table 3. The periods TO,R,B E M and TO,H,B E M are the estimated natural periods of roll
and heave motions for the objects calculated from the BEM simulations. The natural roll period TO,R can be
obtained directly using (3.5).

l/λ (%) 2.6 5.2 8.4 10.5 12.5 15.6 18.3 22.4 24.8 27.1

Object number 1 2 3 4 3 4 5 5 5 5
Tw (s) 1.11 1.11 1.11 1.11 0.91 0.91 1.11 1.00 0.95 0.91

Tw/TO,R,B E M 1.83 1.27 1.03 0.97 0.85 0.79 0.67 0.60 0.57 0.55
Tw/TO,H,B E M 2.74 1.97 1.54 1.37 1.26 1.12 1.06 0.95 0.90 0.86

Table 6. Estimates of the ratio of natural heave and roll period for objects with different relative sizes to
incident wave periods (see table 4 for object dimensions and table 5 for values of the natural period).

To further validate our approach to calculating the roll period, we compared our estimate
with the value obtained for a floating cuboid in the study by He et al. (2016). The
cuboid in their study had dimensions b = 0.42 m, l = 0.3 m, h = 0.2 m, and hd = 0.1 m,
with a density of ρ = 500 kg m−3. For this geometry, our estimate of the roll period is
TO,R,B E M = 1.85 s and the period derived from the experiments of He et al. (2016) is 1.6 s.
We note that the free-damped oscillation decay test used by He et al. (2016) will be affected
by viscosity, whereas our (potential-flow) estimate only accounts for radiation damping.
Nevertheless, we can conclude that our BEM-based estimates provide reasonable estimates
of the natural roll period. We note that the empirical parametrisation (3.4) suggests that
the drift peaks when Tw/TO,R = 1.15. Values of Tw/TO,R we use for all of the objects
considered in our study, alongside values of Tw/TO,H , are listed in table 6.

4. Results and analysis
In this section, we present the results of our laboratory experiments, focusing on the linear
oscillatory motion, drift velocities, and the local wave amplitude distributions of the wave
field surrounding the objects. We compare the results of our laboratory experiment with
the models in § 3 and analyse the effects of object size and wave steepness in turn. Before
analysing our results for drift, we must take into account the Eulerian-mean background
current. Appendix B provides a comprehensive assessment of the repeatability of our
experiments.

4.1. Eulerian-mean background current
After estimating the Lagrangian-mean drift of objects uL ,O based on the data acquired in
§ 2.3, we can calculate what we define as the ‘Stokes object drift’ uS,O . The Stokes object
drift is defined analogously to the Stokes drift (cf. Bühler 2014) as uS,O ≡ uL ,O − uE ,
in which uE is the Eulerian-mean velocity. In flumes, uE usually takes the form of a
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Figure 5. Lagrangian drift of small objects and the Eulerian-mean velocity on the surface as a function of
wave steepness in waves with frequencies of f = 0.9 Hz and f = 1.0 Hz. (a) Lagrangian drift, normalised by
wave celerity c where c = ω/k is the ratio of angular frequency to wave number, of the 3-D small yellow
balls (l = D = 0.02 m) with l/λ= 1.6% and the smallest 2-D objects with l/λ= 2.6% and l/λ= 3.2%.
(b) Comparison of wave-celerity normalised Eulerian-mean velocity derived from experiments and theory
(4.1). The values of uE for l/λ= 2.6% and l/λ= 1.6% are obtained by uE = uL ,O − uO,S = uL ,O − uS , in
which uL ,O is the Lagrangian drift of the corresponding objects that is directly measured in the wave flume
and uS is the theoretical Stokes drift (3.1), which is equal to the Stokes object drift for such small objects.

return current. We note that the appearance of the Eulerian-mean current (at the front of
the wave train, i.e. from the beginning of wave generation) does not entail a temporal delay.
The first arrival of waves from the wave maker is like the first half of a wave group, and
a group-like structure immediately experiences divergent Stokes transport and induces
the Eulerian-mean return flow (e.g. Van Den Bremer & Taylor 2015; Van den Bremer
& Taylor 2016). The factors dependent on time (that are thus not instantaneous) are the
development, transport and diffusion of vorticity, which subsequently alter the Eulerian
current in a complex way (Longuet-Higgins 1953; Van den Bremer & Breivik 2018). To
examine the Eulerian-mean velocity in our flume, we use small (D = 0.02 m), yellow,
spherical 3-D balls with a density close to that of water (ρp = 920 kg m−3) as current
drogues, which are expected to behave as accurate Lagrangian tracers based on their size
and density (cf. Nath 1978; Harms 1987; Alsina et al. 2020; Eeltink et al. 2023). As the
drift behaviour of 3-D balls is assumed to be purely Lagrangian, they are transported
at the speed of the Stokes drift when the Eulerian-mean velocity is removed (i.e. uS,O ≡
uL ,O − uE = uS when uE = 0). For equivalent wave conditions and similar time durations
in the same tank, we assume the Eulerian-mean flows at the surface for all objects are
equal. Figure 5(a) shows the Lagrangian drift uL ,O of the small yellow balls and of the
smallest 2-D object (l = 0.05 m) as a function of wave steepness. The Lagrangian drifts of
the balls, which are 3-D, and the small 2-D objects are found to be similar, indicating that
the 2-D objects with a relative size of l/λ= 2.6% exhibit predominantly Lagrangian drift
behaviour and are transported at a speed equal to the Stokes drift when the Eulerian-mean
velocity is removed. We also compare the measured Eulerian-mean drift obtained from the
experiments with theoretical values in figure 5(b). The volume flux induced by the Stokes
drift is equal to QS = ∫ 0

