Embeddability of Some Three-Dimensional Weakly Pseudoconvex CR Structures

Wei Wang

Abstract. We prove that a class of perturbations of standard CR structure on the boundary of threedimensional complex ellipsoid $E_{p, q}$ can be realized as hypersurfaces on \mathbb{C}^{2}, which generalizes the result of Burns and Epstein on the embeddability of some perturbations of standard CR structure on S^{3}.

1 Statement of Results

The examples given by Nirenberg (cf. [JT]) show that not all three-dimensional strongly pseudoconvex CR manifolds can be realized as hypersurfaces in \mathbb{C}^{2}. So, it is an interesting and fundamental problem to decide what three-dimensional CR manifolds can be realized as hypersurfaces in \mathbb{C}^{2} or submanifolds in \mathbb{C}^{N}. This is an active topic in recent years [BD] [BE] [C2] [E1] [E2] [JT] [K] [L]. When the CR structure is strongly pseudoconvex, the problem is only interesting in three-dimensional case since a theorem of Boutet de Monvel states that any compact $(2 n+1)$ dimensional CR manifold can be realized as a submanifold in \mathbb{C}^{N} for some N, provided $n>1$.

Burns and Epstein considered perturbations of the standard CR structure on a three-dimensional sphere [BE] (see also [BD]). They proved that sufficiently small perturbations of standard CR structure with "positive" Fourier coefficients are embeddable and the "generic" perturbations are nonembeddable. Such results are generalized to three-dimensional circle bundles in [E1] [L]. Epstein also obtained a deep relative index theorem on the space of embeddable CR structures [E2]. Compared with strongly pseudoconvex CR structure, the embeddability of weakly pseudoconvex CR structure is not well studied (cf. [C2] [K2]). In this paper, we prove that perturbations with "positive" Fourier coefficients of standard CR structure on the boundary of complex ellipsoid $E_{p, q}$ can be realized as hypersurfaces in \mathbb{C}^{2}, which generalizes Burns and Epstein's result on S^{3}. Further results about embeddability of pseudoconvex CR structures of finite type are in progress.

Let M be a real hypersurface in \mathbb{C}^{2}, and $T M$ and $T \mathbb{C}^{2}$ be tangent spaces to M and \mathbb{C}^{2}, respectively. The complexified tangent space $\mathbb{C} \otimes T \mathbb{C}^{2}$ has the decomposition $T^{1,0} \mathbb{C}^{2} \oplus T^{0,1} \mathbb{C}^{2}$ into holomorphic and antiholomorphic vectors. Using coordinates z, w on \mathbb{C}^{2}, we have that $T^{1,0} \mathbb{C}^{2}$ and $T^{0,1} \mathbb{C}^{2}$ are spanned by $\left\{\frac{\partial}{\partial z}, \frac{\partial}{\partial w}\right\}$ and $\left\{\frac{\partial}{\partial \bar{z}}, \frac{\partial}{\partial \bar{w}}\right\}$, respectively. Set

$$
\begin{equation*}
T^{1,0}(M)=\left.\mathbb{C} \otimes T M \cap T^{1,0} \mathbb{C}^{2}\right|_{M} \tag{1.1}
\end{equation*}
$$

[^0]Then $T^{0,1}(M)=\overline{T^{1,0}(M)}$ and $T^{0,1}(M) \cap T^{1,0}(M)=\{0\} . T^{1,0}(M)$ is always a one dimensional complex subbundle of $\mathbb{C} \otimes T M$, and is called the complex tangential space of M.

