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Embeddability of Some Three-Dimensional
Weakly Pseudoconvex CR Structures

Wei Wang

Abstract. We prove that a class of perturbations of standard CR structure on the boundary of three-

dimensional complex ellipsoid Ep,q can be realized as hypersurfaces on C
2, which generalizes the result

of Burns and Epstein on the embeddability of some perturbations of standard CR structure on S3.

1 Statement of Results

The examples given by Nirenberg (cf. [JT]) show that not all three-dimensional

strongly pseudoconvex CR manifolds can be realized as hypersurfaces in C
2. So, it is

an interesting and fundamental problem to decide what three-dimensional CR man-
ifolds can be realized as hypersurfaces in C

2 or submanifolds in C
N . This is an active

topic in recent years [BD] [BE] [C2] [E1] [E2] [JT] [K] [L]. When the CR structure

is strongly pseudoconvex, the problem is only interesting in three-dimensional case
since a theorem of Boutet de Monvel states that any compact (2n + 1) dimensional
CR manifold can be realized as a submanifold in C

N for some N , provided n > 1.
Burns and Epstein considered perturbations of the standard CR structure on a

three-dimensional sphere [BE] (see also [BD]). They proved that sufficiently small
perturbations of standard CR structure with “positive” Fourier coefficients are em-
beddable and the “generic” perturbations are nonembeddable. Such results are gen-
eralized to three-dimensional circle bundles in [E1] [L]. Epstein also obtained a deep

relative index theorem on the space of embeddable CR structures [E2]. Compared
with strongly pseudoconvex CR structure, the embeddability of weakly pseudocon-
vex CR structure is not well studied (cf. [C2] [K2]). In this paper, we prove that
perturbations with “positive” Fourier coefficients of standard CR structure on the

boundary of complex ellipsoid Ep,q can be realized as hypersurfaces in C
2, which

generalizes Burns and Epstein’s result on S3. Further results about embeddability of
pseudoconvex CR structures of finite type are in progress.

Let M be a real hypersurface in C
2, and TM and TC

2 be tangent spaces to M and

C
2, respectively. The complexified tangent space C ⊗ TC

2 has the decomposition
T1,0

C
2 ⊕ T0,1

C
2 into holomorphic and antiholomorphic vectors. Using coordinates

z, w on C
2, we have that T1,0

C
2 and T0,1

C
2 are spanned by { ∂

∂z
, ∂
∂w
} and { ∂

∂z̄
, ∂
∂w̄
},

respectively. Set

(1.1) T1,0(M) = C ⊗ TM ∩ T1,0
C

2|M .
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Then T0,1(M) = T1,0(M) and T0,1(M) ∩ T1,0(M) = {0}. T1,0(M) is always a one
dimensional complex subbundle of C⊗TM, and is called the complex tangential space

of M.
Now let M be an abstract real three-dimensional manifold and V be a one di-

mensional complex subbundle of C ⊗ TM. If V ∩ V̄ = {0}, (M,V ) is called a CR
manifold and V is its complex tangential space, which is also denoted by T1,0(M).

The CR structure is called pseudoconvex if we can choose a vector field T transverse
to T1,0(M) ⊕ T0,1(M) such that

(1.2) [Z, Z̄] = −iλT, mod Z, Z̄.

where Z̄ is a local section of T0,1(M), λ ≥ 0 is the Levi form of M.

Let Ω
0,1(M) be the dual of T0,1(M). Now, we define the ∂̄b operator on CR mani-

fold M by

(1.3) ∂̄b f = Z̄ f θ1̄,

where θ1̄ ∈ Ω
0,1(M) is normalized by θ1̄(Z̄) = 1, θ1̄(Z) = 0 and θ1̄(T) = 0.

A distribution f is called a CR function if ∂̄b f = 0. A CR manifold M is called
embeddable in C

N for some positive integer N if there exist N smooth CR functions

φ1, . . . , φN on M such that mapping Φ = (φ1, . . . , φN) : M → C
N is an embedding.