−d uS(z)dz; the volume flux associated with the Eulerian-mean
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return current is QE = ∫ 0
−d uE (z)dz. By assuming the Eulerian-mean return current uE is

depth uniform (i.e., it has zero vorticity) and by balancing the volume fluxes (i.e. QS +
QE = 0), we obtain uE = −QS/d and thus

uE = −
∫ 0
−d uS(z)dz

d
= − 1

d

∫ 0

−d

c(awk)2 cosh 2k(d + z)

2sinh2(kd)
dz, (4.1)

where d is the water depth, uS(z) is the vertical distribution of Stokes drift, c the wave
celerity, k the wavenumber and aw the wave amplitude. Surprisingly (see Van den Bremer
& Breivik (2018) and Monismith (2020) for context), the Eulerian-mean velocity in the
flume appears to be predicted very well by (4.1) (for an incident wave frequency with
f = 0.9 Hz). It is well known that analytical estimates and experimental measurements
of the return current for regular waves are sensitive to the exact assumptions used and
the boundary conditions within a given flume and that predicted and measured values
often differ (Van den Bremer & Breivik 2018). Nevertheless, our observations indicate
that the theoretically estimated Eulerian-mean flow agrees with calculations derived from
the reference experiments with yellow balls.

Given this good agreement, we use the theoretical values of Eulerian-mean velocity
(4.1) to evaluate the Stokes object drift uS,O from the measured Lagrangian-mean object
drift uL ,O for all objects. The expression for the Stokes object drift is then given by

uS,O = uL ,O − uE = uL ,O + 1
d

∫ 0

−d

c(awk)2 cosh 2k(d + z)

2sinh2(kd)
dz. (4.2)

4.2. Effect of object size and wave steepness
To examine the effects of relative object size and wave steepness, we will first look at the
oscillatory motion and then the Stokes object drift followed by the local wave amplitude
distribution. The linear oscillatory motions in both the horizontal and vertical directions
are given in figure 6 as a function of wave steepness, and in figure 7 as a function of relative
size. The motions are normalised by the corresponding wave amplitudes aw measured
using wave gauges in the wave flume without objects. The Stokes object drift obtained
using (4.2) is reported in figure 8 as a function of wave steepness and relative size. For
clarity, we do not plot all the measured data in each figure (that is, we do not present the
data for l/λ= 12.5%, 15.6%, 22.4% and 24.8% in figure 8(a), but include these data in
figure 8(b). By time averaging the time history of the local surface elevations of all moving
virtual wave gauges (as described in § 2.3), we obtain the local wave amplitude distribution
a(x) as a function of the relative distance between the gauges and the object’s centre.
Figure 9 plots the normalised local wave amplitude distribution a(x)/aw for objects of
different relative sizes when kaw = 0.21 and figure 10 plots this distribution for an object
of l/λ= 18.3% for different values of wave steepness.

4.2.1. Oscillatory motion
We start by looking at the horizontal oscillatory motion. As shown in figure 6(a) and
figure 7(a), when the objects are small, with a relative size of l/λ� 5%, the magnitude
of the horizontal motions is very close to the incident wave amplitude aw, implying
behaviour is essentially Lagrangian. The amplitude of horizontal motion decreases at an
approximately linear rate as the relative object size increases. This trend applies to all
objects in the size range we considered and is independent of wave steepness. For fixed
relative size, the non-dimensional motion does not vary significantly with wave steepness
(kaw � 0.25). For the highest wave steepness, kaw = 0.31, the non-dimensional horizontal
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Figure 6. Linear oscillatory motion amplitudes as a function of wave steepness for objects of different relative
size. (a) Magnitude of horizontal motion normalised by wave amplitude. (b) Magnitude of vertical motion
normalised by wave amplitude.
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Figure 7. Linear oscillatory motion amplitudes as a function of the relative size of the objects for different
wave steepness. (a) Magnitude of horizontal motion normalised by wave amplitude. (b) Magnitude of vertical
motion normalised by wave amplitude.

motion is slightly larger than for lower values of wave steepness, and this difference is
greatest for smaller objects l/λ� 15.6%. This could be a nonlinear phenomenon for which
we cannot account for, but may also arise because smaller objects are more sensitive to
imperfections of the wave field in the flume due to their lower inertia. As waves become
very steep (near the limits of the wavemaker), both wave reflection and lateral variations
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Figure 8. Celerity-normalised Stokes object drift velocity (a) as a function of wave steepness for different
relative object sizes and (b) as a function of relative size for different wave steepness.

in the wave field deteriorate, affecting both the value of the incident wave amplitude aw

(used for normalisation) and the motion response of the objects.
The vertical motion of the objects exhibits a more complex behaviour, as shown in

figures 6(b) and 7(b). When the objects are very small, they behave like Lagrangian
particles. However, as the object size increases, the non-dimensional vertical motion
becomes dependent on both wave steepness and relative object size. Considering the
dependence on relative size first, at low wave steepness, kaw � 0.15, the vertical motion
increases with relative object size when l/λ� 15.6%, but decreases with size when l/λ�
18.3%. At high wave steepness, kaw � 0.20, the vertical motion always decreases with
relative size, with a more pronounced decrease for larger objects, l/λ� 22.4%. The
behaviour of vertical motion as a function of wave steepness also varies depending on the
object size. When the object is either very small, l/λ� 5.2% or very large, l/λ= 27.2%,
its non-dimensional vertical motion remains independent of wave steepness. However,
for objects with intermediate sizes with 8.4% � l/λ� 24.8%, their non-dimensional
vertical motion decreases with increasing wave steepness. This decreasing trend is most
pronounced for objects with a relative size of l/λ= 15.6%, 18.3% and 22.4%. We believe
that this behaviour may be attributed to the effect of a resonance in the vertical direction,
although we do not fully explain it here.

