SUBNORMAL SUBGROUPS OF DIVISION RINGS

I. N. HERSTEIN AND W. R. SCOTT

Let K be a division ring. A subgroup H of the multiplicative group K' of K is subnormal if there is a finite sequence $(H = A_0, A_1, \ldots, A_n = K')$ of subgroups of K' such that each A_i is a normal subgroup of A_{i+1} . It is known (2, 3) that if H is a subdivision ring of K such that H' is subnormal in K', then either H = K or H is in the centre Z(K) of K. This leads to the following conjecture:

 P_{nD} : If K is a division ring, H a subdivision ring invariant under a subgroup $G_1, G_1 \triangleleft G_2 \triangleleft \ldots \triangleleft G_n = K', G_1 \not \subset Z(K)$, then H = K or $H \subset Z(K)$.

This conjecture will be proved for n = 2 (the case n = 1 is the Cartan-Brauer-Hua theorem). Let P_{nF} be the corresponding conjecture when H is a subfield of K. It will be shown that P_{nD} implies $P_{n+1,F}$, and that P_{2D} is true. It follows that P_{3F} is true. To prove the general conjecture, it remains only to show that P_{nF} implies P_{nD} . In connection with the conjecture, one might even ask if any subnormal subgroup of K' must be normal in K'.

The following notation will be used. If K is a division ring, then K' will denote its multiplicative subgroup. If S is a subset of K, C(S) will mean the centralizer of S and \overline{S} the subdivision ring generated by S. If x and y are non-zero elements of K, $[x, y] = xyx^{-1}y^{-1}$. If F is a subfield of K and M a subdivision ring of K containing F, then [M : F] is the degree of M over F. If $y \in K$ and S is a subset of K, then $S^y = y^{-1}Sy$.

The following lemma follows immediately from Lemmas 1 and 2 of (1).

LEMMA 1. If $x \in K$, $y \in K$, [y, x] commutes with both x and y, $[y, x] \neq 1$, and $[y, [y, \ldots, [y, 1 + x] \ldots]] = 1$, then x is algebraic over Z(K).

A group is weakly nilpotent if any two of its elements generate a nilpotent subgroup. Huzurbazar (1) proved that K'/Z(K)' has no weakly nilpotent normal subgroups, and every weakly nilpotent normal subgroup of K' is in the centre. A minor remark permits the replacement of the word "normal" by "non-abelian subnormal" in this theorem. For convenience the remark will be formulated as a lemma.

LEMMA 2. If $A_1 \triangleleft A_2 \triangleleft \ldots \triangleleft A_n = K'$, $x \in A_1$, $y \in K'$, $y_1 = [x, y]$, $y_{i+1} = [x, y_i]$, then $y_{n-1} \in A_1$.

Proof. $y_1 \in A_{n-1}$ since $x \in A_{n-1} \triangleleft K'$. It follows by induction that $y_i \in A_{n-i}$.

Received September 4, 1961.

By using Lemma 2 at the appropriate places in Huzurbazar's proof (1, Theorem 1), the following theorem may be proved.

THEOREM 1. If K is a division ring with centre Z, then neither K' nor K'/Z' has any weakly nilpotent non-abelian subnormal subgroups.

THEOREM 2. P_{nD} implies $P_{n+1,F}$.

Proof. Deny the theorem. Let K be a division ring, H a subfield invariant under G_1 , $G_1 \triangleleft G_2 \triangleleft \ldots \triangleleft G_{n+1} = K'$, $G_1 \not\subset Z(K)$, and $H \not\subset Z(K)$.

If $G_1 \subset C(H)$, then $\overline{G_1} \subset C(H)$. Thus $\overline{G_1}$ is a subdivision ring invariant under G_2 . By P_{nD} , $\overline{G_1} = K$. Hence C(H) = K and $H \subset Z(K)$. Therefore $G_1 \not\subset C(H)$.

Case 1. There is an $x \in H$ such that $x \notin Z(K)$ and x is algebraic over Z(K). Let x_1, \ldots, x_n be the conjugates of x in H. Then $Z(K)(x_1, \ldots, x_n)$ is a field invariant under G_1 and not contained in Z(K). Hence K, H, G_1, \ldots, G_n may be assumed to be such that $[H : H \cap Z(K)]$ is finite and as small as possible.

