HYPERBOLICITY OF HOMOCLINIC CLASSES OF C^{1} VECTOR FIELDS

KEONHEE LEE, MANSEOB LEE ${ }^{\boxtimes}$ and SEUNGHEE LEE

(Received 29 July 2013; accepted 17 October 2014; first published online 21 November 2014)

Communicated by M. Murray

Abstract

Let γ be a hyperbolic closed orbit of a C^{1} vector field X on a compact C^{∞} manifold M and let $H_{X}(\gamma)$ be the homoclinic class of X containing γ. In this paper, we prove that if a C^{1}-persistently expansive homoclinic class $H_{X}(\gamma)$ has the shadowing property, then $H_{X}(\gamma)$ is hyperbolic.

2010 Mathematics subject classification: primary 37D05; secondary 37C10, 37C29.
Keywords and phrases: persistent expansiveness, homoclinic classes, vector fields, shadowing property.

1. Introduction

A main research topic in differentiable dynamical systems is to understand the influence of a persistent dynamical property (that is, a property that holds for a system and all C^{1} nearby ones) on the underlying manifold would influence the behavior of the tangent map on the tangent bundle . For instance, Moriyasu et al. [9] showed that if a C^{1} vector field X on a compact C^{∞} manifold M is C^{1}-persistently expansive (that is, X and all C^{1} nearby ones are expansive), then X is quasi-Anosov; that is, any nonzero vector grows exponentially in norm by positive or negative directions of the tangent maps $D X_{t}$.

In this paper, we study the case where the homoclinic class $H_{X}(\gamma)$ of X containing a hyperbolic closed orbit γ is C^{1}-persistently expansive. Let us be more precise. Let M be a compact C^{∞} manifold and let $\mathfrak{X}^{1}(M)$ be the space of C^{1} vector fields on M endowed with the C^{1} topology. Denote by d the distance on M induced from a Riemannian metric $\|\cdot\|$ on the tangent bundle $T M$.

We know that every $X \in \mathfrak{X}^{1}(M)$ generates a C^{1} flow $X_{t}: M \times \mathbb{R} \rightarrow M$. Throughout this paper, for $X, Y, \ldots \in \mathfrak{X}^{1}(M)$, we always denote the generated flows by X_{t}, Y_{t}, \ldots,

[^0]respectively. For a compact X_{t}-invariant set $\Lambda \subset M$, we say that X is expansive on Λ (or Λ is expansive for X) if for any $\epsilon>0$ there is $e>0$ such that $d\left(X_{t}(x), X_{h(t)}(y)\right) \leq e$ for $x, y \in \Lambda$ and some $h \in \operatorname{Rep}(\mathbb{R})$, then $y \in X_{[-\epsilon, \epsilon]}(x)=\left\{X_{t}(x):-\epsilon \leq t \leq+\epsilon\right\}$, where $\operatorname{Rep}(\mathbb{R})$ denotes the set of all increasing homeomorphisms (reparametrizations) h : $\mathbb{R} \rightarrow \mathbb{R}$ with $h(0)=0$. Here e is called an expansive constant of $\left.X_{t}\right|_{\Lambda}$. Expansiveness is a property shared by a large class of dynamical systems exhibiting chaotic behavior. It is well known that there are only a finite number of singularities for an expansive flow and each is an isolated point of M. This reduces the study of expansive flows to those without singularities (for more details, see [3]).

Recall that a compact invariant set $\Lambda \subset M$ is called hyperbolic for X if the tangent bundle $T_{\Lambda} M$ has a $D X_{t}$-invariant splitting $E^{s} \oplus\left\langle X_{\Lambda}\right\rangle \oplus E^{u}$ and there exist constants $C>0,0<\lambda<1$ such that

$$
\left\|\left.D X_{t}\right|_{E^{s}(x)}\right\| \leq C e^{-\lambda t} \quad \text { and } \quad\left\|D X_{-t} \mid E^{u}(x)\right\| \leq C e^{-\lambda t}
$$

for all $t \geq 0$, where $\left\langle X_{\Lambda}\right\rangle$ is the subspace generated by the vector field X.
For any two hyperbolic closed orbits γ_{1} and γ_{2} of X, we say that γ_{1} and γ_{2} are homoclinically related, denoted by $\gamma_{1} \sim \gamma_{2}$, if the stable manifold $W^{s}\left(\gamma_{1}\right)$ of γ_{1} has a transversal intersection with the unstable manifold $W^{u}\left(\gamma_{2}\right)$ of γ_{2} and the unstable manifold $W^{u}\left(\gamma_{1}\right)$ of γ_{1} has a transversal intersection with the stable manifold $W^{s}\left(\gamma_{2}\right)$ of γ_{2}; that is,

$$
W^{s}\left(\gamma_{1}\right) \pitchfork W^{u}\left(\gamma_{2}\right) \neq \emptyset \quad \text { and } \quad W^{s}\left(\gamma_{2}\right) \pitchfork W^{u}\left(\gamma_{1}\right) \neq \emptyset
$$

For any hyperbolic closed orbit γ of X, the set

$$
H_{X}(\gamma)=\overline{\left\{\gamma^{\prime} \in P O_{h}(X): \gamma^{\prime} \sim \gamma\right\}}
$$

is called the homoclinic class of X containing γ, where $P O_{h}(X)$ denotes the set of hyperbolic closed orbits of X. It is clear that if $\gamma^{\prime} \sim \gamma$, then index $(\gamma)=$ index $\left(\gamma^{\prime}\right)$; that is, $\operatorname{dim} W^{s}(\gamma)=\operatorname{dim} W^{s}\left(\gamma^{\prime}\right)$. Note that if γ is a hyperbolic closed orbit of X, then there are a C^{1} neighborhood $\mathcal{U}(X)$ of X and a neighborhood U of γ such that for any $Y \in \mathcal{U}(X)$, there exists a unique hyperbolic closed orbit γ_{Y} of Y in U with index $(\gamma)=\operatorname{index}\left(\gamma_{Y}\right)$. Such hyperbolic closed orbit γ_{Y} is called the continuation of γ with respect to Y.

We say that the homoclinic class $H_{X}(\gamma)$ is C^{1}-persistently expansive if there is a C^{1} neighborhood $\mathcal{U}(X)$ of X such that for any $Y \in \mathcal{U}(X), H_{Y}\left(\gamma_{Y}\right)$ is expansive for Y.

A series of works to show the hyperbolicity of (C^{1}-persistently expansive) homoclinic classes $H_{f}(p)$ of a diffeomorphism f containing a hyperbolic periodic orbit p has been done by Bonatti, Gan, Pacifico, Sambarino, Vieitez and others in [1, 7, 1012, 14]. In this direction, the following problem is still open: are the C^{1}-persistently expansive homoclinic classes $H_{f}(p)$ hyperbolic? Recently, Wen et al. [13] showed that if a C^{1}-persistently expansive homoclinic class $H_{f}(p)$ has the shadowing property, then it is hyperbolic.

In this paper, we extend the above results, which are obtained for the case of diffeomorphisms, to the case of vector fields. Many results on dynamics for
diffeomorphisms can be extended to the case of vector fields, but this is not always possible. In particular, the results involving the hyperbolic structure may not be extended to the case of vector fields. For example, it is well known that if a diffeomorphism f has a C^{1} neighborhood $\mathcal{U}(f)$ such that every periodic point of $g \in \mathcal{U}(f)$ is hyperbolic, then the nonwandering set $\Omega(f)$ is hyperbolic. However, the result is not true for the case of vector fields (for more details, see [5]).

