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Embeddability of Some Three-Dimensional
Weakly Pseudoconvex CR Structures

Wei Wang

Abstract. 'We prove that a class of perturbations of standard CR structure on the boundary of three-
dimensional complex ellipsoid Ej, 4 can be realized as hypersurfaces on €2, which generalizes the result
of Burns and Epstein on the embeddability of some perturbations of standard CR structure on S3.

1 Statement of Results

The examples given by Nirenberg (cf. [JT]) show that not all three-dimensional
strongly pseudoconvex CR manifolds can be realized as hypersurfaces in C2. So, it is
an interesting and fundamental problem to decide what three-dimensional CR man-
ifolds can be realized as hypersurfaces in C? or submanifolds in CN. This is an active
topic in recent years [BD] [BE] [C2] [E1] [E2] [JT] [K] [L]. When the CR structure
is strongly pseudoconvex, the problem is only interesting in three-dimensional case
since a theorem of Boutet de Monvel states that any compact (2n + 1) dimensional
CR manifold can be realized as a submanifold in CV for some N, provided n > 1.

Burns and Epstein considered perturbations of the standard CR structure on a
three-dimensional sphere [BE] (see also [BD]). They proved that sufficiently small
perturbations of standard CR structure with “positive” Fourier coefficients are em-
beddable and the “generic” perturbations are nonembeddable. Such results are gen-
eralized to three-dimensional circle bundles in [E1] [L]. Epstein also obtained a deep
relative index theorem on the space of embeddable CR structures [E2]. Compared
with strongly pseudoconvex CR structure, the embeddability of weakly pseudocon-
vex CR structure is not well studied (¢f. [C2] [K2]). In this paper, we prove that
perturbations with “positive” Fourier coefficients of standard CR structure on the
boundary of complex ellipsoid E,; can be realized as hypersurfaces in C?, which
generalizes Burns and Epstein’s result on $°. Further results about embeddability of
pseudoconvex CR structures of finite type are in progress.

Let M be a real hypersurface in 2, and TM and T(C? be tangent spaces to M and
(C?, respectively. The complexified tangent space C ® TC? has the decomposition
T'C? @ T*'C? into holomorphic and antiholomorphic vectors. Using coordinates
z, w on €2, we have that T'°C? and T%!C? are spanned by {2, 2} and {2, 21,
respectively. Set

(1.1) T (M) = C® TM N T °C?|y.
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Then T%' (M) = T'9(M) and T®'(M) N T"°(M) = {0}. T'°(M) is always a one
dimensional complex subbundle of C® T'M, and is called the complex tangential space
of M.

Now let M be an abstract real three-dimensional manifold and V be a one di-
mensional complex subbundle of C @ TM. If V. NV = {0}, (M, V) is called a CR
manifold and V is its complex tangential space, which is also denoted by T'%(M).
The CR structure is called pseudoconvex if we can choose a vector field T transverse
to T'"O(M) @ T%' (M) such that

(1.2) (Z,Z] = —iAT, modZ, Z.

where Z is a local section of T%! (M), A > 0 is the Levi form of M.
Let Q%!(M) be the dual of T%!(M). Now, we define the 0, operator on CR mani-
fold M by

(1.3) Of = Zf0',

where ' € Q%!(M) is normalized by '(Z) = 1, 6'(Z) = 0 and 6(T) = 0.

A distribution f is called a CR function if 9, f = 0. A CR manifold M is called
embeddable in CN for some positive integer N if there exist N smooth CR functions
b1, ..., ¢n on M such that mapping @ = (¢y,...,¢n): M — CV is an embedding.
Then ®..Z is a complex tangential vector of submanifold ®(M) with CR structure
induced by standard complex structure of CV.

We assume that there is a Riemannian metric (-, -) on M. This, in turn, defines
a Hermitian L? structure on sections of C ® T*(M), Q"°(M) and Q%' (M). We re-
quire the Riemannian metric being compatible with the CR structure, i.e., T (M)
and T%!(M) are orthogonal under the Hermitian metric. Define a Hermitian inner
product on the global sections of Q10(M),

(1.4) (6,0) = / (6,9) v,
M

where dV denotes the volume element. We denote by L2(M, Q%!) the completion
of the space C*°(M, Q%) under the L?> norm. We denote the L? closure of J, also
by Jy. Recall the definition of L? closure of 0. First define Dom(d,) C L*(M) to
be the space of all ¢ € L*(M) such that there exists a sequence of C°°(M) functions
{¢,}, with ¢ = lim ¢, in L*(M) and {0,¢,} is a Cauchy sequence in L>(M, Q).
We denote the L? adjoint of 9, by 9;. Finally define the Kohn Laplacian [J, by

(1.5) Dom((,) = {¢ € Dom(d,) ; D¢ € Dom(d;)}.
Then, for ¢ € Dom(,), we define
(1.6) Oy = 05 0y

The embeddability of a CR structure connects with an analytic property of the asso-
ciated 0 operator by the following theorem due to Boutet de Monvel and Kohn [E,
p. 5] [K2].