Then Φ∗Z is a complex tangential vector of submanifold Φ(M) with CR structure
induced by standard complex structure of C

N .
We assume that there is a Riemannian metric 〈·, ·〉 on M. This, in turn, defines

a Hermitian L2 structure on sections of C ⊗ T∗(M), Ω
1,0(M) and Ω

0,1(M). We re-
quire the Riemannian metric being compatible with the CR structure, i.e., T1,0(M)
and T0,1(M) are orthogonal under the Hermitian metric. Define a Hermitian inner
product on the global sections of Ω

1,0(M),

(1.4) (φ, ψ) =

∫

M

〈φ, ψ〉 dV,

where dV denotes the volume element. We denote by L2(M,Ω0,1) the completion
of the space C∞(M,Ω0,1) under the L2 norm. We denote the L2 closure of ∂̄b also
by ∂̄b. Recall the definition of L2 closure of ∂̄b. First define Dom(∂̄b) ⊂ L2(M) to

be the space of all φ ∈ L2(M) such that there exists a sequence of C∞(M) functions
{φν}, with φ = limφν in L2(M) and {∂̄bφν} is a Cauchy sequence in L2(M,Ω0,1).
We denote the L2 adjoint of ∂̄b by ∂̄∗b . Finally define the Kohn Laplacian �b by

(1.5) Dom(�b) = {φ ∈ Dom(∂̄b) ; ∂̄bφ ∈ Dom(∂̄∗b )}.
Then, for φ ∈ Dom(�b), we define

(1.6) �bφ = ∂̄∗b ∂̄bφ.

The embeddability of a CR structure connects with an analytic property of the asso-
ciated ∂̄b operator by the following theorem due to Boutet de Monvel and Kohn [E,
p. 5] [K2].

Theorem A A strongly pseudoconvex CR structure on a compact manifold is embed-

dable if and only if the range of the associated ∂̄b operator is closed.
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Embeddability of CR Structures 135

Such characterization for the embeddability of three-dimensional pseudoconvex
CR structures of finite type also holds. The CR structure is called of type m at point

P ∈ M if

(1.7) X1 · · ·Xm−2λ(P) 6= 0

for some X j ∈ {Z, Z̄}, j = 1, . . . ,m − 2, where λ is defined by (1.2) and

(1.8) X1 · · ·Xlλ(P) = 0

for all X j ∈ {Z, Z̄}, j = 1, . . . , l and l < m − 2. The CR structure is called of finite

type if the type of each point of M is less than a fixed positive integer.

Theorem B ([C], [K2]) A pseudoconvex CR structure of finite type on a three-

dimensional compact manifold is embeddable if and only if the range of the associated

∂̄b operator is closed.

It is easy to see that small revision of arguments in [JT] gives the proof of existence
of nonembeddable CR structure of finite type. We omit the details. The main prob-
lem is to decide what three-dimensional pseudoconvex CR manifolds of finite type
can be realized as real submanifolds in C

N .

In the last two decades, the regularity theory of ∂̄b operator on three-dimensional

pseudoconvex CR manifolds of finite type has been established [C1] [FK] [S], which
makes it possible to investigate the problem of embeddability of such CR manifolds.

Let Z be a global nowhere-vanishing section of T1,0(M), dim M = 3. A perturba-

tion of CR structure on M is defined as

(1.9) Zψ
= Z + ψZ̄

for some smooth function ψ on M. Then the complex tangential space T
1,0
ψ (M) as-

sociated with this CR structure is spanned by Zψ , and

T
1,0
ψ (M) ⊕ T

1,0
ψ (M) = T1,0(M) ⊕ T1,0(M).

Note that

(1.10) [Zψ, Z̄ψ] = −iλ(1 − |ψ|2)T, mod Z, Z̄.

Zψ is still pseudoconvex with Levi form λψ = (1 − |ψ|2)λ ≥ 0 if |ψ| < 1. λψ(P) = 0
if and only if λ(P) = 0 for each P ∈ M.