In attempting to solve the problem mentioned above, we were faced with several difficulties. For instance, the hyperbolic-like structures near singular points and periodic orbits of a vector field are qualitatively different, the time parameterization in the expansiveness of vector fields causes complexity of the calculations, what kinds of dominated splitting (for flow or for linear Poincaré flow) are suitable to get the hyperbolic structure?, etc.

A sequence $\left\{\left(x_{i}, t_{i}\right): x_{i} \in M, t_{i} \geq 1, a<i<b\right\}(a$ can be $-\infty$ and b can be ∞) in $M \times \mathbb{R}$ is called a $(\delta, 1)$-pseudo orbit of X if $d\left(X_{t_{i}}\left(x_{i}\right), x_{i+1}\right)<\delta$ for any $a<i<b-1$. Let Λ be a compact X_{t}-invariant set. We say that X has the shadowing property on Λ (or Λ is shadowable for X_{t}) if, for any $\epsilon>0$, there is $\delta>0$ satisfying the following property: given any ($\delta, 1$)-pseudo orbit $\left\{\left(x_{i}, t_{i}\right): x_{i} \in \Lambda, t_{i} \geq 1, a<i<b\right\}$, there exist a point $y \in M$ and $h \in \operatorname{Rep}(\mathbb{R})$ such that

$$
d\left(X_{t-T_{i}}\left(x_{i}\right), X_{h(t)}(y)\right)<\varepsilon \quad \text { for all } T_{i} \leq t<T_{i+1} .
$$

The main purpose of this paper is to characterize the hyperbolicity of the homoclinic class $H_{X}(\gamma)$ containing a hyperbolic closed orbit γ by making use of the expansiveness under the C^{1} open condition. More precisely, we have the following theorem.

Main Theorem. Every C^{1}-persistently expansive homoclinic class $H_{X}(\gamma)$ is hyperbolic if it is shadowable.

2. Proof of main theorem

We assume that the exponential map $\exp _{p}: T_{p} M(1) \rightarrow M$ is well defined for all $p \in M$, where $T_{p} M(r)$ denotes the r-ball $\left\{v \in T_{p} M:\|v\| \leq r\right\}$ in $T_{p} M$. For every regular point $x \in M$, let

$$
N_{x}=(\langle X(x)\rangle)^{\perp} \subset T_{x} M
$$

and $N_{x}(r)$ be the r-ball in N_{x}. Let $\widetilde{N}_{x, r}=\exp _{x}\left(N_{x}(r)\right)$. Given any regular point $x \in M$ and $t \in \mathbb{R}$, there are $r>0$ and a C^{1} map $\tau: \widetilde{N}_{x, r} \rightarrow \mathbb{R}$ with $\tau(x)=t$ such that $X_{\tau(y)}(y) \in \widetilde{N}_{X_{t}(x), 1}$ for any $y \in \widetilde{N}_{x, r}$. We say that $\tau(y)$ is the first time of y. Then we define the Poincaré map $f_{x, t}$ by

$$
f_{x, t}: \widetilde{N}_{x, r} \rightarrow \widetilde{N}_{X_{t}(x), 1} ; y \mapsto f_{x, t}(y)=X_{\tau(y)}(y) .
$$

Let $M_{X}=\{x \in M: X(x) \neq 0\}$. It is easy to check that for any fixed t, there exists a continuous map $r_{0}: M_{X} \rightarrow(0,1)$ such that for any $x \in M_{X}$, the Poincaré map $f_{x, t}: \widetilde{N}_{x, r_{0}(x)} \rightarrow \widetilde{N}_{X_{t}(x), 1}$ is well defined and the respective time function τ satisfies $\frac{2}{3} t<\tau(y)<\frac{4}{3} t$ for $y \in \widetilde{N}_{x, r_{0}(x)}$.

During the study of the structural stability conjecture, Liao [8] raised the notion of linear Poincaré flow (LPF) for a C^{1} vector field. Let $\mathcal{N}=\bigcup_{x \in M_{X}} N_{x}$ be the normal bundle based on M_{X}. Then we can define a flow, called linear Poincaré flow, $\Psi_{t}: \mathcal{N} \rightarrow \mathcal{N}$ by

$$
\left.\Psi_{t}\right|_{N_{x}}=\left.\pi_{N_{x}} \circ D_{x} X_{t}\right|_{N_{x}},
$$

where $\pi_{N_{x}}: T_{x} M \rightarrow N_{x}$ is the projection along $X(x)$ and $D_{x} X_{t}: T_{x} M \rightarrow T_{X_{t}(x)} M$ is the derivative map of X_{t}.

Definition 2.1. Let Λ be an X_{t}-invariant subset of M which contains no singularity. We call an Ψ_{t}-invariant splitting $\mathcal{N}_{\Lambda}=\Delta^{s} \oplus \Delta^{u}$ a l-dominated splitting for the linear Poincaré flow Ψ_{t} if

$$
\left\|\left.\Psi_{t}\right|_{\Delta^{s}(x)}\right\| \cdot\left\|\left.\Psi_{-t}\right|_{\Delta^{u}\left(X_{t}(x)\right)}\right\| \leq \frac{1}{2}
$$

for any $x \in \Lambda$ and any $t \geq l$. We call an Ψ_{t}-splitting $\mathcal{N}_{\Lambda}=\Delta^{s} \oplus \Delta^{u}$ a hyperbolic splitting if there are $C>0$ and $\lambda \in(0,1)$ such that

$$
\left\|\Psi_{t}{\mid \Delta^{s}(x)}\right\| \leq C \lambda^{t} \quad \text { and } \quad\left\|\Psi_{-t}{\mid \Delta^{u}(x)}\right\| \leq C \lambda^{t}
$$

for any $x \in \Lambda$ and $t>0$.
Note that the dominated splitting for the linear Poincaré flow Ψ_{t} and the dominated splitting for the corresponding flow need not be equivalent (for more details, see [2]). Unlike the case of dominated splitting, the hyperbolic splitting for the linear Poincaré flow and the hyperbolic splitting for the corresponding flow are equivalent, as we can see in the following lemma.

Lemma 2.2 [4]. Let $\Lambda \subset M$ be a compact X_{t}-invariant set which contains no singularity. Then Λ is a hyperbolic set of X_{t} if and only if the linear Poincaré flow Ψ_{t} restricted on Λ has a hyperbolic splitting.

The following two lemmas, which will be useful for the proof of our main theorem, were proved in [7].

Lemma 2.3. Let $X \in \mathfrak{X}^{1}(M)$ and let γ be a hyperbolic closed orbit of X. If $H_{X}(\gamma)$ is C^{1} persistently expansive, then $H_{X}(\gamma)$ admits a Ψ_{t}-dominated splitting $\mathcal{N}_{H_{X}(\gamma)}=\Delta^{s} \oplus \Delta^{u}$ with $\operatorname{dim}\left(\Delta^{s}\right)=$ index (γ).

