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Abstract. Extending a result of Livsic [10] it is proved that the coboundary equation
f(Tx)—f(x) = g(x) admits a C°° solution / for C°° g when T is an ergodic toral
endomorphism and g sums to zero over every periodic orbit. The same statement
is false with C1 in place of C°°, in contrast to the Livsic (hyperbolic) theorem. In
one dimension the 'Lip a' case leads to questions relating to the generalized Riemann
hypothesis.

1. Introduction
We begin by fixing some notation. If 7V> 1, TN denotes the JV-dimensional torus
group, JN = W/ZN. Setting e(t) = e\p (2irit), Fourier series on JN are written
f~Y,neZ»f(n)e(n • x), and A = A(T'V) is the space of absolutely convergent Fourier
series with /'-norm, ||/|| = I n e Z ~ |/(«)|. PM = PM(JN) is the dual space to A, the
space of pseudomeasures on JN, with the /°°-norm \\fi\\ = supneZ^ |/I(n)|, where

Let there be given a continuous, non-singular endomorphism, T, of T^. T induces
an isometry,/->/° T, of A and a dual contractive mapping /x -» 7/i. of PM. It makes
sense therefore to speak of the space, IPM(T), of T-invariant pseudomeasures on
JN. IPM(T) contains properly the space, IM(T), of finite (complex-valued) T-
invariant measures on TN.

Let P( T) be the set of periodic points of the endomorphism T. If T is ergodic,
P(T) is a countable subgroup of TN, a union of finite subgroups. Associate to each
xeP(T) the counting measure, crx, on the orbit of x, and denote by (P(T)) the
C-linear span of {crjxe P(T)}. The central result of the present work is

(l.l) THEOREM. Let Tbe an ergodic endomorphism of TN. Then (P(T)) is weak-*
dense in IPM{T).

If T is an ergodic endomorphism of JN, it is known that (P(T)) is weak-* dense
in IM(T) ([11]). Therefore, theorem 1.1 would be a consequence of a theorem on
the density of IM(T) in IPM(T) and the theorem of Marcus. However, we are
unable to take advantage of this implication, and our analysis leads directly to
theorem 1.1. At present we know of no direct implication, in either direction, between
Marcus' theorem and theorem 1.1. In this regard see the discussion in § 5.
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The theorem to follow is a version for 'quasihyperbolic endomorphisms' ([8]) of
a theorem of Livsic ([9], [10]).

(1.2) THEOREM. Let T be an ergodic endomorphism of JN, and let a >0, /3 > N be
given. Iffe Ca+I3(JN) satisfies ax(f) = 0 for all xeP(T), there exists ge Ca(JN)
such that

(1-3) g(Tx)-g(x)=f(x)

holds identically.

It is easy to see that if / e A , and if (1.3) admits an integrable solution g, then
o'xif) = 0, xeP(T) ([9]). An immediate corollary to theorem 1.2 is

(1.4) COROLLARY. Letfe C0C(TN). IfTis an ergodic endomorphism of JN such that
(rx(f) = 0 for all xeP( T), then (1.3) admits a solution g e C°°(TN).

It is possible that the solution (1.3) enjoys more smoothness than is asserted by
theorem 1.2. However, in the quasihyperbolic seting the Livsic theory does not go
through without change. We have:

(1.5) PROPOSITION. Let T be an ergodic endomorphism of JN, and suppose T is not
hyperbolic. There exists feC\JN) such that o-x(f) = 0 for all xeP(T), but (1.3)
admits no solution g of class C1.

If T is an endomorphism of T^, the dual endomorphism A:ZN ->ZN may be
identified with an N x N integral matrix, A. If T is non-singular and ergodic, then
A is non-singular and has no root of unity among its eigenvalues. The theorem to
follow may be of interest in its own right. It plays a critical role in the proof of
theorem 1.1.

(1.6) THEOREM. Let A be an Nx N non-singular integer matrix, and suppose A has
no root of unity among its eigenvalues. Let S be a set of rational primes having upper
Dirichlet density 1 in the set of all rational primes. Ifu,veZN, and if the congruence
A'u = u(mod p) admits a solution I for each finite set ofp e S, then there exists /„ such
that A'°u = v. Moreover, ifl0 is as above, and if {lk} is any sequence of integers such
that

lim A'ku = v (mod p)
k-too

holds for all pe S, then also

lim lk = l0 (mod n)
k->oo

for every integer n>0.

The conclusion of the theorem is false for the unipotent matrix

A - l 1 2

\ 0 1

if M = ( 1 ) , 1) = ( 1 )> a n d ^ is the set of odd primes. However, it is true for an
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arbitrary non-singular integer matrix A that for all ueZN the set ZN n{Aku\keZ}
is closed in the profinite topology of ZN (theorem 3.14).

Theorem 1.6 is an easy consequence of a theorem of Chevalley [3]. The latter
contains the statement that if R is a subring, of a specified sort, of an algebraic
number field, and if U is the group of units of R, then the profinite (group) topology
on U is the restriction to U of the profinite (ring) topology on R. A proof of
Chevalley's theorem is included for the reader's convenience (we in fact learned of
Chevalley's paper only after the present paper was typed).

§ 7 is devoted to the study of invariant distributions for endomorphisms of T1.
Denote by Aa, 0< a < 1, the space of Holder functions on U of exponent a and
period 1 (Aa = Ca).

(1.7) THEOREM. Let p be a prime number. Ifa>\, iffe Aa is even, and iff satisfies

(1-8) V
then there exists g e Aa such that

(1.9) g(px)-g(x)=f{x).

As any odd function satisfies (1.8), the assumption tha t /be even is necessary. If
p = 6, the function /(x) = cos 2^20 + cos 2TT30-2 COS 2TT60 satisfies (1.8) but does
not have the form (1.9) for any integrable function g.

As regards the assumption on a, if fi (•) is the Mobius function, vhe even function

(1.10) /(*) =

will be seen to be continuous and to satisfy (1.8) for all H > 1 . Again (1.9) never
admits an integrable solution.

It is possible the function defined by (1.10) enjoys more smoothness. While it
cannot belong to Aa for a>\{a=\ requires a special argument; a >\ follows from
f£ A), it is possible / e Aa for some or all a < | . Settling this question would be of
interest because of

(1.11) PROPOSITION. Iff is defined by (1.10), and iffef^\a<i Aa, then the (General-
ized) Riemann Hypothesis is true for the cyclotomic fields.

We do not know at present whether the converse to proposition 1.11 is also true.
In this regard we mention that if 0 < a < 3 , if if/a is the ath 'Riesz potential' on

, and if the series

(1-12)

converges in the L'(T') sense, then/^A^, P>a, where/is defined by (1.10). In
§ 7 we will prove (1.12) converges in L2 for a >\ (for the purposes of the proof of
theorem 1.7). However, the case of L1 convergence for 0 < a < \ remains an intriguing
mystery. The 'sum' of (1.12) is simply

(1.13)
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and (1.13) does hold in the distributional sense (at least in the dual of A3 for any
P>Max (0 ,1-a) ) .