Now let M be an abstract real three-dimensional manifold and V be a one dimensional complex subbundle of $\mathbb{C} \otimes T M$. If $V \cap \bar{V}=\{0\},(M, V)$ is called a CR manifold and V is its complex tangential space, which is also denoted by $T^{1,0}(M)$. The CR structure is called pseudoconvex if we can choose a vector field T transverse to $T^{1,0}(M) \oplus T^{0,1}(M)$ such that

$$
\begin{equation*}
[Z, \bar{Z}]=-i \lambda T, \quad \bmod Z, \bar{Z} \tag{1.2}
\end{equation*}
$$

where \bar{Z} is a local section of $T^{0,1}(M), \lambda \geq 0$ is the Levi form of M.
Let $\Omega^{0,1}(M)$ be the dual of $T^{0,1}(M)$. Now, we define the $\bar{\partial}_{b}$ operator on CR manifold M by

$$
\begin{equation*}
\bar{\partial}_{b} f=\bar{Z} f \theta^{\overline{1}} \tag{1.3}
\end{equation*}
$$

where $\theta^{\overline{1}} \in \Omega^{0,1}(M)$ is normalized by $\theta^{\overline{1}}(\bar{Z})=1, \theta^{\overline{1}}(Z)=0$ and $\theta^{\overline{1}}(T)=0$.
A distribution f is called a CR function if $\bar{\partial}_{b} f=0$. A CR manifold M is called embeddable in \mathbb{C}^{N} for some positive integer N if there exist N smooth CR functions $\phi_{1}, \ldots, \phi_{N}$ on M such that mapping $\Phi=\left(\phi_{1}, \ldots, \phi_{N}\right): M \rightarrow \mathbb{C}^{N}$ is an embedding. Then $\Phi_{*} Z$ is a complex tangential vector of submanifold $\Phi(M)$ with CR structure induced by standard complex structure of \mathbb{C}^{N}.

We assume that there is a Riemannian metric $\langle\cdot, \cdot\rangle$ on M. This, in turn, defines a Hermitian L^{2} structure on sections of $\mathbb{C} \otimes T^{*}(M), \Omega^{1,0}(M)$ and $\Omega^{0,1}(M)$. We require the Riemannian metric being compatible with the CR structure, i.e., $T^{1,0}(M)$ and $T^{0,1}(M)$ are orthogonal under the Hermitian metric. Define a Hermitian inner product on the global sections of $\Omega^{1,0}(M)$,

$$
\begin{equation*}
(\phi, \psi)=\int_{M}\langle\phi, \psi\rangle d V \tag{1.4}
\end{equation*}
$$

where $d V$ denotes the volume element. We denote by $L^{2}\left(M, \Omega^{0,1}\right)$ the completion of the space $C^{\infty}\left(M, \Omega^{0,1}\right)$ under the L^{2} norm. We denote the L^{2} closure of $\bar{\partial}_{b}$ also by $\bar{\partial}_{b}$. Recall the definition of L^{2} closure of $\bar{\partial}_{b}$. First define $\operatorname{Dom}\left(\bar{\partial}_{b}\right) \subset L^{2}(M)$ to be the space of all $\phi \in L^{2}(M)$ such that there exists a sequence of $C^{\infty}(M)$ functions $\left\{\phi_{\nu}\right\}$, with $\phi=\lim \phi_{\nu}$ in $L^{2}(M)$ and $\left\{\bar{\partial}_{b} \phi_{\nu}\right\}$ is a Cauchy sequence in $L^{2}\left(M, \Omega^{0,1}\right)$. We denote the L^{2} adjoint of $\bar{\partial}_{b}$ by $\bar{\partial}_{b}^{*}$. Finally define the Kohn Laplacian \square_{b} by

$$
\begin{equation*}
\operatorname{Dom}\left(\square_{b}\right)=\left\{\phi \in \operatorname{Dom}\left(\bar{\partial}_{b}\right) ; \bar{\partial}_{b} \phi \in \operatorname{Dom}\left(\bar{\partial}_{b}^{*}\right)\right\} \tag{1.5}
\end{equation*}
$$

Then, for $\phi \in \operatorname{Dom}\left(\square_{b}\right)$, we define

$$
\begin{equation*}
\square_{b} \phi=\bar{\partial}_{b}^{*} \bar{\partial}_{b} \phi \tag{1.6}
\end{equation*}
$$

The embeddability of a CR structure connects with an analytic property of the associated $\bar{\partial}_{b}$ operator by the following theorem due to Boutet de Monvel and Kohn [E, p. 5] [K2].