Lemma 2.4. Let $X \in \mathfrak{X}^{1}(M)$ and let γ be a hyperbolic closed orbit of X. If $H_{X}(\gamma)$ is C^{1}-persistently expansive, then there exist constants $T \geq 1, \eta>0$ and $\tilde{T}>0$ such that for any $\gamma^{\prime} \sim \gamma$, if the period τ of γ^{\prime} is greater than \tilde{T}, then the following properties hold:
(i) for any $x \in \gamma^{\prime}$ and $t \geq T$,

$$
\frac{1}{t}\left(\log \left\|\left.\Psi_{t}\right|_{\Delta^{s}(x)}\right\|-\log m\left(\left.\Psi_{t}\right|_{\Delta^{u}(x)}\right)\right)<-2 \eta ;
$$

(ii) let $x \in \gamma^{\prime}$ and let $0=T_{0}<T_{1}<\cdots<T_{\iota}=\tau$ be a partition with $T \leq T_{i}-T_{i-1}<2 T$ for any $i=1,2, \ldots, \iota$. Then

$$
\begin{aligned}
& \frac{1}{\tau} \sum_{i=1}^{\iota} \log \left\|\left.\Psi_{T_{i}-T_{i-1}}\right|_{\Delta^{s}\left(X_{T_{i-1}}(x)\right)}\right\|<-\eta \\
& \frac{1}{\tau} \sum_{i=1}^{\iota} \log m\left(\left.\Psi_{T_{i}-T_{i-1}}\right|_{\Delta^{u}\left(X_{T_{i-1}}(x)\right)}\right)>\eta
\end{aligned}
$$

To prove our main theorem, it suffices to prove the following proposition.
Proposition 2.5. Let $X \in \mathfrak{X}^{1}(M)$ and let γ be a hyperbolic closed orbit of X. Let $T \geq 1, \eta>0$ and $\tilde{T}>0$ be given. For any $\gamma^{\prime} \sim \gamma$, if the period τ of γ^{\prime} is greater than \tilde{T}, we assume that $H_{X}(\gamma)$ satisfies the following properties (P1)-(P3).
(P1) For any $x \in \gamma^{\prime}$ and $t \geq T$,

$$
\frac{1}{t}\left(\log \left\|\left.\Psi_{t}\right|_{\Delta^{s}(x)}\right\|-\log m\left(\left.\Psi_{t}\right|_{\Delta^{u}(x)}\right)\right)<-2 \eta .
$$

(P2) Let $x \in \gamma^{\prime}$ and $0=T_{0}<T_{1}<\cdots<T_{\iota}=\tau$ be a partition with $T \leq T_{i}-T_{i-1}<2 T$ for any $i=1, \ldots, \iota$. Then

$$
\begin{aligned}
& \frac{1}{\tau} \sum_{i=1}^{i=\iota} \log \left\|\left.\Psi_{T_{i}-T_{i-1}}\right|_{\Delta^{s}\left(X_{T_{i-1}} x\right)}\right\|<-\eta \\
& \frac{1}{\tau} \sum_{i=1}^{i=\iota} \log m\left(\left.\Psi_{T_{i}-T_{i-1}}\right|_{\Delta^{u}\left(X_{T_{i-1}} x\right)}\right)>\eta
\end{aligned}
$$

(P3) X has the shadowing property on $H_{X}(\gamma)$.
Then $H_{X}(\gamma)$ is hyperbolic.
First of all, we introduce two technical lemmas which are necessary to control the time reparametrization for flows.

Lemma 2.6. Let $X \in \mathfrak{X}^{1}(M)$ and let Λ be a closed invariant set of X_{t} containing no singularity. Then there exist a neighborhood U of Λ and a constant $T_{0}>0$ which satisfy the following:
(1) for $0<\epsilon<T_{0}$, there is $\delta>0$ such that for any $x \in U$ and $0 \leq s, t \leq T_{0}$, $d\left(X_{s}(x), X_{t}(x)\right)<\delta$ implies $|s-t|<\epsilon$;
(2) for $T \in\left(0, T_{0}\right)$, there is $\epsilon>0$ such that $X_{[0, t]}(x) \subset B(x, \epsilon)$ implies $t \in[0, T]$ for any $x \in U$.

Proof. The proof is straightforward. For more details, see [6].
Lemma 2.7. Let $X \in \mathfrak{X}^{1}(M)$ and let Λ be a closed invariant set of X_{t} containing no singularity. Let U and T_{0} be as given in Lemma 2.6, and take a neighborhood V of Λ such that $X_{t}(x) \in U$ for any $x \in \bar{V}$ and $0 \leq t \leq T_{0}$. Then, for any $\epsilon \in(0,1)$ and
$T_{1} \in\left(0, T_{0}\right]$, there is $\epsilon^{\prime}>0$ such that for any $x, y \in V$, if an increasing continuous map $g:\left[0, T_{1}\right] \rightarrow \mathbb{R}$ satisfies $g(0)=0$ and $d\left(X_{t}(x), X_{g(t)}(y)\right) \leq \epsilon^{\prime}$ for all $t \in\left[0, T_{1}\right]$, then $\left|g\left(T_{1}\right)-T_{1}\right| \leq \epsilon T_{1}$.
Proof. The proof is straightforward. For more details, see [6].
If a dominated splitting $\mathcal{N}_{\Lambda}=\Delta^{s} \oplus \Delta^{u}$ is not a hyperbolic splitting for Ψ_{t}, then either Δ^{s} is not Ψ_{t}-contracting or Δ^{u} is not Ψ_{t}-expanding. Now we assume that Δ^{s} is not contracting. Then we have the following proposition.

Proposition 2.8. Suppose that a closed invariant set $\Lambda \subset M$ admits a dominated splitting $\mathcal{N}_{\Lambda}=\Delta^{s} \oplus \Delta^{u}$ for the linear Poincaré flow Ψ_{t}. If the subbundle Δ^{s} is not contracting for Ψ_{t}, then there exists a point $b \in \Lambda$, called an obstruction point, such that $\left\|\left.\Psi_{t}\right|_{\Delta^{s}(b)}\right\| \geq 1$ for all $t \geq 0$.

Proof. Assume that for any $x \in \Lambda$, there is $t_{x}>0$ with $\left\|\left.\Psi_{t_{x}}\right|_{\Delta^{s}(x)}\right\|=\lambda_{x}<1$. For any $x \in \Lambda$, we can find δ_{x} such that $\left\|\left.\Psi_{t_{x}}\right|_{\Delta^{s}(y)}\right\|<\sqrt{\lambda_{x}}$ for $y \in B\left(x, \delta_{x}\right) \cap \Lambda$. Since Λ is compact, we can find a finite set $\left\{x_{1}, \ldots, x_{k}\right\}$ such that

$$
\Lambda \subset \bigcup_{i=1}^{k} B\left(x_{i}, \delta_{x_{i}}\right)
$$

Let $K=\max \left\{t_{x_{i}}: i=1, \ldots, k\right\}, \lambda=\max \left\{\lambda_{x_{i}}: i=1, \ldots, k\right\}^{1 / 2 K}$ and $C=\sup \left\{\left.| | \Psi_{t}\right|_{\Delta^{s}(x)} \|\right.$: $0 \leq t \leq K, x \in \Lambda\} \cdot \lambda^{-K}$. Given any $x \in \Lambda$ and $t>0$, we can find $0 \leq t_{1} \leq K$ such that

$$
\left\|\left.\Psi_{t_{1}}\right|_{\Delta^{s}(x)}\right\|<\lambda^{K} \leq \lambda^{t_{1}}
$$

Then we can find t_{2} such that $0<t_{2}-t_{1} \leq K$ and

$$
\left\|\left.\Psi_{t_{2}-t_{1}}\right|_{\Delta^{s}\left(X_{t_{1}}(x)\right)}\right\|<\lambda^{K} \leq \lambda^{t_{2}-t_{1}}
$$

Hence, $\left\|\left.\Psi_{t_{2}}\right|_{\Delta^{s}(x)}\right\|<\lambda^{t_{2}}$. Similarly, we can take $0<t_{1}<t_{2}<\cdots<t_{l}<t$ with $t-t_{l}<K$ such that

$$
\left\|\Psi_{t_{i}-t_{i-1} \mid \Delta^{s}\left(X_{t_{i-1}}\right)}\right\|<\lambda^{k}<\lambda^{t_{i}-t_{i-1}}
$$

Finally, we can verify that $\left\|\left.\Psi_{t}\right|_{\Delta^{s}(x)}\right\|<C \lambda^{t}$. This contradicts the assumption that Δ^{s} is not Ψ_{t}-contracting.

