NOTE ON THE COHOMOLOGY GROUPS OF
ASSOCIATIVE ALGEBRAS

HIRCSI NAGAO

The cohomology theory of associative algebras has been developed by G.
Hochschild [1], [2], [3], and the 1-, 2-, and 3-dimensional cohomology groups
have been interpreted with reference to classical notions of structure in his
papers. Recently M. Ikeda has obtained, by a detailed analysis of Hochschild's
modules, an interesting structural characterization of the class of algebras whose
2-dimensional cohomology groups are all zero [5].

In sections 1 and 2, we consider an algebra whose residue class algebra
modulo its radical is separable, and offer a criterion for such algebra to have
trivial #( =2)-dimensional cohomology group in terms of certain module. which
is similar to Hochschild’s module but is rather simpler.

In section 3, we consider the cases of dimensions 2 and 3. We offer another
proof of Ikeda’s theorem, and, under the assumption that A/N (N is the radical
of A) is separable, a structural characterization of the class of algebras whose
3-dimensional cohomology groups are all zero.

The writer wishes to express his best thanks to Prof. T. Nakayama for his
kind encouragement and advice, and to Mr. M. Ikeda for his discussions and
suggestions during the preparation of this note.

1. Let A be an associative algebra over a field F which possesses a unit
element 1, and N be its radical. We assume. throughout this and the next
section, that A/N is separable. Since 2-dimensional cohomology groups of A/N
are all zero, A contains a subalgebra A such that A is decomposed into the
direct (module) sum of A and N: A=A+ N. Evidently A is an algebra
isomorphic to A/N, and hence separable. We denote elements of A by a, b,

. and those of NV by #y, @, . . ..

With an A-A-module n and a natural number » we denote, after Hochschild,
the modules of all n-cochains, n-cocycles, n-coboundaries of A in n by C"(A,
n), Z"(A, n), B"(A, n) respectively, and n-dimensicnal cohomology group of A
in n by H"(A, n).

Let P,=A%...XA be the n-fold direct product of the underlying vector
space of A. We define the operations on Pn by setting
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n-1 .
a (X ... Xax) =23(—=1D'agX . .. X@iGi+1X « .« Xan,
(1) i=0
(a1><a3>< “ .. Xan)*an+1=a1><az>< w e XAn@n+1.

This makes P, an A-A-module.’ We call this the n-dimensional Hochschild
module of A.

LemMa 1.1. Let n be an A-A-module. If f is an element of C"(A, n) and
O (@i, @, - . ., anv1) =0 for any elewent a of A, then there exists an element
g of C" XA, n) such that (f—8g) (a1, ax ... ,an) =0 for any element @ of A.

Proof. Let R(Ps, n) be the module of all right operator homomorphisms
from P, into n. We define the operations of the elements of A for FER(F,,
n) by setting

(@o FXaiXa:x ...Xap) =aFla;XaX ...Xan),
(Foa)(alxagx « . Xan) =F(a*(a1><ag>< “ e Xan)).

Under these operations, R(P,, n) is an A-A-module.

For an f € C"( A4, n) having the property in the lemma we define an element
F(f) of CMA, R(P,, n)) by the relation F(/)(@)(a:X . .. Xan+1) =f (@1, as,
«..,an)an+1. Then we can verify, from the property of f, that dF(f) =0.
Since A is separable, there exists an element G of R(Py,, 1) such that F(f)(&)
=0G(@)=a°G—-Goa. We define g€ C" (A, n) by setting

g(a;, 727 ,an_1)=G(al><a;>< .. an-le),

then we see, from the property of G, that g satisfies the requierment of the
lemma.

Now let @n-1=NxXAX ...XA be the direct product of the vector spaces
of N and (% —2)-fold direct product of A. We define the operations of the
element of A, A on Qu-s, on the right and left sides, respectively, by setting

n-1

(mlxagx “ .. ><a,1_1) * an=2( "‘1)"_1—17}11X e e« XBiAi+1 X « « « XQn,y
i=1

(2)

60*(m1><(z2>< P xa,,_x) =@ XA X o« o XAn—-1.

This makes @,-. an A-A-module.

We denote by L(Qu-i, n) the module of all A-(left) operator homomor-
phisms from @.-; into n, and define the operations of the elements of A for
Fel(Q,-1, n) by setting

(3) { (@e FY(muXaxx ... Xanw-1) = F((myXa:X ... Xan-1) *a)
(Foa)(muXa:X ...Xan1)=FlmXa:X ...Xan-1)a.