The author is grateful to H. L. Montgomery for useful discussions in connection
with this work and particularly for the reference to the work of Davenport [4], [5].
The latter is used to establish the continuity of the function (1.10). The identity
(1.13) for a = 1 (when ^ ( x ) = - ( * - [ * ] - 5 ) ) reduces to an identity established by
Davenport. Davenport proved that the series (1.13) converges uniformly when a = 1;
in § 7 we will see it converges a.e. for f< a < 1.

This research was supported by NSF-MCS-8219148

2. Number fields
In this section we apply some standard facts of algebraic number theory, especially
the Dirichlet unit and Tchebotarev density theorems, to prove the Chevalley theorem
mentioned in the introduction. References [2] and [14] are more than adequate.

Let K be a fixed finite extension field of Q, and denote by Mo = M0(K) the set
of non-trivial non-archimedean prime divisors of K. Each PeM0 has the form
P = {<f>'\t> 0} for some non-trivial discrete valuation, <£, of K. if will denote a fixed
confinite subset of Mo, and 6{if) is the corresponding intersection of valuation rings,

O(Sf)= H {aeK\<f>(a)sl,4>eP}
Pslf

C*(Sf) is the group of units in €{Sf).
With notations as above the Dirichlet unit theorem implies there exist m, s sO and

«o, fi , . - • , & e O*(Sf) such that atf = 1 and if we set (" = CH22 •.. £?: a e Is, then
the map

(2.1) i),(i,a) = wi
or «i,a)eZmxZs)

defines an isomorphism from Z m xZ s onto C*(50.
The multiplicativity of valuations implies that if A e G*(Sf), and if a polynomial

x"-\ admits a root in K, then that root also lies in €*{&'). The lemma to follow
is thus immediate from the Dirichlet unit theorem:

(2.2) LEMMA. Let notations and assumptions be as above, and suppose n > 0 and
A G 6*(y) are such that the polynomial x" - A admits a root in K. Ifi{i~l\ = (J, a) in
(2.1), then:

(i) a = 0 (mod n); and
(ii) the congruence ni =j (mod m) admits a solution i.

If r > 0 is an integer, Kr will denote a minimal splitting field for x ' - l over K
(possibly Kr = K).

(2.3) LEMMA. Let notation and assumptions be as above, and let r> 0. If A. e €*{!?),
and if the polynomial Q(x) = xr - A has for each Pet? a root modulo the prime ideal
at P, then Q{x) splits completely in Kr.

Proof. Let yrc.M.0(Kr) be the set of extension to Kr of the elements of if. Sfr is
cofinite in M0(Kr), and for each P*eifr Q(x) splits completely modulo the prime
ideal at P* (i.e. in CiSf,)). This is because Q(x) admits one root (modulo P* n G(Sf))
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and Kr contains the rth roots of unity. Now the Tchebotarev density theorem implies
Q(x) splits in Kr ([2, Exercise 6, pp. 361-362]).

(2.4) LEMMA. Assumptions are as in lemma 2.3 with r = qk for some k>0 and odd
prime q. Then Q(x) admits a root in K.

Proof. The Galois group, G, of Kr over K is cyclic by the assumption on the form
of r. Let <r be a generator. If z e Krr\ Kc, then az 5* z. By lemma 2.3 Q{x) splits in
Kr, and we denote the roots of Q(x) by alt..., ar. Unless one of these roots lies
in K, it is true that o-at 5* at, 1 < i < r. In the latter event it is also true for all but a
finite set of P*e <fT that va{ * a, modulo the prime ideal, ir(P*), at P* (in €{Sfr)),
1 < i < r. By the Tchebotarev density theorem there is an infinite set of P* e ifr such
that o- = ((Kr/K)/v(P*)), the Frobenius symbol. For such P* if P = P * | K , then
Q(x) admits no root modulo TT(P) (in C(Sf)). This is a contradiction, and the lemma
obtains.

(2.5) LEMMA. Assumptions are as in lemma 2.3 with r = 2k, k>0. Then Q(x) admits
a root in K4= K(^/z:l).

Proof. Since K2 = K, we may suppose by lemma 2.3 that k > 2. Now K2
k has a cyclic

Galois group over K4, and the argument of the previous lemma applies.

(2.6) LEMMA. Let notation and assumptions be as above, especially as in (2.1). Ifa{l)

is a sequence in Is such that

(2.7) lim <r(°s 1 (mod n(P)) (PeSf)

then it is also true that

(2.8) lim aa) = 0 (mod r) <0<reZ).
(-.CO

Proof. It is sufficient to establish (2.8) when r - qk, k > 0 and q prime. The case
k = 0 being trivial, assume k>0 and (2.8) holds for all r= q', l<k and q prime.
Case 1. q odd. Discarding a finite number of a((), if necessary, we may suppose
a<() = qk~1aU) + qkf}U) with a(", / ? a ) eZ s and 0<aj"<<7, l < j < s . We must prove
aU) = 0, or, what is the same, that a(/) = 0 (mod q) for large /. To this end we may
pass to a subsequence, if necessary, and suppose a0) = a is independent of /. If we
prove a = 0, we will be finished.

If a 5*0 above, then a#0(mod<j) , and by lemma 2.2 the polynomial Q(x) =
xqk - £qk~'a admits no root in K. On the other hand if £a(l) = 1 (mod n(P)) for some
P, / then also f ' '" '° = ^qk'3(') (mod ir(P)), and so Q(x) admits a root modulo TT(P).

This contradicts the assumption (2.7) and lemma 2.4, and so a = 0, as claimed.

Case 2. q = 2. Proceed as in case 1 except for selecting a ( ; ) mod4 , i.e. O s a j ' ^ 4 ,
1 < j s s, and writing aU) = 2 l c~V" + 2k+1/3(l ), a( / ) , j30) e T. Again we suppose a<() =
a, and we are to prove a = 0 (mod 2). If a ^ 0 (mod 2), then Q(x) = x"1' -C1 s

admits no root in K(yf^\). Indeed, if Q0(x) is a quadratic factor of Q{x) in K[x],
Q(x) has constant term of the form w£a/2 with io a root of unity. It follows readily
that Cn £ K, whence a = 0 (mod 2) by lemma 2.2. Now the argument from case 1
applies (with lemma 2.5) to show x2t+' - £2' ' a in fact does admit a root in
This is a contradiction unless a = 0 (mod 2), and the lemma obtains.
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By the profinite topology on a group (resp. ring) is understood the least topology
with respect to which each homomorphism to a finite group (resp. finite ring) with
the discrete topology is continuous.

(2.9) THEOREM (Chevalley [3]). Let K be an algebraic number field, and let y be a
cofinite subset of M0{K). If U is a profinite neighbourhood of 1 in the group C*(y),
there exist T > 0 and Pl,...,PT&&> such that U contains P|J=i {A e C*(&)\k =
1 (mod ir(Pj))}. In particular, the profinite topology on the group ff*(5f) is the trace
on C*(SO of the profinite topology on the ring €(&).