Now we will show in the following theorem that we can choose an 'adaptable point' of γ if $H_{X}(\gamma)$ is C^{1}-persistently expansive.

Proposition 2.9. Let $T>0, \eta>0$ and γ^{\prime} be as in Lemma 2.4. Then, for any $x \in \gamma^{\prime}$ and a partition $0=T_{0}<T_{1}<\cdots<T_{\iota}=\tau$ with $T \leq T_{i}-T_{i-1}<2 T$ for any $i=1,2, \ldots, \iota$, if the partition $\left\{T_{i}\right\}$ satisfies

$$
\begin{aligned}
& \frac{1}{\tau} \sum_{i=1}^{i=\iota} \log \left\|\left.\Psi_{T_{i}-T_{i-1}}\right|_{\Delta^{s}\left(X_{T_{i-1}} x\right)}\right\|<-\eta \\
& \frac{1}{\tau} \sum_{i=1}^{i=\iota} \log m\left(\left.\Psi_{T_{i}-T_{i-1}}\right|_{\Delta^{u}\left(X_{T_{i-1}} x\right)}\right)>\eta
\end{aligned}
$$

denote by $\left\{T_{i}\right\}_{i \in \mathbb{Z}}$ the extension of $\left\{T_{i}\right\}_{0 \leq i \leq \iota}$ satisfying $T_{i+k \iota}=T_{i}+k \tau$ for any integer i, k; then there exists an integer $0 \leq i_{0}<\iota$ such that

$$
\left\{\begin{array}{l}
\frac{1}{T_{i_{0}+k}-T_{i_{0}}} \sum_{j=1}^{j=k} \log \left\|\left.\Psi_{T_{i_{0}+j}-T_{i_{0}+j-1}}\right|_{\Delta^{s}\left(X_{T_{i_{0}+j-1}} x\right)}\right\| \leq-\eta, \tag{*}\\
\frac{1}{T_{i_{0}}-T_{i_{0}-k}} \sum_{j=1}^{j=k} \log m\left(\left.\Psi_{T_{i_{0}-j+1}-T_{i_{0}-j}}\right|_{\Delta^{u}\left(X_{T_{i_{0}-j}} x\right)}\right) \geq \eta
\end{array}\right.
$$

for any $k \geq 1$. Here the point $X_{T_{i_{0}}}(x)$ in γ which satisfies (() is said to be an 'adaptable point' of γ.

To prove Proposition 2.9, we need the following lemma.
Lemma 2.10. Let $T>0, \eta>0$ and γ^{\prime} be as in Lemma 2.4. For any $x \in \gamma^{\prime}$ and a partition $0=T_{0}<T_{1}<\cdots<T_{\iota}=\tau$ with $T \leq T_{i}-T_{i-1}<2 T$ for any $i=1,2, \ldots, \iota$, if the partition $\left\{T_{i}\right\}$ satisfies the following inequality:

$$
\frac{1}{\tau} \sum_{i=1}^{i=\iota} \log \left\|\left.\Psi_{T_{i}-T_{i-1}}\right|_{\Delta^{s}\left(X_{T_{i-1}} x\right)}\right\|<-\eta
$$

then there exists an integer $0 \leq i_{0}<\iota$ such that

$$
\frac{1}{T_{i_{0}+k}-T_{i_{0}}} \sum_{j=1}^{j=k} \log \left\|\Psi_{T_{i_{0}+j}-T_{i_{0}+j-1}} \mid \Delta^{s}\left(X_{T_{i_{0}+j-1}} x\right)\right\| \leq-\eta
$$

for any $k \geq 1$.
Proof. For each $k \in \mathbb{Z}$, we define $S\left(T_{k}\right)$ by

$$
S\left(T_{k}\right)= \begin{cases}\sum_{j=0}^{k-1} \log \left\|\left.\Psi_{T_{j+1}-T_{j}}\right|_{\Delta^{s}\left(X_{T_{j}} x\right)}\right\| & \text { if } k>0 \\ 0 & \text { if } k=0 \\ -\sum_{j=-k}^{-1} \log \left\|\left.\Psi_{T_{j+1}-T_{j}}\right|_{\Delta^{s}\left(X_{T_{j}} x\right)}\right\| & \text { if } k<0\end{cases}
$$

Then

$$
S\left(T_{\iota}\right)<-\eta T_{\iota} \quad \text { and } \quad S\left(T_{l+i}\right)=S\left(T_{l}\right)+S\left(T_{i}\right)
$$

for any $i \in \mathbb{Z}$. Hence,

$$
S\left(T_{n+i}\right)-S\left(T_{i}\right)<-\eta\left(T_{n+i}-T_{i}\right)
$$

We prove that the set

$$
A=\left\{j_{0} \in \mathbb{Z}: S\left(T_{j_{0}+k}\right)-S\left(T_{j_{0}}\right)<-\eta\left(T_{j_{0}+k}-T_{j_{0}}\right) \text { for } k \geq 0\right\}
$$

is not empty. By contradiction, we assume that for $j \geq 0$, there exists $k_{j}>0$ such that

$$
S\left(T_{j+k_{j}}\right)-S\left(T_{j}\right) \geq-\eta\left(T_{j+k_{j}}-T_{j}\right)
$$

Then we can find k_{0} for 0 , and $k_{k_{0}}$ for k_{0}, \ldots. Let $0<k_{0}<k_{1}<\cdots$ be a sequence such that

$$
S\left(T_{k_{i}}\right)-S\left(T_{k_{i-1}}\right) \geq-\eta\left(T_{k_{i}}-T_{k_{i-1}}\right)
$$

for any $i \geq 0$. It is obvious that there exists $0<j<i$ such that $k_{i}-k_{j}$ is a multiple of ι. The choice of the sequence means that

$$
S\left(T_{k_{i}}\right)-S\left(T_{k_{j}}\right) \geq-\eta\left(T_{k_{i}}-T_{k_{j}}\right)
$$