4.2.2. Stokes object drift
The Stokes object drift, normalised by wave celerity, shown in figures 8(a) and 8(b),
exhibits a clear dependence on both object size and wave steepness. In general, for low
wave steepness, kaw � 0.15, the Stokes object drift increases with relative size for all the
object sizes covered here (i.e., 2.6% ≤ l/λ≤ 27.2%). However, for relatively high wave
steepness, kaw � 0.17, the drift shows a different trend. It increases with object size
for l/λ� 15.6 but exhibits a decreasing trend for l/λ� 15.6. Changes in the functional
dependence of the Stokes object drift on the wave steepness are also evident. Drift always
increases with increasing wave steepness. For small objects (i.e. l/λ= 2.6%), this increase
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Figure 9. Non-dimensional local surface elevation amplitude distribution, a(x)/aw , as a function of horizontal
distance (scaled by wavenumber) from the centre of mass of the object, k(x − xc), for objects of different
relative sizes with incident wave steepness kaw = 0.21, and frequency f = 0.9 Hz. The black dashed line denote
the results from the numerical model of Xiao et al. (2024) for l/λ= 10%, where the incident wave steepness
is kaw = 0.034 and the wave frequency is f = 0.65 Hz. The red lines represent the left and right sides of the
largest object with a relative size of l/λ= 18.3%.

appears to be quadratic, whereas for larger objects, the relationship between drift and
steepness appears to be closer to linear – we will consider this in more detail in § 4.3
(see also Tanizawa et al. (2001) and He et al. (2016) for similar observations). The relative
size at which this transition in both the vertical motion and the drift behaviour occurs
lies in the range Tw/TO,H = [1.07, 1.31] (or Tw/TO,R = [0.6, 0.84]). In contrast to the
suggestion by Harms (1987) that the drift reaches a maximum at Tw/TO,R = 1.15 (cf.
(3.4)), our observations suggest that for objects with small aspect ratio, for which relative
size the maximum (peak) values in vertical motions and drift rates occur, depends on
Tw/TO,H (e.g. the peak value of the drift occurs when the ratio is equal to 1.15).

4.2.3. Local wave amplitude distribution
Next, we examine the wave field in the vicinity of the object. Specifically, we examine
the wave amplitude distribution at virtual probes that are stationary in the reference frame
of the object (the reference frame drifts and oscillates horizontally with the object). In
this reference frame, the amplitude field has a spatial distribution (consisting of nodes
and antinodes), which is obtained by time averaging the amplitudes at each virtual probe
location (in the reference frame of the object) over time after reaching a quasi-steady state.
The local wave amplitude distribution in the vicinity of the moving object thus obtained is
shown in figure 9. Note that we have corrected the wave elevation obtained from edge
detection to address potential measurement errors in the camera data. This correction
is achieved by using reference data of wave elevation in the absence of the object and
ensuring consistency of this data with the wave gauge data collected in the tank (i.e. aw),
which is used for normalisation.

Figure 9 also shows the results from the numerical simulations of Xiao et al. (2024).
There are two important differences between the surface amplitude distribution obtained
from experiments in the present paper and from numerical simulations of Xiao et al.
(2024) that only make a qualitative comparison between the two possible. First, the results
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Figure 10. Local surface elevation amplitude distribution, a(x), as a function of horizontal distance (scaled by
wavenumber) from the centre of mass, k(x − xc), for the largest object with a relative size of l/λ= 18.3% at a
frequency of f = 0.9 Hz. (a) Difference between the local surface elevation amplitude and the incident wave
amplitude, a(x) − aw , for three different wave steepnesses. (b) Ratio of local surface elevation and incident
wave amplitudes, a(x)/aw , for three different wave steepnesses. The black dashed lines denote the results from
the numerical model of Xiao et al. (2024) for l/λ= 10% with incident wave steepness kaw = 0.09 and wave
frequency f = 0.65 Hz. The red lines represent the left and right sides of the object.

from Xiao et al. (2024) are for lower wave steepness (kaw = 0.034). When the wave
steepness becomes too high, the large drift of the object causes large mesh deformation,
making the dynamic mesh-based numerical model less accurate. This challenge does not
arise in our experiments, where it is, in fact, easier to measure the surface amplitude
distribution for higher steepness. The second difference is the reference frame in which the
surface amplitude distributions are obtained. Xiao et al. (2024) used ‘gauges’ to output the
surface elevation that were fixed in the stationary reference frame. In Xiao et al. (2024),
implementing moving gauges was shown to be prohibitively computationally expensive, as
the gauges move with the object horizontally every time step. The reason Xiao et al. (2024)
could still observe a standing wave pattern in the stationary reference frame is probably
due to the relatively small magnitude of the drift therein.