Proof. Let notation be as in (2.1), and suppose {{jh a (")}cZm xZs is a sequence
such that

(2.10) limiK/;, a(( ))= 1 (mod TT(P)) (PeSf)
| - » O O

Now (2.10) implies also that (2.7) holds, with a<() there replaced by ma('\ But then
(2.8) applied to maa) implies (2.7) for a('\ Thus, it is also true that

l imwj=l(mod7r(P)) (Pe&)
IH.00

holds, which readily implies m\j, for large /. The theorem is proved.

(2.11) COROLLARY. Let K be an algebraic number field, let A, a, [} e K be non-zero,
and let ^ c J 0 ( K ) be a cofinite set of prime divisors with respect to which A, a,
P e C*(Sf). If the congruence

(2.12) A'aS j3(modir tP))

admits a solution I for each finite set of P e.Sf, then there exists l0 such that

(2.13) A'»a = )3.

If in addition A is not a root of unity, and if {lk} is a sequence in Z such that

lim A'ka =

then also

(2.14) lim lk = /„ (mod r) ( 0 < r e Z ) .

Proof The trace on {A'|/eZ} of the profinite topology on C*(.SO = Zm xZ* is the
discrete topology if A is a root of unity and the profinite topology on Z if A is not
a root of unity. In either case {A(|/eZ} is also closed in the profinite topology, as
is {a\'\l<=Z}. Now (2.13) and (2.14) follow.

Example. Let Sf=M0(K), € = €(&) the full ring of integers in K. If A, a, 0 e 0, are
non-zero and if (2.12) admits a solution for each finite set of PeM0, then (2.13)
holds for some /0. To see this enlarge the exceptional set of P so that A, a, {} e €*{&'),
and apply the theorem.

In the case where K=Q, A, a, /3eZ with |A|>1, if A'a = /3 (modp) admits a
solution for each finite set of primes p, then for some /oe Z, A(°a = /3.

In the general case of {if, K) above, the set {Zn IT(P)} determines a set of prime
ideals in Z. In order to apply the Tchebotarev density theorem as we have, it is only
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necessary to suppose there is a set 2 of rational primes of upper Dirichlet density
1 in the set of all primes and that if contains all extensions to K of the p-adic
valuation on Z, p e 2. We omit the routine details.

3. Orbits of integral matrices in the profinite topology
In this section we prove theorem 1.6. Let A be an Nx N integral matrix. We do
not require that A be non-singular. If u € ZN, define A(«)to be the smallest subgroup
of ZN which contain the semiorbit {u, Au, A2u,...}. Let O(M) be the Q-linear span
of A(w), and then define A*(M) = O(u) n ZN.

In this section we consider for given A as above the congruence

(3.1) A'u=v(modQ)

in which u,veZN and 0 < Q e Z are given and / is the unknown.

(3.2) PROPOSITION. Let A and u, v e ZN be as above. If there is an infinite set ofQ > 0
such that (3.1) admits a solution I, then vsA*(u). If (3.1) admits a solution for all
integers Q>0, then ve A(w).

Proof. By the basis theorem for abelian groups every subgroup of ZN is closed in
the profinite topology, and so in particular A(M) is closed, implying the second
assertion. As for the first assertion, the group ZN/A*(u) is torsion free by construc-
tion, and the image of v in ZN/A*(u) is divisible by each integer Q for which (3.1)
admits a solution /. By the basis theorem for abelian groups v projects to 0, meaning
ve A*(u), as claimed.

Remark. If

- ( J O - •-©•
then

A*(u) = Z2. If t) = ( I, then (3.1) admits a solution for every odd integer Q.

Remark. The subspaces Cl(Aku) = Akil(u) stabilize for fc>N, and therefore
A*(Aku) = A*(Ak+lu), k> N. If there is an infinite set of Q such that (3.1) admits
a solution / < N , then obviously A*°u = v for some /0< JV. Otherwise, in studying
(3.1) we may replace u by ANu and so suppose A*(AM) = A*(W). Thus, in what
follows we suppose

(3.3) A*(u)=ZN, A*(Au) = A*(u).

In particular, it is true that

(3.4) det A ¥• 0.

Case 1: The eigenvalues of A are all roots of unity. In this case we suppose (3.1)
admits a solution / for every integer Q> 1. We divide into two subcases:

https://doi.org/10.1017/S0143385700003606 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003606


456 W. A. Veech

Case l(a). Suppose A is unipotent. Because of (3.3), the minimal polynomial for
A is (x-l)N, and the vectors u, (A-I)u, {A-I)2u,... ,{A-I)N~xu, which
span A(M), comprise a basis for UN with respect to which A has matrix

1

1 0
0

0 • • • 1 1 0

\0 • • • 0 1 1/

Recalling the hypothesis of case 1 implies veA(u), (3.1) is equivalent to the
congruence

(3.5) A'oex — v0 (mod Q)

where en is the nth standard basis vector and voeZN. Now

(3.6) (0

Let r be the second coordinate of v0. By (3.5), (3.6) it is true that if {Q, 7V-1)!) = 1,
then

(0
\

WN-l/l

(mod Q).

Since Q may be arbitrarily large, v0 = Are,.

Case l(b). A is not unipotent. In this case choose m>0 so that Am is unipotent,
and notice then (under our hypothesis that (3.1) admits a solution for all Q) that
there exists v, 0 < c < m , such that the congruence

A""Avu = v (mod Q)

admits a solution / for all Q. Now apply case l(a).

Case 2: At least one eigenvalue of A is not a root of unity. In this case let K be a
splitting field for the characteristic polynomial of A, and let B e GL( N, K) be such
that B~lAB = J is a Jordan form. There is a cofinite set y o c l o ( K ) such that
B = GL(N,O(Sf0)).
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The block form of / induces a natural decomposition KN = © J = 1 Kd>, where /
has r diagonal blocks, the jth block having dimension 4 and form

Xj 1

0 Xj

0

0
1

o\
0

0

1

\

It is possible A, = A, for certain i ̂  j .
If £ = 5~ 'M, r/ = B~1v, write f, r\ with respect to the decomposition above as

H = YJj=i €j> V ~Z/=i Vj- By abuse of notation we view §, r/j as elements of €(9'0)
di.

Let p be a rational prime, and suppose the congruence

(3.7) A'u = v (mod p)

admits a solution /. For the same / we have

(3.8) J'{<= r, (modpOW)

and also

(3.9) 3% = i]j (mod pC(Sfo)%

Now choose j so that Xj is not a root of unity. Because u is a cyclic vector the last
(4th) component of £,• is non-zero, and if we denote this component by a and the
corresponding component of 17, by /3, then (3.9) implies

(3.10) X)a = p (mod pO(Sfo)).

Suppose now that (3.7) admits a solution / for each finite set of primes p in a set,
S, of rational primes of upper Dirichlet density 1, and let 5^ be the set of extensions
to K of the corresponding valuations. Set Ŝ  = 5^ n .y,, and note that by (3.10) the
congruence

X)a = p (modTr(P))

admits a solution / for each finite set of Pe if. By corollary 2.11 and the remark at
the end of § 2 there exists l0 such that AJ°a = p. Moreover, if lk is a sequence such
that

(3.11) lim A'ku = v (modp) (peS)
k->°o

then by (3.10)

lim x'/a = p (mod TT(P)) (PeSf).