Suppose that there are $y \in G_1$, $y \notin C(H)$, and $a \in H$, $a \notin Z(K)$, such that [y, a] = 1. Then the minimality of $[H : H \cap Z(K)]$ is contradicted, for C(a) is a division ring, H a subfield invariant under $G_1 \cap C(a)$, $G_i \cap C(a)$ is a normal subgroup of $G_{i+1} \cap C(a)$, $G_1 \cap C(a) \not\subset Z(C(a))$ since y is in the former group but not the latter, $H \not\subset Z(C(a))$, and since $a \in Z(C(a)) \cap H$, $1 < [H : H \cap Z(C(a))] < [H : H \cap Z(K)]$.

Thus $G_1/G_1 \cap C(H)$ is isomorphic to a non-trivial group of automorphisms of H over $H \cap Z(K)$ such that the fixed field of any automorphism ($\neq 1$) is $H \cap Z(K)$. It follows that $G_1/G_1 \cap C(H)$ and each of its non-trivial subgroups is the full Galois group of $H/H \cap Z(K)$. Therefore $G_1/G_1 \cap C(H)$ is of prime order. Hence the commutator subgroup Q of G_1 is in C(H). But Qis normal in G_2 , so \overline{Q} is invariant under G_2 . By P_{nD} , either $\overline{Q} = K$ or $Q \subset Z(K)$. If $\overline{Q} = K$, then C(H) = K, which is impossible. Hence $Q \subset Z(K)$. Therefore, G_1 is nilpotent. By Theorem 1, G_1 is abelian. Therefore $\overline{G_1}$ is a field invariant under G_2 . Since $\overline{G_1} \neq K$, this contradicts P_{nD} .

Case 2. If $x \in H$ and $x \notin Z(K)$, then x is transcendental over Z(K).

First suppose that $H \cap G_1 \subset Z(K)$. Since $G_1 \not\subset C(H)$, there are $x \in G_1$ and $y \in H$ such that $[x, y] = a \neq 1$. Using the notation and result of Lemma 2, $y_n \in G_1$ and it is clear that each $y_i \in H$ since H is invariant under x. Therefore $y_n \in G_1 \cap H \subset Z(K)$, $y_{n+1} = 1$. Therefore there is $u \in H$ (y or an appropriate y_i) such that $[x, u] = b \neq 1$, [x, b] = 1, and [u, b] = 1 (this last because both u and b are in H). Clearly $(1 + u)_{n+1} = 1$ also. By Lemma 1, u is algebraic over Z(K), a contradiction.

Hence $H \cap G_1 \not\subset Z(K)$. If $(H \cap G_1)^u \subset C(H)$ for all $u \in G_2$, then the division ring L generated by all $(H \cap G_1)^u$ with $u \in G_2$ is invariant under G_2 , contradicting P_{nD} . Hence, for some $u \in G_2$, $(H \cap G_1)^u \not\subset C(H)$. Let $y \in (H \cap G_1)^u$, $y \notin C(H)$. For some $v \in H$, $[y, v] \neq 1$. Then $v_n \in H \cap G_1$ by

Lemma 2, so $v_{n+1} \in H \cap G_1 \cap H^u$ since H^u is invariant under $G_1^u = G_1$. Therefore $v_{n+2} = 1$ since H^u is commutative. As in the preceding paragraph, this leads to a contradiction.

COROLLARY. If K is a division ring, H a subfield invariant under a normal subgroup G of K', $G \not\subset Z(K)$, then $H \subset Z(K)$.

Proof. P_{1D} is the Cartan-Brauer-Hua theorem. By Theorem 2, P_{2F} is true. But this is just the statement of the Corollary.

THEOREM 3. If K is a division ring, H a subdivision ring invariant under a normal subgroup G of K', $G \not\subset Z(K)$, then either H = K or $H \subset Z(K)$.

Proof. Deny the assertion. We assert

(1) If
$$h \in H$$
, $h \notin Z(K)$, then $C(h) \subset H$.