1A module m 1s called an A-A-module if 1 is A-left and right module and satisfies a(mb)
=(am)b (a, be A, mem).
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Under these operations L(Qu-1, n) is an A-A-module.

THeOREM 1.1. Let n be a module such that Nn =uN=0. Then (under the
assumption that AJ/N is separable)

H"(A, n)=H"(A, L(Qx-1, n)) (n=2).

Proof. Denote by C™( A, n) the module of all #-cochains / such that f(«,
@, . .. ,an) =0 for any element @ of A, and set Z”(A4, n) = Z"(A, n)~ C*(4,
w), BMA, n) =B"(A, n)-C"(A, n). From Lemma 1.1 every cohomology class
contains an element of Z"(A, n), and hence H"(A, n) is isomorphic to Z"(A,
n)/B™(A, n). With an element f of Z"(A, n) and an element a. of 4, we
define a linear mapping F(f)(a,) from Qu-1 into n by the relation F(f)(ay)
(MU X @2 X o oo X@u=y) =f{my, @, « . . ,an). Since d0f(a@, wmi, as, . .., ar) =af(m,
@y . . ., an) —flamy @y, . . ., an) =0, F(f)(a,) is an element of Z(Qn-1, 1)
and F(f) is an element of C(A, L(Qx-1, n)). Taking account cof the assumed
property of n we see by direct computations that (0F(f)(an, an-1))(muXx ...
Xan-1) = 8f(m, @, . ..,ans1) =0, and hence F()EZ(A, L(Q,-1, 1)).

Now let / be an element of B*(A,n). Then there exists an element g’ of
C" (A, u) such that f=dg'. Since 6g'(a@, a@, . . . , an) =0 for &€ A, from
Lemma 1.1 there exists an element % of C"*(A,n) such that (g'—dh)(a,
@y oo, an-1) =0 for mEA. Set g=g'—0h, then f=06g and ge=C" (A4, n).
Since f(a@y, ", oy « o . , Gn-1) = 084G, M1, oy . o o » An-1) = @g\, G20 . - .
An-y) —glawn, @, . . . , ap-1) =0, if we set G(miXas X ... Xan-1) = glm, a,

., @n-1) then GEL(Q,-1, n). By direct computations we can verify that

£(f)a) = xdG, and hence the mapping /- F(f) induces a homomorphism from
H"(A, n) into HY(A, L(Qn-y, n)).

Conversely, if F is an element of Z'(A, I(Qx-1, 1)) we define an element
f of C"(A. n) by setting

flay, as ...,a0) =0 for G EA,
Fmy, @y ..., an) =Fla)imx ... Xan-1) for me&N.

Then it is easily seen that f is an element of Z*(A, n) and F= F( f). This
shows that H"(A, u) is mapped onto H'(A, L(Q,-;, 1)) by the above mapping.
Further if F(f) is a coboundary, that is, F(f) =dG, then we see that f=dg,
where g is an element of C* (A, 1) defined by the relations g(m,, @, . . . , Gn-1)
=G(myXaX ...Xan-1), for me&N, and g(@, a, ...,an1) =0, for G A.
This shows that the above homomorphism is an isomorphism.

2. Inthis section, we recall some definitions and properties about the module
extensions and offer a criterion for A to have trivial #-dimensional cohomology
groups in terms of Q,-;.

Let m and n be two modules with the same operator domain 2. We cali
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a third 2-module M an (2-)extension of n by m if M contains n and M/n=m.
If an extension M of n by wm contains an (2-)submodule W’ such that m is the
direct sum M =n+m', then we say that m splits. If for any 2-module n every
extension of n by m splits, we call m an (M,)-module.

Now let m and n be two A-A-modules and M be an (A-A-)extensions of
n by m. For u&m, take a system of linear representatives {B,}. Then

@) { aBu = Bau + 5la, ) (ae A, B(a, n)en),

Bua = Bua+ 1(u, a) ((ZEA, r(u, a)En).

fla, #) and r(u, @) are linear in @, a, . From the associative relations
6(?7-Bu) = (Ci?)‘)Bu, (C—Z_Bu)b = a(Bub), (Bua)b = Bu(ab), we haVe

aid(b, u)+ B(a, bu) —p(ab, u) =0,
(3) B(a, ub) — pa, u)b=r(au, b) — ar(u, b),
(u, a)b+71(ua, b) —v(u, ab) =0.