Theorem A A strongly pseudoconvex CR structure on a compact manifold is embed-
dable if and only if the range of the associated 0y, operator is closed.
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Such characterization for the embeddability of three-dimensional pseudoconvex
CR structures of finite type also holds. The CR structure is called of type m at point
PeMif

(1.7) Xy X2 A(P) #£0
forsome X; € {Z,Z}, j=1,...,m — 2, where X is defined by (1.2) and
(1.8) X - X)AM(P) =0

forall X; € {Z,Z}, j =1,...,land | < m — 2. The CR structure is called of finite
type if the type of each point of M is less than a fixed positive integer.

Theorem B ([C], [K2]) A pseudoconvex CR structure of finite type on a three-
dimensional compact manifold is embeddable if and only if the range of the associated
0Oy operator is closed.

It is easy to see that small revision of arguments in [JT] gives the proof of existence
of nonembeddable CR structure of finite type. We omit the details. The main prob-
lem is to decide what three-dimensional pseudoconvex CR manifolds of finite type
can be realized as real submanifolds in CV.

In the last two decades, the regularity theory of Jj, operator on three-dimensional
pseudoconvex CR manifolds of finite type has been established [C1] [FK] [S], which
makes it possible to investigate the problem of embeddability of such CR manifolds.

Let Z be a global nowhere-vanishing section of T"°(M), dim M = 3. A perturba-
tion of CR structure on M is defined as

(1.9) 7V =Z+9Z

for some smooth function ¢ on M. Then the complex tangential space T;,’O(M ) as-
sociated with this CR structure is spanned by Z¥, and

T,°(M) & T;"(M) = T (M) & T-O(M).
Note that
(1.10) [(2Y,2Y] = —iX(1 — |[¢|)T, modZ, Z.
7 is still pseudoconvex with Levi form AV = (1 — [4|})A > 0if [¢p| < 1. A¥(P) = 0
if and only if A\(P) = 0 for each P € M.
The simplest pseudoconvex domain of finite type is the complex ellipsoid in C2,

(1.11) Epq={(z,w); |2 +|w* < 1}.

where p, g are positive integers. Let (p, q) be the greatest common divisor of p and g

i p o 4
andp’ = 5.4" = 5
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The following S' action
(1.12) Uy: (z,w) — (€192,67 %w), ¢ € [0,2m)
is free, since ¢'? = ¢i?'¢ = 1 ifand onlyif ¢ = 0 by p’ and ¢’ being relatively prime.
It is obvious that Uy is a free S' action on the boundary bE, ; of complex ellipsoid.
Note that for a function f € C§°(C?),
(1.13) U f(z,w,2,w) = f(9' 9z, P Ow, e 10z, e~ P O3p),
the real vector field corresponding to Uy is
(1.14) T=i(q’z%+p’w%—qz%—p w—).

We decompose L*(bE, ;) according to the action of Uy, For integer m, let

(115 Ey={f € '(bEpq) s U f = ™ f}
and
(1.16) T, = @Fk.

k>m

Note that z € Fpr, w € Fyr, Z € F_gr, w € F_,s. Each polynomial lies in J,, for

some integer m. Hence, L*(M) = €, ___ F,;. Our main theorem is:

Theorem 1.1 If v has sufficiently small C* norm, the CR structure Z on bE, , with
Y € Fy(pr+qr) can be realized as a compact hypersurface in C* which is a deformation of
bE, .

p7q

See [BE] and [E1] for the theorem in the case of p = g = 1.
Note z and w are CR functions on E, ;. We only need to solve equations

(1.17) ZY(z+€&) =0and ZV(w+¢&') = 0.

Then, z + £ and w + £’ are CR functions of CR structure on bE, ; determined by zv,
and they obviously define a diffeomorphism from bE,, ; to a hypersurface in C* if the
C! norms of ¢ and ¢ are sufficiently small.