It is clear from figure 9 that a standing wave pattern forms that is clearest for relatively
large objects, l/λ= 10.5% and 18.3%. The local amplitude of the surface elevation is
normalised by the wave amplitude in the absence of the object, aw. Similar to observations
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by Xiao et al. (2024), for small objects, l/λ= 2.6 %, the local time-averaged wave
amplitude does not vary significantly with distance to the object’s centre. It remains
relatively constant at a value of a(x)/aw = 1.0, suggesting negligible disturbance to the
wave field and no standing waves. As the object size increases, a standing wave pattern
becomes apparent. On the upstream side, the time-averaged wave amplitudes show a
pattern of smaller and larger amplitudes compared with the incident wave field (or
compared with the case of a very small object) at different distances from the object’s
centre. The standing wave pattern thus identified is more evident as the object becomes
larger. On the downstream side, (somewhat) smaller amplitudes are observed for all
locations, and there is a discernible difference in the magnitude of the surface elevation
between the two sides of the object for large enough objects. The formation of the standing
wave pattern is explained by Xiao et al. (2024) using their numerical model. As the
object is large enough to diffract the wave field, it ‘disrupts’ the wave field and ‘impedes’
the passage of waves, leading to local blocking. This disturbance results in a difference
between wave amplitudes on the upstream and downstream sides of the object. We note
that, as described in § 2.3.2, the locations of the virtual wave probes are continuously
updated in time to maintain a constant horizontal distance relative to the object’s centre.
Consequently, the standing wave pattern observed only occurs in the reference frame of
(and thus stationary relative to) the object.

In figure 10, we show how the standing wave pattern varies with steepness for relatively
large objects (large enough to generate a clear standing wave pattern). The standing
wave pattern is plotted as a(x) − aw in figure 10(a) and as a(x)/aw in figure 10(b),
for an object of size l/λ= 18.3%. The pattern is clearer when plotted as an absolute
value (that is, as a(x) − aw) as incident wave steepness increases from kaw = 0.10 to
kaw = 0.21, while the pattern is less evident when plotted as a normalised value (that
is, as a(x)/aw) as steepness increases. This observation aligns with previous findings of
Xiao et al. (2024), as increasing wave steepness increases the wave-celerity normalised
Stokes object drift, while decreasing the Stokes-drift-normalised Stokes object drift. If we
consider two identical waves with an angular frequency of ω, wavenumber k and wave
amplitude aw, propagating in opposite directions (i.e. 100 % reflection by the object),
the resultant wave elevation η(x, t) would take the form η(x, t) = 2aw sin(kx) cos(ωt).
By taking the modulus of the wave amplitude distribution (|2 sin(kx)|), we obtain the
standing wavelength, which is half that of the incident waves. Indeed, the wavelength of
the standing wave pattern depicted in figures 9 and 10 is λsw = 1.05 m, approximately
half of the incident wavelength λ= 1.91 m. We note that the effect of evanescent waves
may be included in the estimate of λsw, as well as the effects of phase differences that
result from the distance to the wave probe being measured relative to the object’s centre of
mass, rather than its boundaries (the horizontal positions of the boundaries relative to the
(virtual) probe change constantly as the object moves and rotates). Moreover, the (virtual)
wave probes are set with a certain spatial resolution, which may introduce small errors in
determining maxima and minima and their exact locations, from which λsw is estimated.

Despite obvious general qualitative agreement, there are two ways the standing wave
pattern found here is different from that identified by Xiao et al. (2024), as shown in
figures 9 and 10: (1) the phase difference between the standing wave patterns formed by
objects of different sizes and (2) the sign of the difference in amplitude between the two
sides of the object. First, Xiao et al. (2024) found that the local maxima and minima in
the amplitude distribution occurred at similar relative distances for objects of different
sizes, which is not the case here (cf. Figure 9). Second, in Xiao et al. (2024), the local
surface elevation amplitude on the upstream side of the object (i.e., the locations just to
the left of the leftmost vertical red line in figure 9) is smaller than on the downstream side
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p00[×10−2] p10[×10−2] p01 p20[×10−2] p11[×10−2] p02 R2

All terms retained −3.10±0.40 0.46±0.04 0.14±0.04 −0.01±0.00 0.40±0.09 0.80±0.09 0.98
p00 = 0 — 0.26±0.03 −0.07±0.03 −0.00±0.00 0.79±0.09 1.19±0.10 0.97
p00 = 0, p20 = 0 — 0.08±0.02 0.03±0.03 — 0.60±0.10 1.00±0.10 0.96

Table 7. Coefficients of the regression of wave-celerity normalised Stokes object drift uS,O/c on wave
steepness ε = kaw given by (4.3). The error bounds represent ± one standard deviation of the coefficients,
and R2 is the coefficient of determination.

(i.e. the location just to the right of the rightmost vertical red line in figure 9), while our
experiment shows the opposite. The discrepancies are likely due to our (virtual) gauges
moving with the objects (i.e. the distance between the gauges and the object is constant),
while the gauges in Xiao et al. (2024) were fixed in a stationary reference frame, causing
a phase shift and a non-stationary standing wave pattern.