The simplest pseudoconvex domain of finite type is the complex ellipsoid in C
2,

(1.11) Ep,q = {(z,w) ; |z|2p + |w|2q ≤ 1}.

where p, q are positive integers. Let (p, q) be the greatest common divisor of p and q

and p ′
=

p
(p,q)

, q ′
=

q
(p,q)

.
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The following S1 action

(1.12) Uφ : (z,w) → (eiq ′φz, ei p ′φw), φ ∈ [0, 2π)

is free, since eiq ′φ
= ei p ′φ

= 1 if and only if φ = 0 by p ′ and q ′ being relatively prime.
It is obvious that Uφ is a free S1 action on the boundary bEp,q of complex ellipsoid.
Note that for a function f ∈ C∞

0 (C
2),

(1.13) (U ∗
φ ) f (z,w, z̄, w̄) = f (eiq ′φz, ei p ′φw, e−iq ′φz̄, e−i p ′φw̄),

the real vector field corresponding to Uφ is

(1.14) T = i
(

q ′z
∂

∂z
+ p ′w

∂

∂w
− q ′z̄

∂

∂z̄
− p ′w̄

∂

∂w̄

)

.

We decompose L2(bEp,q) according to the action of Uφ. For integer m, let

(1.15) Fm = { f ∈ L2(bEp,q) ; U∗
φ f = eimφ f }

and

(1.16) Fm =

⊕

k≥m

Fk.

Note that z ∈ Fq ′ , w ∈ Fp ′ , z̄ ∈ F−q ′ , w̄ ∈ F−p ′ . Each polynomial lies in Fm for

some integer m. Hence, L2(M) =
⊕∞

m=−∞ Fm. Our main theorem is:

Theorem 1.1 If ψ has sufficiently small C4 norm, the CR structure Zψ on bEp,q with

ψ ∈ F2(p ′+q ′) can be realized as a compact hypersurface in C
2 which is a deformation of

bEp,q.

See [BE] and [E1] for the theorem in the case of p = q = 1.

Note z and w are CR functions on Ep,q. We only need to solve equations

(1.17) Z̄ψ(z + ξ) = 0 and Z̄ψ(w + ξ ′) = 0.

Then, z + ξ and w + ξ ′ are CR functions of CR structure on bEp,q determined by Zψ ,
and they obviously define a diffeomorphism from bEp,q to a hypersurface in C

2 if the

C1 norms of ξ and ξ ′ are sufficiently small.

To solve (1.17), we should solve equations of type Z̄u = v. Note Z̄ is not locally
solvable, i.e., there exists smooth function v such that the above equation does not
have a solution. So we need information of the range of Z̄. By direct calculation,

we find that the structure equations of the standard CR structure on bEp,q is quite
simple. By using these equations, we find sufficient information about the range of
∂̄b and the kernel of ∂̄∗b . This is done in Section 2. The main theorem is proved in
Section 3.
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2 Properties of ∂̄b on bEp,q

The purpose of this section is to describe the range of ∂̄b and the kernel of ∂̄∗b on
bEp,q. It can be easily checked that

(2.1) Z = qwq−1w̄q ∂

∂z
− pzp−1z̄p ∂

∂w

is a complex tangential vector on the boundary bEp,q of the complex ellipsoid. By
simple calculation,

(2.2) [Z, Z̄] = −iλT

with T defined as in (1.14) and

(2.3) λ = pq(p, q)|z|2p−2|w|2q−2.

It is easy to see that T is transverse to the span {Z, Z̄}. The complex ellipsoid is
weakly pseudoconvex, since the degenerate locus λ = 0 is the union of two circles

{(z, 0) ; |z| = 1} and {(0,w) : |w| = 1}. Points not lying on these two circles are
strongly pseudoconvex. It is easy to see that the type of points in {(z, 0) ; |z| = 1} is
2q and the type of points in {(0,w) : |w| = 1} is 2p. Therefore, the boundary bEp,q

of complex ellipsoid is of type max{2p, 2q}.