Theorem A A strongly pseudoconvex CR structure on a compact manifold is embeddable if and only if the range of the associated $\bar{\partial}_{b}$ operator is closed.

Such characterization for the embeddability of three-dimensional pseudoconvex CR structures of finite type also holds. The CR structure is called of type m at point $P \in M$ if

$$
\begin{equation*}
X_{1} \cdots X_{m-2} \lambda(P) \neq 0 \tag{1.7}
\end{equation*}
$$

for some $X_{j} \in\{Z, \bar{Z}\}, j=1, \ldots, m-2$, where λ is defined by (1.2) and

$$
\begin{equation*}
X_{1} \cdots X_{l} \lambda(P)=0 \tag{1.8}
\end{equation*}
$$

for all $X_{j} \in\{Z, \bar{Z}\}, j=1, \ldots, l$ and $l<m-2$. The CR structure is called of finite type if the type of each point of M is less than a fixed positive integer.
Theorem B ([C], [K2]) A pseudoconvex CR structure of finite type on a threedimensional compact manifold is embeddable if and only if the range of the associated $\bar{\partial}_{b}$ operator is closed.

It is easy to see that small revision of arguments in [JT] gives the proof of existence of nonembeddable CR structure of finite type. We omit the details. The main problem is to decide what three-dimensional pseudoconvex CR manifolds of finite type can be realized as real submanifolds in \mathbb{C}^{N}.

In the last two decades, the regularity theory of $\bar{\partial}_{b}$ operator on three-dimensional pseudoconvex CR manifolds of finite type has been established [C1] [FK] [S], which makes it possible to investigate the problem of embeddability of such CR manifolds.

Let Z be a global nowhere-vanishing section of $T^{1,0}(M), \operatorname{dim} M=3$. A perturbation of CR structure on M is defined as

$$
\begin{equation*}
Z^{\psi}=Z+\psi \bar{Z} \tag{1.9}
\end{equation*}
$$

for some smooth function ψ on M. Then the complex tangential space $T_{\psi}^{1,0}(M)$ associated with this CR structure is spanned by Z^{ψ}, and

$$
T_{\psi}^{1,0}(M) \oplus \overline{T_{\psi}^{1,0}(M)}=T^{1,0}(M) \oplus \overline{T^{1,0}(M)}
$$

Note that

$$
\begin{equation*}
\left[Z^{\psi}, \bar{Z}^{\psi}\right]=-i \lambda\left(1-|\psi|^{2}\right) T, \quad \bmod Z, \bar{Z} \tag{1.10}
\end{equation*}
$$

Z^{ψ} is still pseudoconvex with Levi form $\lambda^{\psi}=\left(1-|\psi|^{2}\right) \lambda \geq 0$ if $|\psi|<1 . \lambda^{\psi}(P)=0$ if and only if $\lambda(P)=0$ for each $P \in M$.

The simplest pseudoconvex domain of finite type is the complex ellipsoid in \mathbb{C}^{2},

$$
\begin{equation*}
E_{p, q}=\left\{(z, w) ;|z|^{2 p}+|w|^{2 q} \leq 1\right\} \tag{1.11}
\end{equation*}
$$

where p, q are positive integers. Let (p, q) be the greatest common divisor of p and q and $p^{\prime}=\frac{p}{(p, q)}, q^{\prime}=\frac{q}{(p, q)}$.