Since Ay is not a root of unity, corollary 2.11 also implies

(3.12) lim lk=l0(modm)

holds for every integer m>0. This now implies for every prime p that A'k~'0 =
Id (modp) for large k, and so by (3.11)

(3.13) A^u^ v (mod p).
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Since p may be arbitrarily large, (3.13) implies A'°u = v. Since we have already
proved (3.12) implies (3.13), theorem 1.6 is proved.

Using case 1, we also have:

(3.14) THEOREM. Let A be an NxN integer matrix such that detA^O, and let
u e ZN. The set ZN n {A'u\le Z} is closed in the profinite topology of ZN.

Suitably restated, theorem 3.14 is also true if det A = 0.

4. Density of (P(T)) in IPM(T)
In this section T will denote a fixed ergodic endomorphism of TN. The dual
endomorphism is determined by an NxN integral matrix A, whose determinant
will be denoted A, satisfying

(4.1) A = d e t ^ 0
No eigenvalue of A is a root of 1

Represent JN as JN = UN/ZN, and if 0<QeZ, define T(Q) = Q~xZN+ZN; i.e.
F(Q) is the image in JN of Q~lZN under the canonical projection. In what follows
Sx denotes a point mass at x, and we recall the notation e(t) = exp 2mt. If xe JN,
neZN, the relation between T and A is expressed by

(4.2) e(n-Tx) = e(An-x).

Fix neZN, and let Q>0 satisfy (Q, A) = l. Define T = T(Q) = T(Q, A, n) to be the
least positive integer such that

(4.3) ATn = n (mod Q).

T exists because (Q, A) = 1. In general, T is less than the order of A in GL(JV, ZQ).
With notation and assumptions fixed as above, define a complex valued measure,

, A, n), by

(4.4) M = (T" I ( l ' e(-Aln-x))sx.
XET(Q) \/=0 /

If 0 < k, 1<T, and if Akn = A'n (mod Q), the choice of T implies k = I. This observa-
tion and the Schwarz inequality yield for the total variation norm of fi the inequality

I* e(Akn-A'n)-x)

whence

(4.5)

By contrast, a similar calculation reveals that fi(m) = /j.(e(m • x)) satisfies

m = Aln (mod Q) for some 0< (< T
(4.6) /2(m) . L .
v ^ ' " otherwise
and in particular, the pseudomeasure norm of /x satisfies

(4.7) W

Of course, n<=(P(T)).

https://doi.org/10.1017/S0143385700003606 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003606


Periodic points and invariant pseudomeasures 459

If neZN, -oo< P(M)< -1 is denned to be as small as possible with AkneZN for
all fc> v. If n * 0, define A(n, A) e IPM(T) to have Fourier series

(4.8) A(n,A)~ X e{Akn-x).

Now (4.6)-(4.8) combine with theorem 1.6 to yield

(4.9) THEOREM. Let T be an ergodic endomorphism of TN, and let n e ZN. Ifp(k) is
the product of the first k rational primes prime to A, then in the notation of (4.4) and
(4.8),

(4.10) lim ^(p{k\ A, n) = X(n, A)
(c-.cc

r Nin the weak-* topology of PM(J ) .

It is evident that IPM(T) is spanned (densely) by the elements A(n, A), neZN,
and therefore that theorem 4.9 implies theorem 1.1.

Remark. Let A = det A, and if Q>0 define <?A! to be the product of the integers
1 < /< Q such that (/, A) = 1. Then it also follows that

(4.11) lim n(QJ,A, n) = A(n, A)
Q-*oo

which is all that is necessary for the application.
It is possible there is a sequence {qk} of primes such that

(4.12) lim u(qk, A, n) = \{n, A).
k->ec

If so, the proof will perhaps involve more delicate number theory.

5. Periodic points and coboundaries
In this section we shall consider the coboundary equation

(5.1) g°T-g=f

in which T is an ergodic endomorphism of T N , / e A(T/V) satisfies certain additional
hypotheses, and g is unknown.

Given only that / e A(T7V), /(0) = 0, it is always possible to solve (5.1) formally
as follows. If n e ZN, recall that v(n) is -oo orthe smallest integer such that Akn e ZN

for all k> v(n). Now define g by g(0) = 0 and if n # 0

(5.2) g » = - I f(Akn) (

The series (5.2) converges because / E A and Akn-»oo as /c->±oo. Now define
g(x)~Y.n£Z

N g{n)e{n • x), a formal Fourier series, and check directly that (5.1)
holds formally. That is,

g(A-1n)-g(n)=f(n), neAZN

-§{n)=f(n), niAZN.

The form (5.2) for g is insufficient for providing good estimates. This is to be
expected since thus far no assumption has been made on /, other than fe A. A
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second form to try is

(53) idn)=l f{Akn) (

But here one computes that

|1(A-1n)-g1(n)=/(n), neAlN

(5-4)
-gi(n) = - I Mkn), n£ATLN.

k = \

Moreover, g\(n) = g(n) (if and) only if

(5.5) I f(Akn) = 0.
i>(n)</c<oo

Of course, in the notation of § 4, (5.5) is simply \(n, A) applied to / Theorem 4.9
thus implies

(5.6) THEOREM. Let T be an ergodic endomorphism of JN. If / e A satisfies
Xxeo/(x) = 0 for everJ periodic orbit O of T, and if g(n) and gi(n) are defined by
(5.2) & (5.3) respectively, then g = §l.

In what follows we suppose a > 0, and we define AQ to be the set of / e A for which

(5.7) ll/ll-=sup|/(n)|Hr<oo
nsZN

Denote by AQ(T) the set o f / e Aa which also satisfy the hypothesis of theorem 5.6.
We shall prove

(5.8) PROPOSITION. Let The an ergodic endomorphism of TN, and letfe AO(T) for
some a > 0. If g is defined by (5.2) (or (5.3)), then (whether or not ge A) ||g||p <oo
/or a//16 < a.

To begin the proof of the proposition we appeal to the real canonical form of the
dual matrix A, to decompose RN into a direct sum UN = Vj© V2© V3 with the
following properties, in terms of fixed constants C<oo, p>\, d< N:

(0) AVJ=VJ, 1 < J < 3

(1) ||/4'u||>Cp'||i>||, ue V,,/>0
(ii) ||A't;||>Cp"'||i;||, DeV3,l<0

(iii) \\Alv\\>C(\l\ + l)-d\\v\\, veV2,lEZ.

It is convenient to use the norm onRN which is the sum of the norms on Vj. Thus,
ifv = vl + v2+v3, vjt Vh then ||v\\ > ||Uj||, 1 < ; ^ 3 .

If neZN, write n = v^n) + v2(n) + Vj(n) with Vj(n)e VJ, l < j < 3 . We shall distin-
guish three cases, numbered by the least j such that ||u,(n)|| = MaxlTSj==3 ||f,(n)||.
Cases 1 and 3 are similar. Thus we shall treat only case 3 and case 2.