4.3. A new empirical parametrisation for enhanced Stokes object drift
To quantitatively describe the effects of relative size l/λ and wave steepness ε = kaw in
our experimental observations, we perform the following polynomial regression for the
wave celerity-normalised Stokes object drift uS,O/c

uS,O/c = p00 + p10

(
l

λ

)
+ p01ε + p20

(
l

λ

)2

+ p11

(
l

λ

)
ε + p02ε

2, (4.3)

where p00, p10, p01, p11 and p02 are the coefficients to be determined. We have chosen a
second-order bi-variate polynomial functional form in (4.3) for its simplicity and because
previous experimental studies have revealed a mixture of linear and quadratic correlations
between drift, object size and steepness (Harms 1987; Tanizawa et al. 2001; Huang & Law
2013) (as discussed in § 1.4). We note that idealised Lagrangian particles have a (celerity-
normalised) drift, the Stokes drift (3.1), that is (only) quadratic in steepness. We consider
cases with all terms retained as well as those with several terms set to zero. Table 7
shows the coefficient values obtained from the regression with 95% confidence bounds.
To ensure independence between the covariates, which were varied independently in our
experimental matrix, we have also estimated the population Pearson correlation between
relative size l/λ and wave steepness ε, finding a very small sample correlation coefficient
O(10−18). There is clear evidence that the Stokes object drift is dependent on both linear
and quadratic terms in wave steepness (ε and ε2); the coefficient on the quadratic term
is the most significant followed by the linear term. Ideally, if both the wave steepness
and relative size of the object are 0, the drift should be zero, so we set p00 = 0. The fact
that this (setting p00 = 0) significantly changes the regression coefficients suggests that
the simplified combination of linear and a quadratic terms has limitations. The quadratic
term in l/λ is insignificant, and we set it to zero (p02 = 0). We thus propose the simplified
relationship

uS,O/c = 0.0008
(

l

λ

)
+ 0.03ε + 0.0060

(
l

λ

)
ε + 1.0ε2. (4.4)

This simplified model provides a reasonably accurate representation of the wave celerity-
normalised Stokes object drift in terms of relative size and wave steepness, with the most
significant contributions coming from the linear and quadratic terms of wave steepness.
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However, it is important to note that this simplified model is specific to the experimental
data and may not capture all possible complexities of the drift behaviour. We have also
conducted a similar polynomial regression of drift normalised by Stokes drift as a function
of relative size and wave steepness. However, the results suggest that higher-order terms
(at least a third order) of wave steepness need to be considered to make R2 larger than 0.9,
indicating potentially complex behaviour that goes beyond a simple polynomial model.

4.4. Comparison with existing theoretical and empirical models
In this section, we set out to assess the range, in terms of relative object size and wave
steepness, over which the classical Stokes drift (given by (3.1)), the diffraction-modified
Stokes drift of Xiao et al. (2024) (given by (3.3)) and the empirical formulae of Harms
(1987) (given by (3.4)) are valid. This has been done by comparing the drifts from
experimental measurement to those predicted by three different models and by examining
their effectiveness in a parameter space made up from two parameters: relative size
and wave steepness. To facilitate the comparison, we use two different normalisation
techniques for the drift: celerity normalisation and Stokes-drift normalisation, and then
examine the normalised drift as a function of relative object size and wave steepness.
We first compare the experimental measurements to the theoretical Stokes drift and the
diffraction-modified Stokes drift model of Xiao et al. (2024) by normalising the drift by
the theoretical Stokes drift and showing this as a function of relative object size and wave
steepness, respectively. Next, a comparison is drawn between the experimental results
and the empirical formula by (3.4), along with the diffraction-modified Stokes drift, as
a function of relative size for different values of wave steepness. To help explain any
discrepancies between measurements and model predictions, the amplitude of the linear
oscillatory motion values derived from experiments are compared with those predicted by
the BEM model, which is used to calculate the diffraction-modified Stokes drift in (3.3).

The experimentally measured Stokes object drift scaled by the theoretical Stokes drift
as a function of wave steepness and relative object size are presented in figures 11(a) and
11(b), respectively. As shown in panel (a), small objects l/λ≤ 2.6% follow the theoretical
Stokes drift. As the object size increases, the amplification factor uS,O/uS increases,
suggesting a larger drift enhancement. This is true for all values of wave steepness but
is especially evident for smaller values of wave steepness. For objects of a certain size,
the amplification factor decreases drastically as wave steepness increases in the low to
intermediate wave steepness range, reaching its peak value at the lowest wave steepness. As
the wave steepness increases further, the amplification factor either becomes constant or
decreases slowly with steepness. A decreasing trend with wave steepness is more distinct
for larger objects and was also observed in measurements by Huang et al. (2011), although
they do not explicitly discuss this.

Comparison between the experimentally measured Stokes object drift and the
diffraction-modified Stokes drift normalised by theoretical Stokes drift is made in
figure 11(b). In addition, a comparison between the measured Stokes object drift, the
diffraction-modified Stokes drift proposed by Xiao et al. (2024) and the empirical formula
of Harms (1987) is made in figure 12 by examining the drift normalised by wave celerity c
as a function of relative size for different values of wave steepness. The figures show that
for small objects, the diffraction-modified Stokes drift accurately predicts Stokes object
drift for various values of steepness, but this agreement breaks down for relatively large
objects, for which the expansion that underlies (3.3) is no longer valid. As shown in both
figures 11(b) and 12, the diffraction-modified Stokes drift is capable of giving a good
prediction beyond the range of the classical Stokes drift.
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Figure 11. Stokes drift-normalised Stokes object drift (a) as a function of wave steepness for different relative
object sizes and (b) as a function of relative size for different values of wave steepness. An idealised Lagrangian
particle with zero enhanced drift would have uS,O/uS = 1. The red dashed line with red square labelled DMS
represents the diffraction-modified Stokes drift given by (3.3). As the diffraction-modified Stokes drift for a
certain object size does not change with wave steepness (we use a linear ‘BEM’ model to solve (3.3), and (3.3)
is a second-order accurate quantity), it is shown as a single line in panel (b).
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to the colour in figure 11(b) to the diffraction-modified Stokes drift, and dash-dotted lines (of the same colour)
to the empirical formula of Harms (1987).
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Figure 13. Comparison of the amplitudes of oscillatory motion for objects of different sizes and in different
wave steepness from experiments to results predicted by a linear BEM model. (a) Horizontal oscillatory motion.
(b) Vertical oscillatory motion. The motion amplitudes in panels (a) and (b) are normalised by the incident wave
amplitude aw . Markers connected by continuous lines correspond to the results from experiments, while dashed
lines of the same colour are those from BEM simulations.