The structure of M is completely determined by {B, r}, and conversely if {5, r}
sutisfies the relations (5) we have an extension of n by m, by (4). We call
{B, 1} satisfying (5) a factor system. Two factor systems {F:, 71} and {f, 72}
are called associated if there exists a linear mapping A from I into n satisfying
the relations

{ Bola, u) =Bi(a, uw) +{aru) - 2(au)},

)
© re(u, a) =71(u, a) +{A(u)a— Nua)}.

As is well known, {#:. ri} and {B:, 72} are associated if and only if they define
equivalent extensions.”’

We denote by L(m, n) the module of all A-(left) operator homomorphisms
from m into n, and, defining the operations as (3), we make this an A-A-module.
Since every (A-A-)extension of n by mis (A-)left inessential,” by an argument
similar to those in [3] or [6], we can verify the following lemma.

LEmMMA 2.1. Let m and u be two A-A-modulecs. Then all extensions of u
by m split if and only if H' (A, L(m, n)) =0.
Let next

ok ko
A= e.=>"eA
k=1 k=1

be direct decompositions of A into indecomposable left and right ideals, and

2 Two extensions M1, P2 of n by m are called equivalent if there exists an isomorphism
between 9 and Mz which leaves invariant each element of n as well as the isomorphism
from Mi/n to m.

M An A-A-extension Wi of n by n is called (A-) left inessential if M splits as an A-(left)
extension.
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{e«} be mutually othogonal primitive idempotents.  Then

A= ZIAeK }.l eA

are direct decompositions of A into indecomposable left and right ideals.
The structure theorem of (M,)-modules states (see [7]):

LEMMA 2.2. An A-right module W is an (M,)-wodule if and only if wl is
a direct sum of submodules isomorphic to éA.
Now we have

LemmA 2.3. Let m be an.A—-A-moa’ule, and suppose that 1u=u for uen.
m is an (My)-module as an A-A-module if and only if it is so as an A-(right)
module.

Proof. i) Let m be an (M,)-module as an A-A-module. Then l1ml=m1
is+a direct sum of submodules isomorphic to Ae.xe,A, and hence as A-right
module directly decomposed into a direct sum of submodules isomorphic to e, A.
This shows that m is an (M,)-module as A-right module.

_ i) Let m be an (M,)-module as A-right module. It is sufficient to prove
that for any A A-module n such that nN=0, every extension ot n by m sphte
Let n be such a module, and {3, 7} a factor system. Since A is separable. we
cati assume that 3(&@, u)=71(u, @) =0. Then {3. y} satisfies the relations

i) p(a@, u) =r(u, a) =0,
I ii) r(au, m) —ar(u, m) =0,
iii) 7, m)b — v(u, mb) =0,
iv) y(ua, m) —r(u, am) =0.

(7) l

And the e\:tensmn determmed by {5, 1} splits if and only if there exists a
Imear mappmg A from m into n satisfying the relations

(8) r(u; @) = Mu)a—ua) =0,

rlu, m) = —A(uin).

{ Bla, u) = ar(n) — A(au) =0,

Since m is an (M,)-module as an A-right module, there exists a linear
mapping A’ satisfying the relations

{ 7(u, @) =2 (w)a - M ua) =0,
7(a, n) = — M um).

-(9)

Now, since m is completely reducible as A-A- -module, m is decomposed into a
dlrect sum of mN and an another A-A-submodule mo, m=wN+m. From
(7)1ii) and iii), A" induces an A-A-operater’ homomorphism from mAN into i
Hence if we define a mapping 1 from m into n by setting -
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Maum) = 1 (uwm),
Awy) =0 for uyEmy,

then 2 satisfies the relations (8), and the extension determined by {3, r} splits.

Lemma 2.4, H™MA, n) =0 for every A-A-module n if (and only if) it holds
Jor every A-A-module n such that Nu=uN=0.

Proof. Suppose that H"(A, n) =0 for all n such that Mn=ulN=0. Let m
be an A-A-module and m=m,OmOm>D ... DOms=0 be a composition series
of m. In case t=1, Nm=mN =0and hence H"(A, m) =0. Now suppose that
H"(A, n) =0 for all n with a length of composition series less than ¢, and con-
sider an f&€Z™(A4, m). Set flay...,a) = ay, ... ,as) mod my-;, then
feZ”A, m/me;). Since the length of conposition series is equal to #—1,
feB"'(A, m/ms-;). Hence, there exis's an element g of C" (A, m) such that
flay, ..., ,ax) =6glay, . .., a) mod wu-;. Since f—ogEZ™ (A, mi—q) and
Nm;s_q =m;—;N =0, there exists a &2& C" (4, M) such that f — g =d8g:. This
shows that f&B"(A, m), and hence H"(A4, m)=0.