Let’s calculate Uφ∗Z. For P = (z,w) and Q = (z ′,w ′) = (Uφz,Uφw) =

(eiq ′φz, ei p ′φw),

(Uφ∗Z)(Q) f (Q, Q̄)

= Z(P) f (UφP,UφP)

=

(

qwq−1w̄q ∂

∂z
− pzp−1z̄p ∂

∂w

)

f (eiq ′φz, ei p ′φw, e−iq ′φz̄, e−i p ′φw̄)

=

(

(

qeiq ′φwq−1w̄q ∂

∂z
− pei p ′φzp−1z̄p ∂

∂w

)

f

)

(eiq ′φz, ei p ′φw, e−iq ′φz̄, e−i p ′φw̄)

= ei(p ′+q ′)φ

(

(

qw ′q−1
w ′

q ∂

∂z ′
− pz ′

p−1
z ′

p ∂

∂w ′

)

f

)

(z ′,w ′, z̄ ′, w̄ ′).

(2.4)

Hence,

(2.5) Uφ∗Z = ei(p ′+q ′)φZ.

It is obvious that

(2.6) Uφ∗T = T.
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It follows from (2.5) that

(2.7) [T,Z] = −i(p ′ + q ′)Z,

by a theorem about Lie derivatives [BC, pp. 16–17]. (2.7) can also be checked by
direct calculation of the Lie bracket.

Let θ, θ1 and θ1̄ be the dual of T, Z and Z̄, which are globally nowhere vanishing
1-forms. The operator ∂̄b is defined as (1.5). By the definition of exterior differentia-

tion, for a C∞ k-form ω and (k + 1)-tuples of C∞ vectors V1, . . . ,Vk+1,

dω(V1, . . . ,Vk+1)

=

∑

j

(−1) j−1V jω(V1, . . . ,V j−1,V j+1, . . . ,Vk+1)

+
∑

j< j ′

(−1) j+ j ′ω([V j ,V j ′], . . . ,V j−1,V j+1, . . . ,V j ′−1,V j ′+1, . . . ,Vk+1),

(2.8)

the duals of (2.2) and (2.7) are

(2.9)











dθ = iλθ1 ∧ θ1̄,

dθ1
= i(p ′ + q ′)θ ∧ θ1,

dθ1̄
= −i(p ′ + q ′)θ ∧ θ1̄,

which are the structure equations of CR manifold bEp,q. The dual of (2.5) is

(2.10) U ∗
φθ

1
= ei(p ′+q ′)φθ1,

and obviously

(2.11) U ∗
φθ = θ.

Since T, Z and Z̄ are globally nowhere vanishing sections of the complexified tan-

gent space T(M)⊗C, we can define an inner product on T(M)⊗C by requiring T, Z

and Z̄ to be an orthonomal basis. So, an inner product is defined on Ω
0,1(M). Define

the volume element

(2.12) dV = iθ ∧ θ1 ∧ θ1̄.

Proposition 2.1

(1) Fm ⊥ Fm ′ for m 6= m ′;

(2) For each integer m,

(2.13) Z : Fm ∩ Dom Z → Fm−p ′−q ′ , Z̄ : Fm ∩ Dom Z̄ → Fm+p ′+q ′

and

(2.14) �b : Fm ∩ Dom �b → Fm,

where the Kohn Laplacian �b = ∂̄∗b ∂̄b = −ZZ̄.
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Proof (1) Since U ∗
φ (θ ∧ θ1 ∧ θ̄1) = θ ∧ θ1 ∧ θ̄1 by (2.10–2.11), the volume element

dV is invariant under the action Uφ. For f ∈ Fk, g ∈ Fk ′ , k 6= k ′,

(2.15)

∫

M

f ḡ dV =

∫

M

U∗
φ ( f ḡ)U∗

φ dV = ei(k−k ′)φ

∫

M

f ḡ dV.

where each number φ ∈ [0, 2π). It follows that
∫

M
f ḡ dV = 0.

(2) It follows from (2.10) that U ∗
φθ

1̄
= e−i(p ′+q ′)φθ1̄. Noting that exterior forms

are invariant under coordinate transformations, for u ∈ Fm,

eimφZ̄u · θ1̄
= eimφ∂̄bu = ∂̄bU∗

φu = U ∗
φ (∂̄bu) = U ∗

φ (Z̄u · θ1̄)

= U∗
φ (Z̄u)U∗

φθ
1̄
= e−i(p ′+q ′)φU∗

φ (Z̄u)θ1̄,

(2.16)

we find

(2.17) U ∗
φ (Z̄u) = ei(m+p ′+q ′)φZ̄u.