This contradicts the assumption.
The same result respecting Δ^{u} can be obtained as follows. We can define $\tilde{S}\left(T_{k}\right)$ as

$$
\begin{array}{r}
\tilde{S}\left(T_{k}\right)=-\sum_{j=0}^{k-1} \log m\left(\left.\Psi_{T_{i}-T_{i-1}}\right|_{\Delta^{u}\left(X_{T_{i-1}}(x)\right)}\right), \\
\tilde{S}\left(T_{-k}\right)=-\sum_{j=-k+1}^{0} \log m\left(\left.\Psi_{T_{i}-T_{i-1}}\right|_{\Delta^{u}\left(X_{T_{i-1}}(x)\right)}\right)
\end{array}
$$

for any $k>0$. Then we can easily check that

$$
\tilde{S}\left(T_{\imath}\right)<-\eta T_{\iota} \quad \text { and } \quad \tilde{S}\left(T_{l+i}\right)=\tilde{S}\left(T_{l}\right)+\tilde{S}\left(T_{i}\right)
$$

for any integer i. Similarly, we can also prove that the set

$$
B=\left\{j_{0} \in \mathbb{Z}: \tilde{S}\left(T_{j_{0}}\right)-\tilde{S}\left(T_{j_{0}-k}\right)<-\eta\left(T_{j_{0}}-T_{j_{0}-k}\right) \text { for } k \geq 0\right\}
$$

is not empty.
Proof of Proposition 2.9. Let A and B be the sets which were obtained in the proof of Lemma 2.10. It is obvious that if $a \in A$ then $\pm \iota+a \in A$, and if $b \in B$ then $\pm \iota+b \in B$. We will prove that $A \cap B \cap[0, \iota)$ is not empty. If $A \cap B \cap[0, \iota)=\emptyset$, then there are $a \in A$ and $b \in B$ such that $b<a$ and $(b, a) \cap(A \cup B)=\emptyset$. Since $a-1 \notin A$,

$$
S\left(T_{a}\right)-S\left(T_{a-1}\right) \geq-\eta\left(T_{a}-T_{a-1}\right)
$$

From

$$
\begin{gathered}
\frac{1}{T_{a}-T_{a-1}}\left(\log \left\|\left.\Psi_{t}\right|_{\Delta^{s}\left(X_{T_{a-1}}(x)\right)}\right\|-\log m\left(\left.\Psi_{t}\right|_{\Delta^{u}\left(X_{T_{a-1}}(x)\right)}\right)\right)<-2 \eta, \\
\tilde{S}\left(T_{a}\right)-\tilde{S}\left(T_{a-1}\right)<-\eta\left(T_{a}-T_{a-1}\right) .
\end{gathered}
$$

Similarly, if $a-2 \notin A$,

$$
S\left(T_{a}\right)-S\left(T_{a-2}\right) \geq-\eta\left(T_{a}-T_{a-2}\right)
$$

Suppose not. Then

$$
S\left(T_{a}\right)-S\left(T_{a-2}\right)<-\eta\left(T_{a}-T_{a-2}\right)
$$

and

$$
S\left(T_{a-1}\right)-S\left(T_{a-2}\right)<-\eta\left(T_{a-1}-T_{a-2}\right) .
$$

These two inequalities and $a \in A$ imply that $a-2 \in A$. From

$$
\frac{1}{T_{a}-T_{a-1}}\left(\log \left\|\Psi_{T_{a}-T_{a-1} \mid \Delta^{s}\left(X_{T_{a-1}}(x)\right)}\right\|-\log m\left(\Psi_{T_{a}-T_{a-1}} \mid \Delta^{u}\left(X_{T_{a-1}}(x)\right)\right)\right)<-2 \eta
$$

and

$$
\begin{gathered}
\frac{1}{T_{a-1}-T_{a-2}}\left(\log \left\|\left.\Psi_{T_{a-1}-T_{a-2}}\right|_{\Delta^{s}\left(X_{T_{a-2}}(x)\right)}\right\|-\log m\left(\left.\Psi_{T_{a-1}-T_{a-2}}\right|_{\Delta^{u}\left(X_{T_{a-2}}(x)\right)}\right)\right)<-2 \eta, \\
\tilde{S}\left(T_{a}\right)-\tilde{S}\left(T_{a-2}\right)<-\eta\left(T_{a}-T_{a-2}\right) .
\end{gathered}
$$

Inductively, we can prove that for any $i \in[b, a)$,

$$
\tilde{S}\left(T_{a}\right)-\tilde{S}\left(T_{i}\right)<-\eta\left(T_{a}-T_{i}\right) .
$$

These two inequalities and the fact that $b \in B$ imply that $a \in B$. This gives a contradiction with the assumption that $A \cap B=\emptyset$. Consequently, we can choose an integer $i_{0} \in A \cap B \cap[0, \iota)$. Hence, we can see that the integer i_{0} satisfies the conclusion of the proposition.

To complete the proof of our main theorem, we introduce the notion of a quasihyperbolic orbit arc and the shadowing lemma as in [8].

Defintition 2.11. Let $\Lambda \subset M_{X}$ be a closed X_{t}-invariant set that has a continuous $\Psi_{t}{ }^{-}$ invariant splitting $\mathcal{N}_{\Lambda}=\Delta^{s} \oplus \Delta^{u}$ with $\operatorname{dim} \Delta^{s}=p, 1 \leq p \leq \operatorname{dim} M-1$. For two real numbers $T>0$ and $\eta>0$, an orbit arc $(x, t)=X_{[0, t]}(x)$ is called an (η, T, p) quasihyperbolic orbit arc of X with respect to the splitting $\Delta^{s} \oplus \Delta^{u}$ if $[0, t]$ has a partition

$$
0=T_{0}<T_{1}<\cdots<T_{l}=t
$$

such that $T \leq T_{i}-T_{i-1}<2 T, i=1, \ldots, l$, with the following conditions:

$$
\begin{align*}
& \text { (1) } \left.\left(1 / T_{k}\right) \sum_{j=1}^{k} \log \|\left.\Psi_{T_{j}-T_{j-1}}\right|_{\Delta^{s}\left(X_{T_{j-1}}(x)\right)}\right) \mid \leq-\eta ; \tag{1}\\
& \text { (2) }\left(1 /\left(T_{l}-T_{k-1}\right)\right) \sum_{j=k}^{l} \log m\left(\left.\Psi_{T_{j}-T_{j-1}}\right|_{\Delta^{u}\left(X_{T_{j-1}}(x)\right)}\right) \geq \eta ; \\
& \text { (3) } \log \left\|\left.\Psi_{T_{k}-T_{k-1}}\right|_{\Delta^{s}\left(X_{T_{k-1}}(x)\right)}\right\|-\log m\left(\left.\Psi_{T_{k}-T k-1}\right|_{\Delta^{u}\left(X_{T_{k-1}}(x)\right)}\right) \leq-2 \eta \text { for } k=1, \ldots, l .
\end{align*}
$$

The first and second inequalities in the above definition involve a kind of contraction and expansion along the partition $\left(T_{i}\right)_{i=0}^{l}$ of the segment $[0, t]$. The third one is nothing but the dominated structure on the arc $X_{[0, t]}(x)$. The most important property, which was proved by Liao [8], of a quasi-hyperbolic orbit arc is that it can be shadowed by a periodic point if the two end points of the arcs are sufficiently close.