By an argument similar to those in the above proof, we have ®

LeEmMA 2.5. An A-right module m is an (M,)-wodule if (and only if), for
any A-right module n such that nN =0, all extensions of n by m split.

Now, from Theorem 1.1, Lemmas 2.1, 2.3, 2.4, and 2.5, we have immedi-
ately the following theorem.

TueoreyM 2.1, (Under the assumption that A/N is separable”) cll n-di-
mensional cohomology groudbs of A are zero if and only if Qu-1 is an (M,)-
module as an A-right modulz.

3. In this section, we shall consider the cases of dimension 2 and 3.

It was shown in [1] that the class of algebras whose 2-dimensional co-
homology groups are all zero coinsides with the class of absolutely segregated
algebras.

Since @ is isomorphic to IV as an A-right module, we have immediately the
following theorem, which is a special case of Ikeda’s theorem.

TueoreMm 3.1. Let A be an algebra such that A/N is seperadble. Then A
is absolutely segregated if and only if N is an (M,)-module as an A-right modulz.

In order to prove the seperability of A/N for an absolutely segregated
algebra A, we mention the following lemma.

Lenima 3.1, IF an algebra A over an algebraicaily closed field F is absolutely
segregated then the rvank of ecAec over F, denoted by Lecdedd, is equal to 1.

Proof. Since F is algebraically closed, A/IN is seperable. From theorem

b Cf. a note at the end.
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3.1, NV is an (M;)-module as an A-right module.
Let f« be the number of factors isomorphic to e;A in a direct decomposi-
tion of eN into directly indecomposable submodules: e N=>tae)A. We
A

assume that the indices are so arranged as [6,A]l<[e:Al< ... 2[erA]l. Then
£<2 implies ta=0. Set cao=lehde;], C=(con), and T=(t.;). From eNe,
= >ltweude,, we have

B

C(E-T)=E (£: unit matrix).

Sirce the mairix E—T is

1

e —txk

.. R

0. 1
its inverse matrix C is of from

1

N Cix

0 - 1

This shows that ce = [ecde]d =1.
As was shown in the proof of “only if” part of Theorem in §5 of [5],
it is conciuded rather easily from lemma 3.1 that A/N is separable if A is an
o

abeolutely segregated algebra. Combining this fact with Theorem 3.1 we have
immediately

Turorem 3.2, (Ikeda’s Theorem). An algebra with unit clement is abso-
lutely segregated if and only if

i) A/N is scparable,

ii) N is an (M,)-mocule as A-right module.

Next, supposing that A/N is separable, we consider the case of dimension
3. Let N& A be a direct product of underlying vector spaces of N and A, and
define the operation for »: & b& A, as usual. by setting

(mR¥b)a=mIda.

Then NX A is an A-right module. The mapping m X b— mb induces an A-
(right) operator homomorphism from N A on N. We denote its kernel by
Ny. Then we have

LemMa 3.1, Q:x1=N, (as A-right modules).

Proof. Since (mxa)*l=mxa—max1l, mxa is contained in Q:+1 if and
onlyifma =0, LLmxd&G,+ 1, then (mxd) a=mxba—mbxa=m>ba. Tence
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the mapping m&Xb—->m xb induces an isomorphisms from N, onto @, *1.
From this lemma and theorem 2.1, we have immediately

TueoreM 3.3. Let A/N be separable. Then 3-dimensional cohomology groups
of A are all zero if and only if Ny is an (My)-module as an A-right module.
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Added in proof: Recently T. Nakayama and M. Ikeda have proved jointly
that if n-dimensional cohomology groups of A are all zero then A/ is separable.
Using this theorem, Theorem 2.1 and 3.3 are improved as follows:

TuroreMm 2.17: Let A be an algebra with unit eleinent. Then n-dimensional
colomology groups of A are all zero if and only if

i) A/N is separable,

i) Qu-1 s an (M,)-module as an A-right module.

TueorReM 3.3 Let A be an algebra with unit element. Then 3-dimensional
cohoinology groups are all zero if and only if

i) A/N is separable,

i1) Nu is an (M,)-module as an A-right module.
As is easily seen, Theorem 2.1' is an actual generalization of Tkeda’s theorem.
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