This completes the proof of Proposition 2.1.
For example, w ∈ Fp ′ and Zw = −pzp−1z̄p ∈ F−q ′ , which satisfies (2.13).

By the structure equations (2.9), the Lie derivative of dV is

LZ̄dV =
√
−1

(

di(Z̄) + i(Z̄)d
)

(θ ∧ θ1 ∧ θ1̄)

= −
√
−1d(θ ∧ θ1) = 0,

(2.18)

by the formula of Lie derivative L = di + id, where
(

i(X)ω
)

(X1, . . . ,Xk) = ω(X,X1, . . . ,Xk)

for any (k + 1)-form ω and vector fields X,X1, . . . ,Xk. This property of volume
element is very important in finding ker ∂̄∗b . The inner product on Ω

0,1(M) can be

defined as follows. For ω, ω ′ ∈ Ω
0,1, ω = f θ1̄ and ω ′

= f ′θ̄1 for some functions
f , f ′ on M, define

(2.19) 〈ω, ω ′〉 =

∫

M

f f̄ ′ dV.

Proposition 2.2 The formal adjoint ∂̄∗b of ∂̄b is

(2.20) ∂̄∗b ( f θ1̄) = −Z f .

Proof For u ∈ C∞(M), η = vθ1̄ ∈ Ω
0,1(M),

(2.21) 〈∂̄bu, η〉 =

∫

M

Z̄uv̄ dV = −
∫

M

uZv dV −
∫

M

uv̄LZ̄ dV,

which implies (2.20) by (2.18). The second equality follows from
∫

M
LZ̄(uv̄ dV ) =

∫

M

(

di(Z̄) + i(Z̄) d
)

(uv̄ dV ) =
∫

M
d
(

i(Z̄)(uv̄ dV )
)

= 0 by Stokes’ formula and M

having no boundary.
It follows that the formal adjoints of Z and Z̄ are −Z̄ and −Z, respectively.

Proposition 2.3 The kernel of ∂̄∗b is orthogonal to F1, i.e., the range of ∂̄b contains

{ f θ1̄ ; f ∈ F1}.
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Proof Let η = vθ1̄ ∈ ker ∂̄∗b . There exists a sequence of

ην = vνθ1̄ ∈ C∞
(

M,T0,1(M)
)

such that ην → η in L2
(

M,T0,1(M)
)

and ∂̄∗b η
ν → 0 in L2(M). Let

(2.22) η =

∑

m

ηm =

∑

m

vmθ
1̄ and ην =

∑

m

ηνm =

∑

m

vνmθ
1̄,

where vm ∈ Fm, vνm ∈ Fm ∩ C∞(M) for each m, ν. Then, vνm → vm and ∂̄∗b η
ν
m =

−Zvνm → 0 in L2(M) by Fm being mutually orthogonal by Proposition 2.1 and the
fact that (2.20) holds for f ∈ C∞(M). Now, for each m,

(2.23)

‖∂̄∗b ηνm‖2
= 〈∂̄b∂̄

∗
b η

ν
m, η

ν
m〉 = −

∫

M

Z̄Zvνm · v̄νm dV

= −1

2

∫

M

(Z̄Z + ZZ̄)vνm · v̄νm dV +
1

2

∫

M

[Z, Z̄]vνm · v̄νm dV

=
1

2

∫

M

(|Zvνm|2 + |Z̄vνm|2) dV − i

2

∫

M

λTvνm · v̄νm dV

where λ is defined by (2.3). We have used Stokes’ formula (2.21) to get the last equal-
ity. By the definition of Fm (1.15), Tvνm = imvνm. When m > 0, the last integral in
(2.23) is m

2

∫

M
λvνm · v̄νm dV ≥ 0. So,

(2.24)
m

2

∫

M

λ|vνm|2 dV ≤ ‖∂̄∗b ηνm‖2 → 0

as ν → ∞. It follows from Fatou’s Lemma that

∫

M

λ|vm|2 dV ≤ lim
ν→∞

∫

M

λ|vνm|2 dV = 0.

Since λ vanishes only on two circles, vm = 0 for all positive integers. The proposition

is proved.