Case 3. We use the form (5.2) for g(n). By assumption ||i>3(n)|| >5||«||, and therefore
by (ii)
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I f(Akn)

"II

s||/|UC-a||U3(n)ir" I P
kac

Case 2. Since T is ergodic, lemma 3 of Katznelson [6] implies for each neZN,
M # 0, that

(5.9) \\vM\\*y\\n\rN

for some constant y > 0.
Choose an integer l0 by

pv+i)iog|Hll + 1
L log p J

and notice p'°> ||«||N+1. We have for / a /0

Using (iii) above it is also true for all l>0 that

(5.11)

Now let g(n) = g1(n) be denned by the series (5.3). We use (5.11) to bound terms
in the range l < t < i 0 and (5.10) for terms in the range fc> /0. We find

| | « | r + C y ^
P - 1

By the choice of /0 there is a constant D = D(a, N) such that

in case 2, and proposition 5.8 follows.

(5.12) THEOREM. Let T be an ergodic endomorphism of JN. Iffel\a(T) for some
a > N/2, then there exists g e L2(JN) such that

(5.13) g°T-g=f

holds a.e.

Proof. Apply theorem 5.6 and proposition 5.8 to see that the formal solution (5.2)
satisfies XneZ~ |g(n)|2<oo.
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If a > 0 , let C" = C ( T N ) be the set of functions which have continuous partial
derivatives of order s [ a ] and whose partial derivatives of order [a] are Holder
continuous with exponent a — [a]. One has C c A if a > N/2 ([13]). Also, define
L\, /3>0, to be the set of / eL 2 (T N ) which satisfy £„ H H / ( " ) | 2 < 0 ° - By the
Sobolov theorem, if B > N/2, a >0, then L2

a+P QC.

(5.14) COROLLARY. Let T be an ergodic endomorphism of TN, and let y = a+(3,
where p > N and a > 0. Iffe Cy is such that crx(f) = 0 for all xeP( T), there exists
geCa such that (5.13) holds (identically).

Proof. Let N</3'<p, and let g be the Fourier coefficients defined by (5.2). By
proposition 5.8, \g(n)\ = O{\\n\\~p'~"), and therefore ge L2

(l372)+a. By the Sobolov
theorem ge C.

(5.15) COROLLARY. With notation and assumptions as in theorem 5.12 and corollary
5.14, iffe C°° is such that o-x(f)=0 for all xeP{T), there exists geCx such that
(5.13) holds identically.

If 0< a <oo, then C carries the natural structure of a Banach space (a <oo) or a
Frechet space (a =oo). The dual of C" will be denoted by Ma, and IMa(T) has
the obvious meaning for a given endomorphism T. One has (P(T))c. IMa(T), and
so for every a there is a question of density relative to any topology between the
weak-* and strong topologies on Ma.

In what follows T is an ergodic endomorphism, Ba{T) is the set of / = g ° T-g
such that ge Ca, and Ea{T) is the set offe C such that ax(f) = 0 for all x e P(T).
Of course, Ba c Ca for all a. The following lemma involves a standard application
of the Hahn Banach theorem:

(5.16) LEMMA. If Ba(T) is dense in Ea(T) (for the topology ofCa), then (P(T)) is
weak-* dense in IM".

(5.17) THEOREM. Let T be an ergodic endomorphism of JN. Then (P(T)) is dense
in /M°°, the space of T-invariant Schwartz distributions, for the strong topology.

Proof. (P(T)) is weak-* dense in 7M°° by corollary 5.15 and lemma 5.16. Since C°°
is reflexive, density in the strong topology is a consequence of the Banach-Mazur
theorem.
If a =0, and if T is an ergodic endomorphism of JN, then according to Marcus
[11], (P(T)) is weak-* dense in IM°(T), the space of finite invariant Borel measures
onT N

Question. Let 0< a <oo, and let T be an ergodic endomorphism of JN. Is (P(T))
weak-* dense in IMa(T)l

In the case that T is hyperbolic, Livsic [9] proves B,(7") = £i(T), and therefore
(P{T)) is weak-* dense in IM\T). In § 6 we will demonstrate that B,(T) ^ EX{T)
for every ergodic endomorphism which is not hyperbolic.

With much stronger hypotheses on T (that its dual matrix is diagonalizable over
R) Livsic [9] proves fe Ba(T) as soon as fe Ea(T) and the partial derivatives of/
up to order [a] belong to A.
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Finally, we note that if y = a + p with y3 > N and a a 0, and if T is an ergodic
endomorphism of JN, then by corollary 5.14

(5.18) £ a + P (T )cB o (D (a>0,j3>/V).

We have:

(5.19) THEOREM. Let Tbe an ergodic endomorphism of 1N, and let y = a + )3, where
a >0 and /? > JV. 77ie weafc-* c/osure of (P(T)) in IMy contains IMa.

Proof. Apply a variant of lemma 5.16 to (5.18).

Remark. With regard to the hypotheses of lemma 5.16 it should be noted that because
Eoo(T) = Boo(T), it would suffice to prove E^T) is dense in Ea(T).

Remark. If a > N/2, then because C" •-> A is a continuous inclusion, it follows that
(4.10) holds in the strong topology on M". This raises the question of characterizing
the closed linear span of {A(w, A)\n eZN, n ̂  0} in the weak-* or strong topologies
of Ma. Riesz (or Bessel) potentials may be useful for this purpose, at least for
non-integral a. (The auxiliary functions in § 7 are Riesz potentials with JV = 1.)

6. Proof of proposition 1.5
If T is an hyperbolic endomorphism of TN, and if / e C'(TN) satisfies o-x(/) = 0
for all xeP(T), then according to Livsic [9] there exists geCl(JN) such that
g° T-g=f. In this section we shall apply the closed graph theorem to demonstrate
that Livsic's statement is false for any ergodic endomorphism whose dual matrix
admits an eigenvalue of modulus 1.

In what follows T is a fixed ergodic endomorphism of TN, and A is its dual
matrix. It is assumed of A that at least one eigenvalue has absolute value 1. Since
A has no root of unity among its eigenvalues, the real canonical form for A implies
there exists an inner product ( , ) on UN, a Q > 0, and a 2Q-dimensional subspace,
W, of RN such that (i) A W = W = A* W, where * denotes adjoint relative to ( , ),
and (ii) there is a 2 x 2 (irrational) rotation matrix, Re, and a basis for W, relative
to which A has matrix

I Re h 0 ••• 0 \
0 R e 1 2 ••• 0

(6.D • . ":
o ' • h

\ Re
and A* has matrix a'. Note that a has dimension 2Q. Elements of W will be written
as Q-tuples of two-dimensional vectors. In particular, V^W denotes the set of
Q-tuples (v, 0 , . . . , 0). a acts as an isometry on V.

Below, c denotes a positive constant which depends only upon TV, ( , ), and
A. || • || is the norm associated to ( , ), and p > 1 is the operator norm of A relative

to ll-ll-
Let V£ W be as above, and define l{v) = / for v e V, ||u|| > p, by

(6.2) /=[**

https://doi.org/10.1017/S0143385700003606 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003606


464 W. A. Veech

Clearly

(6.3) Pk^\\v\\ (0<fc</) .