Proposition 2.12 (Generalized shadowing lemma [8]). Let $X \in \mathfrak{X}^{1}(M)$ and let Λ be a closed invariant set containing no singularity. Assume that there exists a continuous Ψ_{t}-invariant splitting $\mathcal{N}_{\Lambda}=\Delta^{s} \oplus \Delta^{u}$ with $\operatorname{dim} \Delta^{s}=p, 1 \leq p \leq \operatorname{dim} M-1$. Then, for any $\eta>0, T>0$ and $\epsilon>0$, there exists $\zeta>0$ such that if (x, τ) is a (η, T, p)-quasihyperbolic orbit arc of X with respect to the splitting $\Delta^{s} \oplus \Delta^{u}$ and $d\left(X_{\tau}(x), x\right)<\zeta$, then there exist $y \in M$ and an orientation-preserving homeomorphism $g:[0, \tau] \rightarrow \mathbb{R}$ with $g(0)=0$ such that $d\left(X_{g(t)}(y), X_{t}(x)\right)<\epsilon$ for any $t \in[0, \tau]$ and $X_{g(\tau)}(y)=y$.

The following lemma is a flow version of Corollary 2.2 in [1].
Lemma 2.13. For any $0<\eta<1$ and any admissible neighborhood U of $H_{X}(\gamma)$, there is $\delta_{\eta}>0$ such that for every adaptable point $x, y \in \bigcap_{t \in \mathbb{R}} X_{t}(U)$,

$$
d(x, y)<\delta_{\eta} \Rightarrow W^{u}(x) \pitchfork W^{s}(y) \neq \emptyset .
$$

In particular, if x and y are periodic points, then they are hyperbolic, have the same index and are homoclinically related.

We will construct a pseudo orbit in $H_{X}(\gamma)$ which is a quasi-hyperbolic orbit arc of X.
Proposition 2.14. Assume that $H_{X}(\gamma)$ satisfies the hypotheses (P1)-(P3) in Proposition 2.5, and \triangle^{s} is not contracting. Then, for any given constants $\delta>0$ and $0<\eta_{1}<\eta_{2}<\eta$, we can construct a $(\delta, 1)$-pseudo orbit $\left\{\left(x_{i}, t_{i}\right)\right\}_{i=0}^{n-1}$ in $H_{X}(\gamma)$ such that:
(1) x_{0} is an adaptable point of γ^{\prime};
(2) $X_{t_{n-1}}\left(x_{n-1}\right)=x_{0}$;
(3) $\frac{5}{4} T<t_{i}<\frac{7}{4} T$ for any $0 \leq i \leq n-1$;
(4) by denoting $T_{k}=t_{0}+\cdots+t_{k-1}$ for all $1 \leq k \leq n$,

$$
\begin{gathered}
\frac{1}{T_{k}} \sum_{i=0}^{k-1} \log \left\|\left.\Psi_{t_{i}}\right|_{\Delta^{s}\left(x_{i}\right)}\right\|<-\eta_{2}, \\
\frac{1}{T_{n}-T_{n-k}} \sum_{i=1}^{k} \log m\left(\Psi_{t_{n-i} \mid \Delta^{u}\left(x_{n-i}\right)}\right)>\eta_{2} ;
\end{gathered}
$$

$$
\begin{equation*}
1 / T_{n} \sum_{i=0}^{n-1} \log \left\|\left.\Psi_{t_{i}}\right|_{\Delta^{s}\left(x_{i}\right)}\right\|>-\eta_{1} . \tag{5}
\end{equation*}
$$

Proof. Since Δ^{s} is not contracting, there exists an obstruction point $b \in H_{X}(\gamma)$ such that $\left\|\left.\Psi_{t}\right|_{\Delta^{s}(b)}\right\| \geq 1$ for all $t \geq 0$. Fix constants $\delta>0$ and $0<\eta_{1}<\eta_{2}<\eta$. We take a constant $0<\epsilon<\delta$ small enough such that $d(x, y)<\epsilon$ implies that $d\left(X_{t}(x), X_{t}(y)\right)<\delta$ for any $0 \leq t \leq 2 T$. Since $H_{X}(\gamma)$ is the homoclinic class containing γ, there exists $\gamma^{\prime} \sim \gamma$ with period τ arbitrarily large such that $H_{X}(\gamma) \subset B\left(\gamma^{\prime}, \epsilon\right)$. We can assume that τ is big enough such that $\frac{5}{4} T<\tau / \iota<\frac{7}{4} T$, where ι is the integer part of $\tau /(3 T / 2)$. Now we take $x \in \gamma$ such that $d(x, y)<\epsilon<\delta$ and divide $[0, \tau]$ into ι parts:

$$
0<\frac{\tau}{\iota}<2 \frac{\tau}{\iota}<\cdots<(\iota-1) \frac{\tau}{\iota}<\tau .
$$

From Proposition 2.9, there is $0 \leq i_{0}<\tau$ such that

$$
\frac{1}{k \tau / \iota} \sum_{j=0}^{k-1} \log \left\|\left.\Psi_{\tau / \iota}\right|_{\Delta^{s}\left(X_{\left(j+i_{0}\right) \tau \iota}(x)\right)}\right\| \leq-\eta
$$

and

$$
\frac{1}{k \tau / \iota} \sum_{j=1}^{k} \log m\left(\left.\Psi_{\tau / \iota}\right|_{\Delta^{s}\left(X_{\left(j+i_{0}\right) \tau / \iota}(x)\right)}\right) \geq \eta
$$

for any $k \geq 1$. Take an integer $s>0$. Now we take $\bar{x}_{i}=X_{\left(i_{0}+i\right) \tau / \iota}(x)$ and $\bar{t}_{i}=\tau / \iota$ for $0 \leq i<s \iota-i_{0}$. We know that $\overline{x_{0}}$ is an adaptable point of γ^{\prime} and $X_{\tau / \iota}\left(\bar{x}_{s t-i_{0}-1}\right)=x$. Now, for $j \geq 0$, let

$$
\bar{x}_{s t-i_{0}+j}=X_{(3 T / 2) j}(b) \quad \text { and } \quad \bar{t}_{s t-i_{0}+j}=\frac{3}{2} T .
$$

By the property of the obstruction point b, we can choose $L>0$ such that

$$
\frac{1}{\bar{t}_{0}+\cdots+\bar{t}_{s l-i_{0}+L-1}} \sum_{i=0}^{s t-i_{0}+L-1} \log \left\|\Psi_{\bar{t}_{i} \mid \Delta^{s}\left(\bar{x}_{i}\right)}\right\| \geq-\frac{\eta_{1}+\eta_{2}}{2}
$$

and

$$
\frac{1}{\bar{t}_{0}+\cdots+\bar{t}_{s l-i_{0}+l-1}} \sum_{i=0}^{s l-i_{0}+l-1} \log \left\|\left.\Psi_{\bar{t}_{i}}\right|_{\Delta^{s}\left(\bar{x}_{i}\right)}\right\|<-\frac{\eta_{1}+\eta_{2}}{2}
$$

for all $0 \leq l<L$. It is easy to check that L is increasing as s is increasing. Since $H_{X}(\gamma) \subset B\left(\gamma^{\prime}, \epsilon\right)$, we can find $0 \leq j_{0}<\iota$ and a point $t^{\prime} \in\left[j_{0} \tau / \iota,\left(j_{0}+1\right) \tau / \iota\right)$ such that

$$
d\left(X_{(3 / 2) T}\left(\bar{x}_{s t-i_{0}+L-1}\right), X_{t^{\prime}}(x)\right)<\epsilon .
$$