Proposition 2.3 for three-dimensional circle bundles (including S3) was estab-
lished in [E1] by using Kodaira’s vanishing theorem for positive line bundles on a
Riemann surface. Here we use direct calculation, which is a version of Bochner’s

technique to prove the vanishing theorem.

3 Proof of the Theorem

To prove Theorem 1.1, we only need to solve equation

(3.1) Z̄ψ(h + ξ) = 0,
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for h = z or w, i.e.,

(3.2) Z̄ξ = −ψZ(h + ξ)

To solve (3.2), we use iteration,

(3.3) ξ0 = 0, and Z̄ξn = −ψZ(h + ξn−1).

Proposition 3.1 Suppose h ∈ ker ∂̄b ∩ F1 ∩C∞, ψ ∈ F2(p ′+q ′) and ψ ∈ Ck for some

positive integer k ≥ 4. Then, (3.3) have solutions ξn ∈ F1 for all n = 1, 2, . . . .

Before the proof of this proposition, we summarize the regularity property of the
∂̄b operator given by Smith in the following theorem (see Theorems 1.2, 1.3, 4.17, and
4.18 in [S]). Let Ψ

m
ρ (M) be a class of operators defined in [S, p. 139], where m ∈ R

1,

ρ is a symbol.

Theorem 3.2 ([S])

(1) If T1 ∈ Ψ
m1
ρ (M) and T2 ∈ Ψ

m2
ρ (M), then the composition T1 ◦ T2 ∈ Ψ

m1+m2
ρ (M).

(2) If T1 ∈ Ψ
m1
ρ (M), then T∗

1 ∈ Ψ
m1
ρ (M).

(3) If T ∈ Ψ
m
ρ (M),m ≤ 0, then T is a bounded operator from L2

s (M) to L2
s (M), where

L2
s (M) is the standard Sobolev space of degree s on M.

(4) Suppose M to be a three-dimensional CR manifold of finite type and the range of ∂̄b

to be closed. There exists a mapping P : L2(M) → L2(M), such that

(3.4)
Z̄P = I − S2

PZ̄ = I − S1

where Z is a globally nowhere-vanishing complex tangential vector, S1, S2 ∈
Ψ

0
ρ(M), P ∈ Ψ

−1
ρ (M), S1 and S2 are the Szegö projections S1 : L2(M) → ker Z̄ ∩

L2(M), S2 : L2(M) → ker Z ∩ L2(M).

(5) G = �
−1
b = P ◦ P∗ ∈ Ψ

−2
ρ (M) and Z, Z̄ ∈ Ψ

1
ρ(M).

If Ω
0,1(M) has a globally nowhere-vanishing section θ 1̄, then we can identify

L2(M,Ω0,1) with L2(M) by mapping f θ1̄ → f . Under this identification, the L2

closure of ∂̄b and Z̄ are the same on L2(M), and the L2 closure of ∂̄∗b and −Z are the
same on L2(M) by Proposition 2.2.

Proof of Proposition 3.1 Suppose ξn−1 ∈ F1 ∩ Dom(Z). Since h ∈ F1 and ψ ∈
F2(p ′+q ′), it follows from Proposition 2.1 that

(3.5) ψZ(h + ξn−1) ∈ Fp ′+q ′+1.

Hence, ψZ(h + ξn−1) ⊥ kernel Z and ψZ(h + ξn−1) ∈ the range of Z̄ by Proposi-

tion 2.3. Since the complex ellipsoid Ep,q is embedded in C
2, the range of ∂̄b is closed

by Theorem B. We can apply Theorem 3.2. Note

(3.6) (I − S2)
(

ψZ(h + ξn−1)
)

= ψZ(h + ξn−1)
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by the definition of S2. Now we can apply the first equation of (3.4) of Theorem 3.2
to find a solution ξn of (3.3) with

(3.7) ξn = −P(ψZ)(h + ξn−1).

We claim ξn ⊥ ker Z̄. It follows from the second equation of (3.4) that if v ∈ the

range of Z̄, i.e., v = Z̄v ′ for some v ′, then Pv = PZ̄v ′
= v ′−S1v ′, i.e., Pv ⊥ kernel Z̄.