To solve (1.17), we should solve equations of type Zu = v. Note Z is not locally
solvable, i.e., there exists smooth function v such that the above equation does not
have a solution. So we need information of the range of Z. By direct calculation,
we find that the structure equations of the standard CR structure on bE, ;4 is quite
simple. By using these equations, we find sufficient information about the range of
Op and the kernel of 9;. This is done in Section 2. The main theorem is proved in
Section 3.
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2 Properties of 0, on bE,

The purpose of this section is to describe the range of 9, and the kernel of 9 on
bE, 4. It can be easily checked that

0 0
— q=134 ~ _ pp=lsp
(2.1) Z=gwi™w . pztz ”

is a complex tangential vector on the boundary bE, ; of the complex ellipsoid. By
simple calculation,

(2.2) (Z,Z] = —iAT
with T defined as in (1.14) and
(2.3) X = pa(p, @)z~ w12,
It is easy to see that T is transverse to the span{Z,Z}. The complex ellipsoid is
weakly pseudoconvex, since the degenerate locus A = 0 is the union of two circles
{(2,0) ; |z| = 1} and {(0,w) : |w| = 1}. Points not lying on these two circles are
strongly pseudoconvex. It is easy to see that the type of points in {(z,0) ; |z| = 1} is
2q and the type of points in {(0,w) : |w| = 1} is 2p. Therefore, the boundary bE,, ,
of complex ellipsoid is of type max{2p, 2q}.

Let’s calculate Uy Z. For P = (z,w) and Q = (z/,w') = (Uyz,Uyw) =
(6402, 0w),
(24) (Up2)Qf(Q,Q)

= Z(P) f(UyP, UyP)

0 0 iy y -
= (gqw "Wl — zpflzp—) ¢19z, e Ow, e 0z, e
(q % P 3] 1 )
- 0 . 0
— i1 bya—170 9 _ ip ¢Zp—15p_)
((q 5z F ow f
(eiq'¢27 eiPI¢W’ e*iq/¢27 e*iP'd’w)

r _1—yq O _1—p O
=Pt )é( (QW’q 1w’qF —pz'f 1z’p—a /) f) (', w'z'\w.
VA w

Hence,
(2.5) UyuZ = P19 7,
It is obvious that

(2.6) UpT =T.
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It follows from (2.5) that
(27) [T,Z] = _i(P/"'q/)Z;

by a theorem about Lie derivatives [BC, pp. 16-17]. (2.7) can also be checked by
direct calculation of the Lie bracket.

Let 0, 6! and 6! be the dual of T, Z and Z, which are globally nowhere vanishing
1-forms. The operator 0y is defined as (1.5). By the definition of exterior differentia-
tion, for a C*° k-form w and (k + 1)-tuples of C*° vectors Vy, ..., Vi1,

(2.8)
dW(Vl, L) Vk+l)

=Y )TV, Vi Vi Vi)
j

+ Z(—l)j+j'w([vj7vj/], o Vic, Vi Vi, Vi, o, Vi),
J<i’
the duals of (2.2) and (2.7) are
df = iXo' A 61,
(2.9) gt =i(p’ +q")0 N6,
dot = —i(p' +q")0 A O,
which are the structure equations of CR manifold bE, ;. The dual of (2.5) is
(2.10) Uze' = 0’4091
and obviously

(2.11) U6 = 6.

Since T, Z and Z are globally nowhere vanishing sections of the complexified tan-
gent space T(M) ® C, we can define an inner product on T(M) ® C by requiring T, Z
and Z to be an orthonomal basis. So, an inner product is defined on Q%!(M). Define
the volume element

(2.12) dv =if A o' A6
Proposition 2.1

(1) F, L Fyy form £ m';
(2) For each integer m,

(2.13) Z:FyNDomZ — Fp_pr—gr, Z:FyNDomZ — Fpyprigr
and
(2.14) Oy: F,, N Dom [, — F,,,

where the Kohn Laplacian O, = 00, = —ZZ.
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Proof (1) Since Uj(0 A 6' A 6') = 0 A 0" A" by (2.10-2.11), the volume element
dV is invariant under the action Uy. For f € Fy, g € Fr, k # K/,

(2.15) / fgdv = / UL(fQU; dV = ¢ k=k0 / fgdv.
M M M

where each number ¢ € [0, 27). It follows that [, fgdV = 0.