As the diffraction-modified Stokes drift (3.3) is calculated based on the linear oscillatory
motion of the object, figure 13 compares the amplitudes of the horizontal and vertical
components of motion between experiments and the linear BEM that underlies (3.3) (see
Xiao et al. (2024) for details) as a function of relative size for different values of wave
steepness. The linear BEM model performs well in predicting the horizontal oscillatory
motions for all objects and wave steepnesses, but fails to accurately predict the vertical
motions of larger objects where the assumption of linearity underlying the BEM model
probably fails.

Despite the difference in density between the objects used here (ρ = 636.2 kg m−3) and
by Harms (1987) (ρ = 0.92 kg m−3), the empirical formula by Harms (1987) still works
well for small wave steepness and all object sizes considered here. However, the formula by
Harms (1987) underestimates the drift significantly for all sizes when the wave steepness
is relatively large (kaw ≥ 0.16).

The empirical formula of Harms (1987) is a discontinuous function of Tw/TO,R , with
one parametric fit for short-period waves, Tw/TO,R ≤ 1.15 (corresponding to objects of
large relative size) and another for long-period waves, Tw/TO,R > 1.15 (corresponding to
objects of small relative size). The transition from short-wave to long-wave drift behaviour
occurs when Tw/TO,R = 1.15. According to (3.4), Stokes object drift is fundamentally
different in long and short waves. When the object is small, that is, in the long-wave
regime, the drift increases monotonically with relative size, while when the object is large,
that is, in the short-wave regime (i.e. when l/λ≥ 50%) drift decreases continuously with
relative size. The drift peaks at the transition point between the two regimes.

Finally, in figures 14 and 15, we present the domains over which the different models
we have discussed agree with the experimental data in this paper. When an object is very
small l/λ� 3.2%, it is transported at a speed equal to the theoretical Stokes drift for the
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Figure 14. Domains of validity of the three different models for Stokes object drift within the parameter
space covered by experiments in this paper: the classical Stokes drift for idealised Lagrangian particles (3.1),
the diffraction-modified Stokes drift (3.3), and the empirical formula of Harms (1987) (3.4). The black dot
represents the experimental data points.
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Figure 15. Domain of validity of the three models compared with the experiments in this paper. Each circle
represents an experiment, with the colour of the filled circle denoting the model(s) that has an error of less
than 20% compared with the experiment. The black circle corresponds to an experiment for which none of
the three models is able to predict the drift observed in experiments with an error of less than 20%. Blue and
green denote the classical Stokes drift and the diffraction-modified Stokes drift, respectively. Purple denotes the
empirical formula of Harms (1987) (3.4). A combination of colours within a circle suggests multiple models
have an error of less than 20% compared with experiments.
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full range of wave steepness considered. As object size increases, up to l/λ= 8.4–23.6%
depending on steepness, drift behaviour is enhanced compared with the theoretical Stokes
drift, and the diffraction-modified Stokes drift gives a relative error of less than 20%
when compared with experimental data. The diffraction-modified Stokes drift predicts
drift enhancement as a result of increased vertical motion (relative to the incident wave
field) and the difference between the diffracted and radiated wave fields. The range of
object sizes for which the diffraction-modified Stokes drift result of Xiao et al. (2024)
is valid depends on the wave steepness (see figure 11). As the wave steepness increases,
its drift enhancement amplification (relative to the theoretical Stokes drift) decreases to a
smaller number compared with the same ratio in low wave steepness. As the relative object
size is increased further, the assumptions underlying the diffraction-modified Stokes drift
derivation by Xiao et al. (2024) break down, and the theory becomes ineffective. The
empirical formula by Harms (1987) for large object sizes is then more accurate provided
the steepness is low. To investigate the correlation between object drift and both relative
size and wave steepness, we perform the polynomials regression analysis based on our
experimental data. The detailed analysis including our own parametrisation is given in
Appendix 4.3.

5. Conclusion
This paper has presented an experimental study of the drift of large rectangular 2-D objects
under the action of waves and, in doing so, evaluated the effectiveness of the diffraction-
modified Stokes drift model proposed by Xiao et al. (2024). It is experimentally difficult
to examine the drift of 2-D objects (as objects may spin under the influence of lateral
variation and become jammed). To overcome these difficulties, we have designed objects
that float freely on the water’s surface, while occupying the full width of the wave flume
used, meaning our experiments are as close to 2-D as possible. To achieve this, the objects
are equipped with low-friction bearings and ‘flange’ structures to support these bearings
for small objects.