If v € V, there exists n(v) e ZN such that \\v- n(v)\\ < c. We have the inequalities

and therefore by (6.3) (with a new c)

(6.4) ||A'c«(t;)||<c||

With notation as above, define a trigonometric polynomial, Gu(x), by

(6.5) Go(x) = ' ( I I

k=0

If ||-II1 is the C1 norm on Cl(JN), then Gv ° T-Gv = e(A'n(v) • x)-e(n(v) • x)
satisfies by (6.4)

(6.6) \\GV°T-Gv\\
l^c\\v\\.

Let LeUN be viewed as a vector field on JN. The L2 norm of LGV is given, by
abuse of notation, by

(6.7) | |LG o | | i= ' l (LAfcn(»))2.
k=O

Choose L e R N to satisfy L- M = (t>/lkll> M), MeUN. If w(v) is the orthogonal
projection (for (•,•)) of n(v) on W, then

\lkll / \lkll '/ \II»II
the last relative to the chosen basis for W. If w{v) = (w,( t ; ) , . . . , wQ(v)), then

(6.8) T î, akw(u) = l ( ) pj
I k II J=o\j/\\v\

Now || w- w1(u)| |<c and ||w,-(u)|| ̂  c, 2 < j < Q, and so

In the range 0 < fc< /(u) it follows that

(6.9) LA f c H(u)>H cos 277-fc0-c(log|M|)(?-1.

Now let i? < oo such that R > 2c (log R)Q~\ so that by (6.9)

(6.10) LAkn(v)> ||u||(cos27rfc0-^) (||u|| >/?, fe</(/•)).

As ||u||-*oo implies /(«)-»oo, (6.10) and (6.7), together with the Kronecker-Weyl
theorem, imply

\\LGo\\l*cl\\v\\2

sc log ||i;|| • ||uf.
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From this we conclude

(6.11) HGĵ cdog H ^ H

holds for large ||i> ||, ue V.
Continuing with T as above, define E^T) to be the set of / e C1(TN) such that

crx{f) = 0 for all xeP(T). Co denotes the set of ge C\JN) such that g(0) = 0. The
operator <J>g = g° T-g is continuous, linear and injective from Cx

0 into E1(T). If
$ is surjective, then because Co and £'(7") are closed in C1(TiV), the closed graph
theorem implies the existence of y > 0 such that H ^ g f s y\\g\\\ ge Co. But by (6.6)
and (6.11) no such y can exist.

7. Distributions on T1

In this section we shall be concerned with infinite series whose terms are measures
on T1 and whose sums, when they exist, are distributions on T1. The object is to
determine the least value of a such that the series converge in the space of
distributions of order a.

Functions on T1 will be viewed interchangeably as functions on R with period 1.
If B is a space of integrable functions on T1, 5° will denote the set of fe B such
that/(O) = 0. If n > 1, wn denotes the measure on T1 corresponding to (l/n)£"=o Sj/n

on U.lfq> 1, and if (q, n) = 1, then <one IM(Tq), where Tqx = qx (mod 1).
The series to be considered in this section have the form

OO

(7.1) I »(p)a>nv = V(n,q).
v = \

Here 77 = 17(71, q) depends upon fixed n, q s 1 and the Mobius function /A( •).
It is possible to assign Fourier coefficients to 77. First, declare TJ(O) = O. Also,

because w/(/c) = 1 or 0 as l\k or not, declare rj{k) = 0 unless n\k. Finally, if n\k, say
k = nl, I # 0, compute term by term in (7.1) and sum to find

(7.2) fj(k)= I fi(v).

Because £d|r fi(d) = 1 or 0 as r= 1 or r > 1, the sum (7.3) is 1 if every prime which
divides l = k/n also divides q, and otherwise it is 0. If T(n, q) is the set of k= nl
for which the sum is 1, then we have the formal identity

(7.3) I fi(V)a,nv= I e(kx).

(*,n)=l

While the series on the right in (7.3) converges in the weak-* topology of (A0)*
(and A*), the series on the left is more delicate.1 For if HN is the Nth partial sum
on the left, and if Nq! is the product of those integers v such that 1 < v < TV and

1 A rearrangement of (7.1) has a subsequence of partial sums converging weak-* in (A0)*. This is all
that is necessary for the applicaion to theorem 7.6. In our view theorem 7.5 is intrinsically more
interesting.
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(v,q) = \, then

(7.4) A N ( N , ! ) = I M(").
» » = 1

The right side of (7.4) is well known to be unbounded in TV, and therefore {fiN} is
unbounded in (A0)*. Thus, the left side of (7.3) does not converge weak-* in (A0)*.
Indeed, by the Banach-Steinhaus theorem, there exists / e A0 such that
lim supN^oo fijv(/) = oo.

If a > 0 , define Aa to be the space of Holder functions of exponent a on T1,
identified, as above, with the corresponding space of periodic Holder functions on
R. We shall prove

(7.5) THEOREM. If a >\, the series (7.1) converges in norm in (A°)*, and the identity
(7.3) is true.

Suppose now q=p is prime. In this caseT(n,p) = {±npk}, and if (n,p) = 1, the right
side of (7.3) is simply X(n,p) + X( — n,p), where X(±n,p) is the pseudomeasure of
§ 4, associated to ±n and the l x l matrix A = {/>}.

(7.6) THEOREM. Let p>\ be prime. If a>\, and iffeA°a is an even function such
that (om(f) = 0 whenever (m, p) = 1, there exists geA° such that

(7.7) g(Tpx)-g(x)=f(x) (xeR).

Proof. Theorem 7.5 and the hypotheses o n / imply A(/i, p)(f) = 0 for all n such that
(n, p) = \. (Note that A(n, p)(f) = A(-n, p)(f) because/is even.) It follows (as in
[9]) that ax(f) = 0 for all xeP(Tp), and therefore by the Livsic argument [9] the
solution geA° to (7.7) also exists.

Example. We define / e L2 to have Fourier cosine series

(7.8) f(x)= Z ^ ^ C O
V

According to Davenport [5] the functions Pm(x) = £™=1 p(v) cosltrvx satisfy the
estimate ||Pm||co= O(m(log m)~h) for any given h>0. If we choose h>l, then
summation by parts in (7.8) leads to the conclusions that the series converges
uniformly and / e C(T1). We compute that for any fc> 1

the last equality by the prime number theorem.
If p is a prime, if n is square free, and if (n,p) = \, then X.(n,p)(f) =

((p- l)/p)(n(n)/n) # 0, and it follows (7.7) admits no integrable solution. Of course,
f£Aa for any a>\. In §8 we make the observation that if / e f \ < j A a , the
Generalized Riemann Hypothesis for cyclotomic fields is true. We do not know if
the converse is true.
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In order to prove theorem 7.5 we introduce the functions i//p, /3>0, defined by
their Fourier series as

(7.10)

where ' denotes omission of the k = 0 term. If 0 < /3 < a, then (/̂  e Lfoc for p <
1/(1-/3), and if convolution is understood to be on the group T1, then

(7.11) ^,*A°_p = A° (0</3<a) .