(2) It follows from (2.10) that U;;Gi = ¢~ip'+a)0g1, Noting that exterior forms
are invariant under coordinate transformations, for u € F,,,,

(2.16) e 7y - 08 = M Py = HUSu = U (Opu) = Uj(Zu - o)
= U (Zu)Uio" = e+ 10u s (Zu)!,
we find
(2.17) U (Zu) = eltmte'+a)9 7y,
o

This completes the proof of Proposition 2.1.
For example, w € F,, and Zw = —pzP~'zP € F_,/, which satisfies (2.13).
By the structure equations (2.9), the Lie derivative of dV is

(2.18) LydV = V/=1(di(Z) +i(Z)d) (0 A 6" A O")
= —/=1d(O N 0Y) =0,
by the formula of Lie derivative L = di + id, where
(iXw) (X1, ..., X)) = w(X, X1,..., Xk)

for any (k + 1)-form w and vector fields X, Xi, ..., Xy. This property of volume
element is very important in finding ker 9. The inner product on Q%!(M) can be

defined as follows. For w,w’ € Q%' w = fA' and w’ = f’" for some functions
f, f on M, define

(2.19) {(w,w") :/ ffav.
M
Proposition 2.2 The formal adjoint O} of Oy is

(2.20) (fo") = —zf.
Proof For u € C®(M),n = v8' € Q%'(M),

(2.21) (Opu,m) :/Zm?dV:—/ uZ_vdV—/ uvL; dv,
M M M

which implies (2.20) by (2.18). The second equality follows from f vy Lz(uvdV) =
Sy (di(2) +i(Z)d) (uvdV) = [, d(i(Z)(uvdV)) = 0 by Stokes” formula and M
having no boundary.

It follows that the formal adjoints of Z and Z are —Z and —Z, respectively.

Proposition 2.3 The kernel of 9; is orthogonal to F, i.e., the range of 0, contains

{f6'; f € F1}.
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Proof Letn = v0' € ker Oy . There exists a sequence of
1 =v0' € C (M, T (M)
such that n” — nin L* (M, T%'(M)) and 9;n” — 0in L*(M). Let

(2.22) n= Zr]m = vaﬁi and 7" = Zn’,; = Zv’;ﬂi,

where v,, € F, Vi, € F,, N C*°(M) for each m,v. Then, v/, — v, and ('_9;‘7;,’; =

—Zv", — 0in L*(M) by F,, being mutually orthogonal by Proposition 2.1 and the
fact that (2.20) holds for f € C*°(M). Now, for each m,

105 = Do) =~ [ 22vs, -5y av
M

1 - - 1 _
(2.23) = ——/(ZZ+ZZ)V:,,.v;;dV+—/ [Z, 21V, - 7, dV
2 Jm 2 Jm

1 ) .
> / (2 + | Zv Py dv — 2 / ATV, -, dV

2 Jm 2 Jm

where ) is defined by (2.3). We have used Stokes’ formula (2.21) to get the last equal-

ity. By the definition of F,, (1.15), Tv}, = imv},. When m > 0, the last integral in
(2.23)is & [, Aviy, - 7, dV > 0. So,

(224) o A LA
as v — oo. It follows from Fatou’s Lemma that
/ ANv|*dV < lim / A2 *dv = o.
M V—00 M

Since A vanishes only on two circles, v, = 0 for all positive integers. The proposition
is proved. ]

Proposition 2.3 for three-dimensional circle bundles (including S°) was estab-
lished in [E1] by using Kodaira’s vanishing theorem for positive line bundles on a

Riemann surface. Here we use direct calculation, which is a version of Bochner’s
technique to prove the vanishing theorem.

3 Proof of the Theorem

To prove Theorem 1.1, we only need to solve equation

(3.1) ZYh+ &) =0,
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forh =zorw,ie.,
(3.2) Z&=—YZ(h+§)
To solve (3.2), we use iteration,
(3.3) § =0, and Z& = —¢Z(h+&, ).

Proposition 3.1 Suppose h € ker 9y N Fy NC>, ¢ € Fy(prigr) and p € C* for some
positive integer k > 4. Then, (3.3) have solutions £, € F; foralln =1,2,.. ..

Before the proof of this proposition, we summarize the regularity property of the
0y operator given by Smith in the following theorem (see Theorems 1.2, 1.3, 4.17, and
4.18 in [S]). Let U7*(M) be a class of operators defined in [S, p. 139], where m € R,
p is a symbol.

Theorem 3.2 ([S])

(1) IfT,y € (M) and T, € Ui (M), then the composition Ty o T, € \Il},’j“Jr’”2 (M).

(2) IfTy € V)" (M), then Ty € W) (M).

(3) IfT € W)'(M), m <0, then T is a bounded operator from L} (M) to L2(M), where
L3(M) is the standard Sobolev space of degree s on M.