We have considered rectangular objects with sizes up to 27 % of the length of the
incident waves. Very small objects (less than 3 % of the wavelength) essentially behave as
Lagrangian tracers, and their drift is well captured by the classical Stokes drift of Stokes
(1847). However, for larger objects, we found drift much greater than that predicted by
the classical Stokes drift; we observed drift velocities up to 17 times larger than the Stokes
drift in the extreme case (for the largest object in the smallest steepness waves considered).

In trying to understand the behaviour of larger objects, an important transition occurs
when the ratio of the incident wave period to the natural frequency of heave is of order
1 (Tw/TO,H =O(1)), as previously observed by Harms (1987). Around this point, the
vertical oscillatory motion peaks and the drift behaviour changes from increasing with
relative size to decreasing with relative size. For objects that are large enough to diffract
the wave field and whose natural period of oscillation is significantly smaller than that of
the incident waves, the enhanced drift appears to be primarily caused by the disturbance
to the wave field the object causes. Xiao et al. (2024) proposed a diffraction-modified
Stokes drift, which appears to capture the drift behaviour well in this regime. Once the
object becomes too large (∼ l/λ> 10%), the small-parameter assumption underlying the
diffraction-modified Stokes drift starts to break down. The domain of validity of the
diffraction-modified Stokes drift extends to larger objects for steeper waves, which we
attribute to the fact that the drift enhancement amplification uO,S/uS is greatly reduced
(more linear) for high wave steepness, which, somewhat counter-intuitively, extends the
range the underlying linear BEM model is valid.
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The transition behaviour is related to the behaviour of the objects’ natural heave motion.
For objects whose natural period of motion is much smaller than the period of the
incoming waves, the oscillatory motion of the object change monotonically (vertically
increased and horizontally decreased). The drift increases with object size. The drift
enhancement for such objects is attributed by Xiao et al. (2024) to increases in their heave
motion and a positive imbalance between the effects of the diffracted and radiated wave
fields. For objects whose periods are much larger than those of the incoming waves, the
oscillatory motions are greatly reduced (e.g. l/λ= 27.1%), and their drift increases with
relative size at a slow rate or becomes constant.

The dependence of drift behaviour on wave steepness is found not to be purely quadratic
(as predicted by Stokes (1847)) but a mixture of linear and quadratic, and changing with
relative size. In addition, if the waves are too steep, the linearised BEM model we use to
predict diffraction, and thus the diffraction-modified Stokes drift of Xiao et al. (2024),
breaks down, and a higher-order model would be needed to predict the diffracted and
radiated wave field. The empirical formula of Harms (1987) does well for larger object
sizes and small steepness, but breaks down for larger steepness. Based on our experimental
data, we proposed a new parameterisation that predicts the wave-induced drift as a function
of relative size (the ratio of object size to the wavelength) and wave steepness, including
linear and quadratic terms.

We make the following four recommendations for future work. First, the diffraction-
modified Stokes drift model of Xiao et al. (2024) should be made suitable for
more nonlinear circumstances by expanding (3.3), which is based on small-parameter
assumptions and only retains first-order terms, to include higher-order terms. Due to the
linearity of the BEM model used to calculate the radiated and diffracted wave fields and
the approximate nature of the model, the diffraction-modified Stokes drift theory based on
(3.3) from Xiao et al. (2024) is ineffective in predicting the drift for large objects in high
wave steepness.

Second, while (second-order) drift forces are routinely calculated (e.g. Newman (1967);
Faltinsen (1993)), it remains unclear how a force balance (between the drift force and the
wave drift damping force (Nossen et al. 1991; Aranha 1994)) can be used to predict an
enhanced steady drift of large objects analogous to the diffraction-modified Stokes drift of
Xiao et al. (2024). This should be explored in future work.

Third, for ocean waves, including both internal and surface waves, the Lagrangian-mean
object drift is given by uL ,O = uS,O + uE,O (e.g., Haney & Young 2017; Van den Bremer
& Breivik 2018; Thomas, Bühler & Smith 2018; Higgins, van Den Bremer & Vanneste
2020a). To examine the extent to which the Lagrangian-mean object drift is affected
by the introduction of finite object size, we have exclusively examined how the Stokes
object drift is affected by the finite size of the object, leaving the Eulerian-mean flow
unaffected (as in the deep-water diffraction-modified Stokes drift model of Xiao et al.
(2024)). Under certain circumstances, it is not inconceivable that the Eulerian-mean flow
may also be affected by the presence of the object, when this becomes very large and
prohibits fluid passage. This could result in flow blockage; the Eulerian-mean flow would
exhibit a distinctly different structure compared with that assumed in the current study.

We hypothesise that the effect of finite object size on the Eulerian-mean flow field is
more evident in shallow water depths, where the contribution of the second-order velocity
potential to drift cannot be neglected (Pessoa & Fonseca 2015). Therefore, we recommend
the effects of finite depth to be examined in future work.

Fourth, although the focus of this paper has been on two-dimensional geometries, we
acknowledge that such a configuration is a very strong simplification of wave-induced drift
in many real-world environments. Future work is thus recommended to explore how the
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(a) (b)

Figure 16. Two-dimensional-type objects. (a) Side view of five objects (painted yellow) installed with bearings.
Objects 1, 2, 3, 4 and 5 are shown from left to right, top to bottom. Objects 1 and 2 are designed with ‘flange’
structure shown in figure 2. (b) Front view of objects.

presence of a third dimension and the influence of object width affect the diffraction-
modified Stokes drift mechanism. As diffraction of the wave field is the main cause of
enhanced drift, we expect drift enhancement to be reduced in 3-D compared with 2-D for
a unidirectional incident wave field, as waves can diffract around the object in 3-D instead
of just being either reflected or transmitted (2-D). Finally, it would be of interest to explore
the effects of directional spreading.
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Appendix A. Photographs of objects with bearings
Figure 16 provides side and front views of the objects outside of the water. It shows the
yellow-painted ends of the objects, where the bearings are installed.