Therefore, ξn ⊥ ker Z̄ by (ψZ)(h + ξn−1) ∈ the range of Z̄.
Let’s check ξn ∈ F1. Let ξn = ξ ′n + ξ ′ ′n with ξ ′n ∈ F1 and ξ ′′n ⊥ F1. Then,

(3.8) Z̄ξ ′n + Z̄ξ ′ ′n = Z̄ξn = −Z̄P(ψZ)(h + ξn−1) = −ψZ(h + ξn−1) ∈ Fp ′+q ′+1

as above. Note Z̄ξ ′n ∈ Fp ′+q ′+1 and Z̄ξ ′′n ⊥ Fp ′+q ′+1 by Proposition 2.1. It follows

that Z̄ξ ′ ′n = 0, by Fm being mutually orthogonal. Then, ξ ′ ′n = 0 by ξn ⊥ ker Z̄. So,
ξn ∈ F1.
ξn is smooth and hence in Dom(Z) by the arguments in the following proof of

Proposition 3.3. We can iterate equations (3.3) now. The proposition is proved.

Since z ∈ Fq ′ ,w ∈ Fp ′ , we can apply Proposition 3.1 to h = z or w. Now what
remains is to prove that the sequence ξn converges in appropriate topology for ψ
small. Theorem 1.1 follows from the following proposition, i.e., we find C 1 solutions

of (1.17).

Proposition 3.3 Suppose h ∈ ker ∂̄b ∩ F1 ∩C∞, ψ ∈ F2(p ′+q ′) and ψ has sufficiently

small Ck+1 norm for some positive integer k ≥ 3. Then

(3.9) Z̄ψ(h + ξ) = 0

has a unique Cα (α = k − 3
2
) solution orthogonal to ker ∂̄b with

(3.10) ξ ∈ F1 and ‖ξ‖Cα ≤ C‖ψ‖Ck+1

for some constant C > 0.

Proof Note PZ ∈ Ψ
0
ρ(M) and P ∈ Ψ

−1
ρ (M) are bounded on L2(M) by Theo-

rem 3.2(1), (3), (5). As operators on L2(M),

(3.11)
‖P(ψZ)‖ ≤ ‖PZψ‖ + ‖P[ψ,Z]‖

≤ ‖PZ‖ · ‖ψ‖C0(M) + ‖P‖ · ‖[ψ,Z]‖C0(M) ≤ C‖ψ‖C1(M)

for some constant C > 0. Thus, if ‖ψ‖C1(M) is sufficiently small, ‖ξn − ξn−1‖L2(M) ≤
ρ‖ξn−1 − ξn−2‖L2(M) with constant ρ < 1 by (3.7) and (3.11). Hence, the sequence

ξn obtained in Proposition 3.1 converges to a solution of (3.2) in L2(M).
Now fix a positive integer k. By the definition of Sobolev space L2

k(M),

(3.12) ‖ψ · f ‖L2
k
(M) ≤ C1‖ψ‖Ck(M) · ‖ f ‖L2

k
(M)
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for some constant C1 > 0. Thus, as operators on L2
k(M),

(3.13)
‖P(ψZ)‖ ≤ ‖PZψ‖ + ‖P[ψ,Z]‖

≤ ‖PZ‖ · ‖ψ‖Ck(M) + ‖P‖ · ‖[ψ,Z]‖Ck(M) ≤ C‖ψ‖Ck+1(M)

for some constant C > 0, by PZ ∈ Ψ
0
ρ(M) and P ∈ Ψ

−1
ρ (M) bounded on L2

k(M) by
Theorem 3.2(1), (3), (5). Thus, if ‖ψ‖Ck+1(M) sufficiently small, ‖ξn − ξn−1‖L2

k
(M) ≤

ρ‖ξn−1 − ξn−2‖L2
k
(M) with constant ρ < 1 by (3.7) and (3.13). Hence, the sequence

ξn obtained in Proposition 3.1 converges to a solution of (3.2) in L2
k(M). Finally, we

use the Sobolev imbedding L2
k(M) ↪→ Cα with α ≤ k − 3

2
. Proposition 3.3 is proved.
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