Since $\left(j_{0}+1\right) \tau / \iota-t^{\prime}<2 T$,

$$
d\left(X_{(3 / 2) T+\left(j_{0}+1\right) \tau / l-t^{\prime}}\left(\bar{x}_{s l-i_{0}+L-1}\right), X_{\left(j_{0}+1\right) \tau / l}(x)\right)<\delta .
$$

To construct a $(\delta, 1)$-pseudo orbit, we can still let $\bar{x}_{s t-i_{0}+L-1}=X_{(L-1) \frac{3}{2} T}(b)$, but change $\bar{t}_{s l-i_{0}+L-1}$ to be $\frac{3}{2} T+\left(j_{0}+1\right) \tau / \iota-t^{\prime}$. Then let

$$
\bar{x}_{s t-i_{0}+L+i}=X_{\left(j_{0}+1+i\right) \frac{\tau}{\iota}}(x) \quad \text { and } \quad \bar{t}_{s t-i_{0}+L}=\frac{\tau}{\iota}
$$

for any $0 \leq i<2 \iota-j_{0}+i_{0}$. Let

$$
n=s \iota-i_{0}+L+2 \iota-j_{0}+i_{0}=(s+2) \iota+L-j_{0} .
$$

We can see that $\left(\bar{x}_{i}, \bar{t}_{i}\right)_{i=0}^{n-1}$ is a $(\delta, 1)$-pseudo orbit, and $X_{\bar{t}_{n-1}}\left(\bar{x}_{n-1}\right)=x_{0}$. Unfortunately, the constant $\bar{t}_{s l-i_{0}+L-1}$ may not be contained in $\left(\frac{5}{4} T, \frac{7}{4} T\right)$. Now we modify the $(\delta, 1)$ pseudo orbit $\left(\bar{x}_{i}, \bar{y}_{i}\right)_{i=0}^{n-1}$. We let $x_{i}=\bar{x}_{i}$ and $t_{i}=\bar{t}_{i}$ for $0 \leq i<s \iota-i_{0}+L-8$ and $s \iota-i_{0}+L \leq i<n$. Then we put

$$
\begin{aligned}
& x_{s t-i_{0}+L-8}=\bar{x}_{s l-i_{0}+L-8} \quad \text { and } \quad t_{s l-i_{0}+L-8}=\frac{3}{2} T+\frac{\left(j_{0}+1\right) \tau / \iota-t^{\prime}}{8}, \\
& x_{s t-i_{0}+L-8+i}=X_{i\left(\frac{3}{2} T+\left(\left(j_{0}+1\right) \frac{\tau}{l}-t^{\prime}\right) / 8\right)} \quad \text { and } \quad t_{s t-i_{0}+L-8+i}=\frac{3}{2} T+\frac{\left(j_{0}+1\right) \tau / \iota-t^{\prime}}{8}
\end{aligned}
$$

for $1 \leq i \leq 7$. Then we can see that $t_{i} \in\left(\frac{5}{4} T, \frac{7}{4} T\right)$ for every $0 \leq i<n$. We will check that if τ and s are large enough, then $\left(x_{i}, t_{i}\right)_{i=0}^{n-1}$ is a desired ($\left.\delta, 1\right)$-pseudo orbit. Let $K=\sup \left\{\left.| | \Psi_{t}\right|_{N_{x}} \|: x \in H_{X}(\gamma),-2 T \leq T \leq 2 T\right\}$. To simplify the notation, we change $\bar{t}_{s t-i_{0}+L-1}$ back to be $\frac{3}{2} T$. Then we know that

$$
\left|\log \frac{\left\|\Psi_{\bar{t}_{s l-i_{0}+L-8+i} \mid \Delta^{s}\left(\bar{x}_{s l-i_{0}}+L-8+i\right)}\right\|}{\| \Psi_{t_{s-i_{0}}+L-8+i} \mid \Delta^{s}\left(x_{s-i_{0}+L-8+i}\right)}\right| \leq 2 \log K
$$

and

$$
\left|\log \frac{m\left(\Psi_{\bar{t}_{s l-i_{0}+L-8+i} \mid \Delta^{u}\left(\overline{x s}_{s-i_{0}}+L-8+i\right)}\right)}{m\left(\Psi_{t_{s-i_{0}}+L-8+i} \mid \Delta^{u}\left(x_{s-i_{0}+L-8+i}\right)\right.}\right| \leq 2 \log K
$$

for all $1 \leq i \leq 7$. Let $n_{1}=s \iota-i_{0}+L-8$. By the choice of L,

$$
\frac{1}{T_{k}} \sum_{i=0}^{k-1} \log \left\|\Psi_{t_{i}} \mid \Delta^{s}\left(x_{i}\right)\right\|<-\frac{\eta_{1}+\eta_{2}}{2}
$$

for $0<k \leq n_{1}$. Hence,

$$
\frac{1}{T_{k}} \sum_{i=0}^{k-1} \log \left\|\Psi_{t_{i} \mid \Delta^{s}\left(x_{i}\right)}\right\|<\frac{-T_{n_{1}} \cdot \frac{n_{1}+n_{2}}{2}+\left(k-n_{1}\right) \log K}{T_{k}}
$$

for $n_{1}<k<n$. We know that $n-n_{1}=2 \iota-j_{0}+i_{0}+7<3 \iota+8$. Hence,

$$
T_{k}-T_{n_{1}}<(3 \iota+8) 2 T \quad \text { and } \quad\left(k-n_{1}\right) \log K<(3 \iota+8) \log K
$$

for any $n_{1}<k<n$. So, if s is large enough,

$$
\frac{1}{T_{k}} \sum_{i=0}^{k-1} \log \left\|\Psi_{t_{i} \mid \Delta^{s}\left(x_{i}\right)}\right\|<-\eta_{1}
$$

By the choice of L,

$$
\frac{1}{\bar{t}_{0}+\cdots+\bar{t}_{n_{1}+7}} \sum_{i=0}^{n_{1}+7} \log \left\|\left.\Psi_{\bar{t}_{i}}\right|_{\Delta s}\left(\bar{x}_{i}\right)\right\| \geq-\frac{\eta_{1}+\eta_{2}}{2}
$$

and hence

$$
\begin{aligned}
\sum_{i=0}^{n_{1}} \log \left\|\Psi_{t_{i}} \mid \Delta^{s}\left(x_{i}\right)\right\| & \geq-\frac{\eta_{1}+\eta_{2}}{2}\left(\bar{t}_{0}+\cdots+\bar{t}_{n_{1}+6}\right)-7 \log K \\
& >-\frac{\eta_{1}+\eta_{2}}{2} T_{n_{1}}-7 \log K
\end{aligned}
$$

Then

$$
\frac{1}{T_{n}} \sum_{i=0}^{n_{1}} \log \left\|\Psi_{t_{i} \mid \Delta^{s}\left(x_{i}\right)}\right\|>\frac{-\left(\eta_{1}+\eta_{2}\right) / 2 T_{n_{1}}-7 \log K-\left(n-n_{1}\right) \log K}{T_{n}} .
$$

If s is large enough,

$$
\frac{1}{T_{n}} \sum_{i=0}^{n-1} \log \left\|\Psi_{t_{i} \mid \Delta^{s}\left(x_{i}\right)}\right\|>-\eta_{2}
$$