Appendix B. Measurement error and repeatability
To assess the repeatability of the experiments we present and the precision of the
approaches we use to acquire measurements, we performed repeated experiments for four
wave steepnesses (kaw = 0.06, 0.10, 0.20 and 0.32) for each object size l/λ. We conducted
five repeats for these experiments and present the results in figure 17, where we show
normalised linear oscillatory motions and drift as a function of relative size for different
wave steepness. For drift, our experiments demonstrate very small variability for low wave
steepness and small objects; variability is larger for high wave steepness and larger objects.
We attribute this to two factors. Firstly, the way we conducted the experiment plays a
role. For very small objects in low wave steepness, we limited the object to drift a shorter
section of the flume (only the middle two sections, 4 m) instead of allowing it to drift along
the entire length. This is because these objects travel very slowly. The objects are thus not
subject to any potential variation in conditions along the length of the flume, leading to less
variability. However, for larger objects in high wave steepness, which travel more quickly,
for one experiment, we needed to perform 2–3 runs to ensure that we acquired sufficient
data for at least 35 wave periods (after reaching a quasi-steady state). This introduces
more variability in the measurements. The second factor that contributes to the variability
is the repeatability of the waves in the flume, as shown in figure 18. The variability of
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Figure 17. Uncertainty envelopes as a function of relative size for different wave steepness: (a) Stokes object
drift, these data are shown without normalisation, and we only plot data for objects with relative sizes of
l/λ= 2.6%, 5.2%, 8.4%, 10.5%, 18.3% and 27.1%; (b) celerity-normalised Stokes object drift velocity;
(c) wave-amplitude-normalised magnitude of horizontal motion; (d) wave-amplitude-normalised magnitude
of vertical motion. Mean values, denoted by lines, are obtained using five repeat experiments. The error bars,
shown as shaded areas, correspond to two standard deviations either side of the mean. The transparency of
panel (c) has been adjusted to make it clearer for overlapping parts.

the oscillatory motion appears larger due to the normalisation process, where the standard
deviation is amplified. Unlike the drift, the relatively large variability of the oscillatory
motions occurs primarily in cases with small objects and intermediate wave steepness.
Apart from the wave repeatability and ways to conduct the experiment, this is also due to
the fact that the larger the object is, the easier it is to capture its bobbing motion using the
camera.

We assess the repeatability of the waves in the absence of the object here, to better
understand the nature of the uncertainty we observe above. The wave gauges set up are
the same as in § 2.1. We chose four wave steepnesses (kaw = 0.06, 0.10, 0.20 and 0.32)
for each frequency in table 2. We conducted five repeats for each experiment. The mean
values of wave amplitude for each wave gauge are calculated, and we use the average
value of all seven gauges as our wave amplitude for one repeat. The measured data are
given in figure 18. The main variability occurs at high wave steepness, and at intermediate
wave steepness for a frequency of f = 1.1 Hz. This variability is most likely caused by
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Figure 18. Uncertainty envelopes of wave amplitude as a function of wave steepness for different wave
frequencies. Mean values, denoted by lines, are obtained using five repeated experiments. The error bars,
shown as shaded areas, correspond to two standard deviations either side of the mean.

l/λ= 2.6% l/λ= 12.5% l/λ= 22.4%

kaw 1-R2 σ/uL ,O 1-R2 σ/uL ,O 1-R2 σ/uL ,O
0.06 0.012 0.0083 0.011 0.0015 0.009 0.0029
0.10 0.023 0.0054 0.015 0.0011 0.014 0.0094
0.21 0.046 0.0056 0.029 0.0140 0.025 0.0067
0.31 0.074 0.0130 0.043 0.0042 0.040 0.0151

Table 8. Measurement error of the Lagrangian object drift uL ,O during fitting of the horizontal trajectory for
objects with different sizes and in varying wave steepness. We chose three different sizes of objects to report
here: l/λ= 2.6% for Object 1 in wave f = 0.9 Hz ; l/λ= 12.5% for Object 3 in wave f = 1.1 Hz ; l/λ= 22.4%
for Object 5 in wave f = 1.0 Hz. 1 − R2 refers to the goodness of fit with R2 the uncertainty in the prediction of
the fitted polynomial. σ refers to the standard deviation (uncertainty of the coefficients) of the linear coefficient
determination in the fit, and thus σ/uL ,O represents the standard deviation of the fitted linear coefficient.

reflections that are not absorbed by the beach. We conclude wave gauge measurements are
a small cause of error.

We calculate drift velocity by performing a linear regression on the measured
trajectories once a steady state is reached. To evaluate how well this works for our
measured object trajectories and estimate the uncertainty in the gradient (drift velocity,
uL ,O ), we report the measurement errors, including the coefficients of determination
in table 8. The quantity 1 − R2 increases monotonically with wave steepness. This is
expected, as larger wave steepness leads to larger horizontal oscillatory motions of the
object, causing deviations from a constant gradient and increasing the uncertainty in the
fit. The relative uncertainties for the parameters are all very small with a maximum value
of 1.5 %.
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