Subproof. Deny the assertion. For some $y \notin H$, yh = hy. If $g \in G$, since $g^{1+y} \in G$, for some $h_1 \in H$,

$$(1 + y)g(1 + y)^{-1}h = h_1(1 + y)g(1 + y)^{-1},$$

and so

 $(1 + y)gh = h_1(1 + y)g.$

Also, for some $h_2 \in H$,

$$ygy^{-1}h = h_2 ygy^{-1},$$

and so

$$ygh = h_2 yg.$$

Subtraction gives $gh - h_1g = (h_1 - h_2)yg$,

$$(ghg^{-1} - h_1) = (h_1 - h_2)y.$$

Since $y \notin H$, $h_1 = h_2 = ghg^{-1}$. Hence $ygh = h_2yg = ghg^{-1}yg$, or

$$y(ghg^{-1}) = (ghg^{-1})y.$$

Thus y commutes with all elements of the form ghg^{-1} , $g \in G$. Since $yh \notin H$ and $yh \in C(h)$, yh also commutes with all ghg^{-1} . Hence h commutes with all ghg^{-1} . It follows by conjugation that any two conjugates of h by elements of G commute. Therefore these conjugates generate a field F invariant under G. By the preceding corollary, $F \subset Z(K)$, a contradiction since $h \in F$. This proves (1).

Now $C(H) \subset H$ by (1), so C(H) is a subfield invariant under G. By the corollary, $C(H) \subset Z(K)$. Thus Z(H) = Z(K).

Suppose that $h \in H$, $h \notin Z(K)$, and that h is algebraic over Z(K). It is clear that $G \not\subset H$. Let $g \in G$, $g \notin H$. Then the fields Z(K)(h) and $g^{-1}(Z(K)(h))g$ are isomorphic by an isomorphism leaving Z(H) fixed. Hence (4, page 162) there is an $a \in H$ such that a induces the same isomorphism. But then

 $ag^{-1} \in C(h)$, so by (1), $ag^{-1} \in H$. Therefore, $g \in H$, a contradiction. Thus every element of H outside Z(K) is transcendental over Z(K).

We assert that

(2) if
$$y \in G$$
, $y \notin H$, then $H \cap H^{1+y} = Z(K)$.

For suppose this to be false. Then there are h, h_1 , and h_2 in H but not Z(K) such that $(1 + y)h = h_1(1 + y)$ and $yh = h_2y$. Therefore $h - h_1 = (h_1 - h_2)y$. Since $y \notin H$, $h = h_1 = h_2$, so $y \in C(h)$ in contradiction to (1).

Suppose $G \cap H \subset Z(K)$. If $y \in G$, $y \notin Z(K)$, $x \in H$, $x \notin Z(K)$, then $[y, x] = a \in Z(K)$, $a \neq 1$ by (1). Therefore [y, [y, 1 + x]] = 1, and x is algebraic over Z(K) by Lemma 1. Hence $G \cap H \not\subset Z(K)$.

For all $u \in K$, $G \cap H^u \not\subset Z(K)$. Let $u \in G$, $u \notin H$. There is an element $y \in G \cap H^{1+u}$, $y \notin Z(K)$. Since C(H) = Z(K), there is $v \in H$ such that $[y, v] \neq 1$. Hence $[y, v] \in H \cap G$, $[y, [y, v]] \in H \cap H^{1+u} \subset Z(K)$ by (2). Therefore [y, [y, [y, v]]] = 1. We assert that there is $x \in H$ such that $[y, x] = a \neq 1$ and a commutes with both y and x. In fact, if $[y, [y, v]] \neq 1$, then x = [y, v] will do. If [y, [y, v]] = 1, then $[y, v] \in C(y) \subset H^{1+u}$ by (1), so $[y, v] \in H \cap H^{1+u} \subset Z(K)$. Hence x = v will do in this case, and such an x always exists. Then, as before, [y, [y, [y, 1 + x]]] = 1. Hence x is algebraic over Z(K) by Lemma 1.

COROLLARY. If K is a division ring, H a subfield invariant under G, $G \triangleleft L \triangleleft K', G \not\subset Z(K)$, then $H \subset Z(K)$.

Proof. This follows from Theorems 2 and 3.

References

- 1. M. Huzurbazar, The multiplicative group of a division ring, Dok. Akad. Nauk, 131 (1960), 1268-1271. (Translation of Doklady, 1, No. 2, 433.)
- Eugene Schenkman, Some remarks on the multiplicative group of a sfield, Proc. Amer. Math. Soc., 9 (1958), 231–235.
- 3. Eugene Schenkman and W. R. Scott, A generalization of the Cartan-Brauer-Hua theorem, Proc. Amer. Math. Soc., 11 (1960), 396-398.
- 4. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub., vol. 37.

Cornell University The University of Kansas