Let $n_{2}=s \iota-i_{0}+L$. By the choice of x_{0} and x_{n-1},

$$
\frac{1}{T_{n}-T_{n-k}} \sum_{i=1}^{k} \log m\left(\Psi_{t_{n-i}} \mid \Delta^{u}\left(x_{n-i}\right)\right)>\eta>\eta_{1}
$$

for any $1 \leq k \leq n-n_{2}$. By the choice of L,

$$
\frac{1}{\bar{t}_{n_{2}-k}+\cdots+\bar{t}_{n_{2}-1}} \sum_{i=1}^{k} \log \left\|\Psi_{\bar{t}_{n_{2}-i} \mid \Delta^{s}\left(\bar{x}_{n_{2}-i}\right)}\right\|>-\frac{\eta_{1}+\eta_{2}}{2}
$$

and hence

$$
\frac{1}{\bar{t}_{n_{2}-k}+\cdots+\bar{t}_{n_{2}-1}} \sum_{i=1}^{k} \log m\left(\Psi_{\bar{t}_{n_{2}-i} \mid \Delta^{u}\left(\bar{x}_{n_{2}-i}\right)}\right)>2 \eta-\frac{\eta_{1}+\eta_{2}}{2}>\eta
$$

for all $1 \leq k \leq n_{2}$. Hence,

$$
\begin{aligned}
\sum_{i=1}^{k} \log m\left(\Psi_{t_{n-i}} \mid \Delta^{u}\left(x_{n-i}\right)\right. & >\eta\left(T_{n}-T_{n_{2}}\right)+\eta\left(\bar{t}_{n-k}+\cdots+\bar{T}_{n_{2}-1}\right)-14 \log K \\
& >\eta\left(T_{n}-T_{n-k}-2 T\right)-14 \log K
\end{aligned}
$$

for all $n-n_{2}<k<n$. Consequently,

$$
\frac{1}{T_{n}-T_{n-k}} \sum_{i=1}^{k} \log m\left(\Psi_{t_{n-i} \mid \Delta^{u}\left(X_{n-i}\right)}\right)>\frac{\eta\left(T_{n}-T_{n-k}-2 T\right)-14 \log K}{T_{n}-T_{n-k}}
$$

for all $n-n_{2}<k<n$. We know that $n-n_{2}>\iota$ and $T_{n}-T_{n-k}>\iota T$ if $k>n-n_{2}$. Finally, if we choose τ large enough, then

$$
\frac{1}{T_{n}-T_{n-k}} \sum_{i=1}^{k} \log m\left(\Psi_{t_{n-i}} \mid \Delta^{u}\left(x_{n-i}\right)\right)>\eta_{1}
$$

for all $n-n_{2}<k<n$. This completes the proof.
End of Proof of Main Theorem. Suppose that $H_{X}(\gamma)$ satisfies (P1)-(P3) of Proposition 2.5 and the bundle $\Delta^{s}(x)$ is not contracting for Ψ_{t}. By the shadowing property of $H_{X}(\gamma)$, it follows that for any neighborhood U of $H_{X}(\gamma)$ and constants $0<\eta_{1}<\eta_{2}<\eta$ and $\epsilon>0$, there exist $\gamma^{\prime} \sim \gamma$, an adaptable point $p \in \gamma^{\prime}$ and a shadowing point z which is ϵ close to p. Applying Lemma 2.13,

$$
W^{s}(\operatorname{orb}(z)) \pitchfork W^{u}\left(\gamma^{\prime}\right) \neq \emptyset \quad \text { and } \quad W^{u}(\operatorname{orb}(z)) \pitchfork W^{s}\left(\gamma^{\prime}\right) \neq \emptyset
$$

Hence, $\operatorname{orb}(z) \subset H_{X}(\gamma)$. In the construction of the pseudo orbit in Proposition 2.14, we can make L be arbitrarily big, and so we can assume that the period of z is bigger than \tilde{T}. The property

$$
\frac{1}{T_{n}} \sum_{i=0}^{n-1} \log \left\|\mid \Psi_{T_{i+1}-T_{i} \mid \Delta^{s}\left(X_{T_{i}(z)}\right.}\right\|>-\eta_{2}
$$

contradicts the assumption (P2) of Proposition 2.5. This completes the proof of our main theorem.

Acknowledgement

We wish to thank the referee for carefully reading the manuscript.

References

[1] C. Bonatti, S. Gan and D. Yang, 'On the hyperbolicity of homoclinic classes', Discrete Contin. Dyn. Sys. 25 (2009), 1143-1162.
[2] C. Bonatti, N. Gourmelon and T. Vivier, 'Perturbations of the derivative along periodic orbits', Ergod. Th. EE Dynam. Sys. 26 (2006), 1307-1337.
[3] R. Bowen and P. Walters, 'Expansive one-parameter flows', J. Differential Equations 12 (1972), 180-193.
[4] C. I. Doering, 'Persistently transitive vector fields on three-dimensional manifolds', in: Dynamical Systems and Bifurcation Theory, Pitman Research Notes, 160 (1987), 59-89.
[5] S. Gan and L. Wen, 'Nonsingular star flows satisfy Axiom A and the no-cycle condition', Invent. Math. 164 (2006), 279-315.
[6] M. Komuro, 'One-parameter flows with the pseudo orbit tracing property', Monatsh. Math. 98 (1984), 219-253.
[7] K. Lee, L. H. Tien and X. Wen, 'Robustly shadowable chain components of C^{1} vector fields', J. Korean Math. Soc. 51(1) (2014), 17-53.
[8] S. Liao, 'An existence theorem for periodic orbits', Acta Sci. Natur. Univ. Pekinensis 1 (1979), $1-20$.
[9] K. Moriyasu, K. Sakai and W. Sun, ' C '-stably expansive flows', J. Differential Equations 213 (2005), 352-367.
[10] M. Pacifico, E. Pujals, M. Sambarino and J. Vieitez, 'Robustly expansive codimension-one homoclinic classes are hyperbolic', Ergod. Th. EG Dynam. Sys. 29 (2009), 179-200.
[11] M. Pacifico, E. Pujals and J. Vieitez, 'Robustly expansive homoclinic classes', Ergod. Th. \mathcal{E} Dynam. Sys. 25 (2005), 271-300.
[12] M. Sambarino and J. L. Vieitez, 'On C^{1}-persistently expansive homoclinic classes', Discrete Contin. Dyn. Sys. 14 (2006), 465-481.
[13] X. Wen, S. Gan and L. Wen, 'Robustly expansive homoclinic classes with shadowing property are hyperbolic', Preprint, 2009.
[14] D. W. Yang and S. B. Gan, 'Expansive homoclinic classes', Nonlinearity 22 (2009), 729-733.

KEONHEE LEE, Department of Mathematics, Chungnam National University, Daejeon 305-764, Korea e-mail: khlee@cnu.ac.kr

MANSEOB LEE, Department of Mathematics, Mokwon University, Daejeon 302-729, Korea e-mail: lmsds@mokwon.ac.kr

SEUNGHEE LEE, Department of Mathematics, Chungnam National University, Daejeon 305-764, Korea e-mail: shlee@cnu.ac.kr

[^0]: K.L. is supported by the National Research Foundation (NRF) of Korea funded by the Korean Government (No. 2011-0015193). M.L. is supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT \& Future Planning (No. 2014R1A1A1A05002124). S.L. is supported by the BK21 math vision 2020 project.
 (C) 2014 Australian Mathematical Publishing Association Inc. 1446-7887/2014 \$16.00