For these and other properties of ifip see [16, Vol. 1, Ch. II, Sec. 13 and Vol. II,
Ch. XII, Sees. 8-9]. We record for later reference that if <f>p, (3 > 0, is denned to be
periodic with period 1 satisfying

then

(7.13) <^-^eL°°(R) .

If || • || denotes distance to nearest integer, then (7.12) & (7.13) imply there is a
constant C()3)<oo such that

(7-14) \Mx)\^C(p)\\xf-\

We remark that -<pl(x) = {x}-^, where {•} denotes fractional part. The lemma to
follow is thus an extension of [7, Satz 484] from /3 = 1 to /3 > 5:

(7.15) LEMMA. Suppose fi>\. Ifa,b>\ are integers, then

2a2p)(a,b)213

(7.16)

Proof, t/jp is real, but the conjugate in the integral makes for ease of calculation in
the Parseval relation. If {a, b} = lcm(a, b) = ab/(a, b), the values of k, k' which are
paired for the Parseval relation satisfy ka = k'b or, what is the same, k~ r{a, b}/a
and k'= r{a, b}/b. As then sgn ka = sgn r = sgn k'b, (7.10) implies the integral (7.16)
has the value

(7 17) l2nY f

The lemma is proved.

(7.18) L E M M A . Let p>0. IftiQ, then for all 0 < n, vel

f1 1
(7.19) ^ ( x - ( ) u B ( < i ( ) = - — j ^ i - n v t ) .

Jo \nv)
Proof. The integral may be evaluated using (7.10). The resulting series again has
the form (7.10) with x replaced by —nvt, after one notices that sgn (nvr) = sgn T for
all T ^ O . Thus, (7.19) holds.
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Now let 0 < q, n be fixed, and set up a new function "typ formally as

(7-20) Vp{t)=\ I ^M-™*)-
n v=\ v

(7.21) PROPOSITION. Let 0 < /3 < a, and suppose the series (7.20) converges in L\0,1].
Then the series (7.1) converges in the norm of (A")*.

Proof. There exists a constant C(a, /3)<oo such that each / e A ° has the form
/=i/»0 * g for a unique geA°_ 3 with ||g||<a"/3)^ C( , ) | | / | | ( a ) , where H/lp'is the
Holder norm. By (7.19) & (7.20) and the assumed L1 convergence of (7.20)

v * v ^

(7.22) = | Vp(t)g(t) dt
Jo

If eN is the L1 norm of the Nth tail of the series (7.20), the Nth tail of the second
series in (7.22) has absolute value at most

Thus, the series (7.1) converges in (A")*, as claimed.

Remark. If q~p is prime, and if (7.1) converges in (A°)*, the formal calculation
leading to (7.5) is valid. If (7.20) converges in L1, one finds similarly

„=! v^ (tiry fc=o />

in the L1 sense. If q = 1, we have

°° Ai(i')
I —p-<l>p(-i

In the case /3 = 1 and n = 1, (/»,(-w) = -({^fj-j) , and one has

(7.23) I ^

The formula (7.23) is due to Davenport ([4], [5]) who proved the series on the left
converges uniformly in t.

(7.24) THEOREM. If P>\, the series (7.20) converges in the L2 norm.

Proof. Because t-> nt (mod 1) is an isometry on L2, it is sufficient to deal with the
case n = l, / 3 > i If JV>1, define SN(t) by
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Using (7.16) we compute for

(7.25) ||SM+,-SN||i=yG8) I ^ f f } (a, b)".
a,b=N (ab) H

(q,ab) = \

If 1 < d < M and {d, q) = 1, the pairs a, b in (7.25) which have (a, b) = d have the
form a = dQ,b = dR with (Q, R) = 1 = (d, Qi?) and JV/d < <?, R < M/d. It follows
therefore that

(7.26) ||SM+i-SJV||!='y(0) I
d = l «

(d,q)=l

If l < d < A/, the inner sum is O((d/N)2^'^). The contribution of the terms in
which 1 < d < iV is therefore O(I^= 1 d"2/3(d/N)2<2/3^1)) = OiN1'213). If d>iV, the
inner sum in (7.26) is O(£2(2/3)), and so the terms in which d> N contribute
O ( I N + I d"2p) = OiN1'213). It follows the series (7.20) converges in L2, as claimed.

We remark that if the series (7.20) converges in L1 for all /3 > 0, and q = l, then
the function / in (7.8) belongs to none of the spaces Ap, /3 > 0. For if fe Ap, then
(7.3) applied to / says 0= fi(n)/n (because F(n, 1) = {±n}) which is absurd.

While the series (7.23) does converge uniformly in t, the summands of the series
(7.20) are unbounded when /3 < 1. However, we do have

(7.27) THEOREM. 7/"/3>f, the series (7.20) converges a.e. in t.

Proof. The proof is a modification of an argument which goes back to Weyl ([15,
p. 346]). With notation as above we have that \\^p-SN\\l= O(N1"2^) for j 8 > i
and therefore if /? >§, SN' converges a.e. to Wp. It remains to estimate for N3<r<
(N+l)3 the contribution to Sr of the sum Sr-SNL We shall prove it is O(N2~3IB+e)
for any e > 0 and a.e. t such that S^it)-*^^).

Fix e > 0 small enough that 2-3 /3+4e( l - /3)<0. It is true for a.e. t that

(7.28) lim SN*(t) = Vp(t)

IMI&clal-1-* (aeZ-{0})
where c = c(f, e )>0 and || • || is distance to nearest integer. In what follows we
suppose t satisfies (7.28).

Let 0< fc< log3 N
2. We divide [N3, (N+l)3) into equal intervals of length [(3N2 +

37V+l)/3k] with one of smaller length left over. The number of intervals in this
decomposition is O(3k + (32k/N2)). Let / be one of these intervals ('stage k'), and
suppose a, be I with a # fe. By (7.28)

(7.29) \\{a

If a satisfies

(7.30) l | a t | l ~ C [ 3 N y ^ 4 1 ] '
then by (7.29) & (7.30)

(7.31) | |H^c(AB-l ) [ 3 N 2 y_f + 1 ] ,
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where

Since 3k< JV2 by definition, AB>(3~l)l+s >\, and AB-\>\. Now (7.31)implies
(7.30) is false if a is replaced by b or any other element from /. We conclude that
for any k satisfying 0< fe<log3 N

2 there are at most O{3k + (32k / N2) solutions to
(7.30) in the interval [N3, (7V+1)3). We note that there is at most 1 solution to
(7.30) with fc = 0 and this solution satisfies ||af|| >c(JV + l)~3(1+E).