(4) Suppose M to be a three-dimensional CR manifold of finite type and the range of O,
to be closed. There exists a mapping P: L*(M) — L*(M), such that

ZP=1-35,

(3.4) -
PZ=1-§
where Z is a globally nowhere-vanishing complex tangential vector, S;,S, €
TH(M), P € W;l(M), Sy and S, are the Szego projections Sy : L*(M) — ker Z N
L*(M), S,: L*(M) — ker Z N L*(M).
(5) G=0,' =PoP* €V, 2(M)and Z,Z € U}(M).

If Q%'(M) has a globally nowhere-vanishing section 6!, then we can identify
L*(M, Q%) with L*(M) by mapping f6' — f. Under this identification, the L?

closure of 9}, and Z are the same on L?>(M), and the L? closure of ('_32‘ and —Z are the
same on L*(M) by Proposition 2.2.

Proof of Proposition 3.1 Suppose £,—; € F; N Dom(Z). Since h € Fy and ¢ €
Fa(pr1q), it follows from Proposition 2.1 that

(35) ¢Z(h+§n71) € Sjp’+q’+1~
Hence, ¥Z(h + &,_1) L kernel Z and Z(h + £,_1) € the range of Z by Proposi-

tion 2.3. Since the complex ellipsoid E,, ; is embedded in C?, the range of O is closed
by Theorem B. We can apply Theorem 3.2. Note

(3.6) (I=S$)(VZ(h+&—1)) = YZ(h+ &)
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by the definition of S,. Now we can apply the first equation of (3.4) of Theorem 3.2
to find a solution &, of (3.3) with

(37) gn = —P(UJZ)(h + €n71)~

We claim &, L ker Z. It follows from the second equation of (3.4) that if v € the
range of Z, i.e., v = Zv' for some v/, then Pv = PZv' = v' — v/, i.e., Pv | kernel Z.
Therefore, £, L ker Z by (1Z)(h + £,_1) € the range of Z.

Let’s check &, € F1. Let &, = &) + &)/ with &) € Frand €/ | F). Then,

(3.8)  Z& + 28, = 2& = —ZP(Z)(h+ &1) = —Z(h + &u1) € Fprigrn

as above. Note Z&, € Fprigi1 and ZE,! L Fpiig41 by Proposition 2.1. It follows
that Z¢)' = 0, by F,, being mutually orthogonal. Then, £/ = 0 by &, L ker Z. So,
gn € 971.

&q 1s smooth and hence in Dom(Z) by the arguments in the following proof of
Proposition 3.3. We can iterate equations (3.3) now. The proposition is proved. H

Since z € F;/,w € F,/, we can apply Proposition 3.1 to h = z or w. Now what
remains is to prove that the sequence &, converges in appropriate topology for 1)
small. Theorem 1.1 follows from the following proposition, i.e., we find C 1 solutions
of (1.17).

Proposition 3.3 Suppose h € ker 9, NF; NC>, ¢ € Fopr+qry and 1 has sufficiently
small C¥*! norm for some positive integer k > 3. Then

(3.9) ZYh+€) =0
has a unique C* (o = k — 2) solution orthogonal to ker 8y, with
(310) é— S 3’1 and ||£||C” S Cll¢||ck+l

for some constant C > 0.

Proof Note PZ € W)(M) and P € ¥, '(M) are bounded on L*(M) by Theo-
rem 3.2(1), (3), (5). As operators on L2(M),

[P@2)|| < [|PZ3|| + ([P, Z]
< IPZ|| - I llcoy + IPI] - (1190, Z oy < ClIllerany

(3.11)

for some constant C > 0. Thus, if ||9)||c1 ) is sufficiently small, ||, — &u—1|2n) <
pllén—1 — &n—2|lr20m) with constant p < 1 by (3.7) and (3.11). Hence, the sequence
&, obtained in Proposition 3.1 converges to a solution of (3.2) in L*(M).

Now fix a positive integer k. By the definition of Sobolev space Lf (M),

(3.12) 19 fllzan < Culldllexan - 11 Iz
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for some constant C; > 0. Thus, as operators on Li(M ),

(3.13)

IP(2)|| < [[PZ3] + ||P[, Z||
<|IPZ|| - ([ llcxany + 11PN 1T, Z W crny < ClIYllosr

for some constant C > 0, by PZ € ‘IJ?](M) and P € \II;I(M) bounded on Li(M) by

Theorem 3.2(1), (3), (5). Thus, if [[¢)| ¢ (a sufficiently small, |4 — &n—1llzon) <

pll&n—1 — &n—2ll 12 with constant p < 1 by (3.7) and (3.13). Hence, the sequence

&, obtained in Proposition 3.1 converges to a solution of (3.2) in Li(M ). Finally, we
use the Sobolev imbedding L (M) — C® witha < k — % Proposition 3.3 is proved.
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