Returning to (7.13) we see that there are at most O(3k + 32k/N2) solutions
ae[N3, (N+l)3) to

+ e)(l-P)

and that \^(at)\tsC(p)cp-\N+l)3U+'w-p) for all a. Values of a e [N3, (N+l)3)
which are unaccounted for by (7.30) for some fc<log3 AT2 are O(N2) in number
and contribute individually O(N~313) to any sum Sr-SN\ N3<rs(N+\)3. Recall
the summands are {^{a)/ap)ipp(at) = O(AT"3%(a')), for 7V3< a<(JV+l)3.) It
follows that if JV3< r < ( N + l ) 3 , then Sr{t)~SN^(t) is dominated by

j + ° j + | ° 3 +

/ [log,JV2] /

O ( JV2 < 1 + E ) ( 1"/ 3 )"3 p t I 3
N2

= O{N2~313 + jv2"3/3+4e(1"/3)).

The last term is O(l) by the choice of e, and the theorem is proved.

8. Holder continuity and the Riemann Hypothesis for L-series
In this section we consider the series

(8.1) F(x)=l^e(vx),

whose real and imaginary parts are the series (7.8) and its conjugate, respectively.
The argument in § 7 shows the series (8.1) converges uniformly. Moreover, Privalov's
Theorem ([1]) implies for 0 < a < l t h a t / e Aa if, and only if, FeAa.

To describe a connection between (8.1) and L-series, let ? > 1 , and let ^ be a
Dirichlet character mod q. The Gauss sum, ra(x), is defined for a e Z by

(8-2) ra(X)=l . .
>=o \ q

Now x is represented by its Fourier series on (Z/qZ):

(8.3) x(n)=~ I
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Recall that L(s, #) = ZT=i x(n)/n* and

(8.4) L-\s,x))= Z M ( y W ) (Re sa l ) ,

the series converging for Re s = 1 (by the prime number theorem for arithmetic
progressions). Now (8.3) and (8.1) imply

(8.5)
1 i~l / a \

L~\\,x)=- I r_a(*)F -
q a=o \q/

(8.6) PROPOSITION. Let F be defined by (8.1). If a is such that 0 < a < l and FeAa,
then for all q>l and Dirichlet characters x mod q the L-series L(s, x) has no zero s
with Re 5 > 1 — a.

Proof. The assumption F e A a implies the series (8.1) converges uniformly at a rate
O(ATa log N). Using (8.4) & (8.5) it follows for any y e (0, a) that

(8.7) '-L-\\,x) = O(N'y).

Now fix /3 real with /J > 1 — a. If we prove (8.4) converges for s = fi, then L l(s, x)
will be analytic for Re s > /3. To this end choose y so that 0 < y < a and y + /3 > 1.
Summing by parts we have

£ /*(«)*(«) £ / »
n = l r\ n = l \ k = l

(8.8)

The summands of the series on the right are O(w~</3+r)) while the extra term is
O(N1~i^+y)). Thus, (8.4) converges for s = /3, and the proposition obtains.

Define F(s, x) for Re s > 1, x 6 R by the series

(8.9)

By Davenport's estimate the series converges even for Re s = 1, uniformly in JC, and
a significant improvement in Davenport's estimate would imply the same for Re s > \.
We do not know if such an improvement is possible, but we will make one conditional
remark about (8.9).

If \ < (Z < 1, and if F(/3, •) is continuous, set a = 1 - j8, and notice that, but for a
constant factor,

(8-10) i l j a * F { l 3 , - ) = F ( l , - ) = F ( - ) >

so that F G Aa. In what follows we shall observe that conditioned on the Riemann
Hypothesis for L-series, the series (8.9) converges for each rational x, as soon as
Re s > i

If q s i , define eq{y) = e(y/q). We denote by T(q) the set of Dirichlet characters
mod q. We have \T(q)\ = <f>(q).
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Now suppose x = b/q with {b, q) = 1. We sum formally in (8.9):

F [s, - =

(8.H) = 1 I ^ q /
d\q 1=1 U I

il,q/d)=\

If (/, d)> 1, then /x(ld) = 0, and otherwise fi(ld) = /x(/)/t(d). Thus we may replace
(/, qld) = 1 by (/, g) = 1 in the series on the right to find

I 7 7 I
d|<j a 1 = 1

(l,9) =

Working with the inner sum in (8.12) we find

1=1

= I T7-T I X « eq/d(ab)
a = \ <P\a) »er(?) (=1 '

(a,q)

(8.13)

Substitution in (8.12) yields formally

Assuming the Riemann Hypothesis for L-series, the right side of (8.14) is analytic
in s for Re s>5 and moreover the series which were summed in (8.13) are actually
convergent. It follows that (8.14) is valid. We have proved:

(8.15) PROPOSITION. If the Riemann Hypothesis for L-series is correct, the series (8.9)
is convergent, with sum given by (8.14), for each rational x and complex s with Re s > 5.

Remark. If q = p is prime, then (8.14) reduces to

)( y )
P/ \p-lx^r(P)L(s,x)/ psL(s,Xo)'

where Xo is the principal character.

R R E F E R E N C E S

[1] N. Bary. A Treatise on Trigonometric Series, Vol. II. Oxford, Pergamon Press, 1964.
[2] J. W. S. Cassels & A. Frohlich, Eds. Algebraic Number Theory. Washington, D.C., Thompson Book

Co., 1967.
[3] C. Chevalley. Deux theoremes d'Arithmetique. J. Math. Soc. of Japan, 3 (1951), 36-44.

https://doi.org/10.1017/S0143385700003606 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003606


Periodic points and invariant pseudomeasures 473

[4] H. Davenport. On some infinite series involving arithmetical functions. The Quarterly Journal of
Mathematics, 8 (1937), 8-13.

[5] H. Davenport. On some infinite series involving arithmetical functions, (II). The Quarterly Journal
of Mathematics, 8 (1937), 313-320.

[6] Y. Katznelson. Ergodic automorphisms on T" are Bernoulli shifts. Israel J. Math. 10 (1971), 186-195.
[7] E. Landau. Handbuch u'ber die Lehre von der Verteilung der Prinzahlen. Leipzig, Teubner, 1909.
[8] D. Lind, Dynamical properties of quasihyperbolic toral automorphisms. Ergod. Th. & Dynam. Sys.

2 (1982), 49-86.
[9] A. N. Livsic. Homology properties of Y systems. Math. Notes, 10 (1971), 758-763.

[10] A. N. Livsic. Cohomology of dynamical systems. Math. U.S.S.R. Izvestija, 6 (1972), 1278-1301.
[11] B. Marcus. A note on periodic points for ergodic toral automorphisms. Monatsh. Math. 89 (1980),

121-129.
[12] E. M. Stein. Singular Integrals and Differentiability Properties of Functions. Princeton, Princeton

University Press, 1970.
[13] E. M. Stein & G. Weiss. Introduction to Fourier Analysis on Euclidean Space. Princeton, Princeton

University Press, 1971.
[14] E. Weiss. Algebraic Number Theory. New York, McGraw-Hill, 1963.
[15] H. Weyl. Uber die Gleichverteilung von Zahlen mod Eins. Math. Ann. 77 (1916), 313-352.
[16] A. Zygmund. Trigonometric Series, Vols. I, II. Cambridge, Cambridge University Press, 1959.

https://doi.org/10.1017/S0143385700003606 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003606