The following S^{1} action

$$
\begin{equation*}
U_{\phi}:(z, w) \rightarrow\left(e^{i q^{\prime} \phi} z, e^{i p^{\prime} \phi} w\right), \quad \phi \in[0,2 \pi) \tag{1.12}
\end{equation*}
$$

is free, since $e^{i q^{\prime} \phi}=e^{i p^{\prime} \phi}=1$ if and only if $\phi=0$ by p^{\prime} and q^{\prime} being relatively prime. It is obvious that U_{ϕ} is a free S^{1} action on the boundary $b E_{p, q}$ of complex ellipsoid. Note that for a function $f \in C_{0}^{\infty}\left(\mathbb{C}^{2}\right)$,

$$
\begin{equation*}
\left(U_{\phi}^{*}\right) f(z, w, \bar{z}, \bar{w})=f\left(e^{i q^{\prime} \phi} z, e^{i p^{\prime} \phi} w, e^{-i q^{\prime} \phi} \bar{z}, e^{-i p^{\prime} \phi} \bar{w}\right) \tag{1.13}
\end{equation*}
$$

the real vector field corresponding to U_{ϕ} is

$$
\begin{equation*}
T=i\left(q^{\prime} z \frac{\partial}{\partial z}+p^{\prime} w \frac{\partial}{\partial w}-q^{\prime} \bar{z} \frac{\partial}{\partial \bar{z}}-p^{\prime} \bar{w} \frac{\partial}{\partial \bar{w}}\right) \tag{1.14}
\end{equation*}
$$

We decompose $L^{2}\left(b E_{p, q}\right)$ according to the action of U_{ϕ}. For integer m, let

$$
\begin{equation*}
F_{m}=\left\{f \in L^{2}\left(b E_{p, q}\right) ; U_{\phi}^{*} f=e^{i m \phi} f\right\} \tag{1.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{F}_{m}=\bigoplus_{k \geq m} F_{k} \tag{1.16}
\end{equation*}
$$

Note that $z \in F_{q^{\prime}}, w \in F_{p^{\prime}}, \bar{z} \in F_{-q^{\prime}}, \bar{w} \in F_{-p^{\prime}}$. Each polynomial lies in \mathcal{F}_{m} for some integer m. Hence, $L^{2}(M)=\bigoplus_{m=-\infty}^{\infty} F_{m}$. Our main theorem is:

Theorem 1.1 If ψ has sufficiently small C^{4} norm, the CR structure Z^{ψ} on $b E_{p, q}$ with $\psi \in \mathcal{F}_{2\left(p^{\prime}+q^{\prime}\right)}$ can be realized as a compact hypersurface in \mathbb{C}^{2} which is a deformation of $b E_{p, q}$.

See [BE] and [E1] for the theorem in the case of $p=q=1$.
Note z and w are CR functions on $E_{p, q}$. We only need to solve equations

$$
\begin{equation*}
\bar{Z}^{\psi}(z+\xi)=0 \text { and } \bar{Z}^{\psi}\left(w+\xi^{\prime}\right)=0 \tag{1.17}
\end{equation*}
$$

Then, $z+\xi$ and $w+\xi^{\prime}$ are CR functions of CR structure on $b E_{p, q}$ determined by Z^{ψ}, and they obviously define a diffeomorphism from $b E_{p, q}$ to a hypersurface in \mathbb{C}^{2} if the C^{1} norms of ξ and ξ^{\prime} are sufficiently small.

To solve (1.17), we should solve equations of type $\bar{Z} u=v$. Note \bar{Z} is not locally solvable, i.e., there exists smooth function v such that the above equation does not have a solution. So we need information of the range of \bar{Z}. By direct calculation, we find that the structure equations of the standard $C R$ structure on $b E_{p, q}$ is quite simple. By using these equations, we find sufficient information about the range of $\bar{\partial}_{b}$ and the kernel of $\bar{\partial}_{b}^{*}$. This is done in Section 2. The main theorem is proved in Section 3.

2 Properties of $\bar{\partial}_{b}$ on $b E_{p, q}$

The purpose of this section is to describe the range of $\bar{\partial}_{b}$ and the kernel of $\bar{\partial}_{b}^{*}$ on $b E_{p, q}$. It can be easily checked that

$$
\begin{equation*}
Z=q w^{q-1} \bar{w}^{q} \frac{\partial}{\partial z}-p z^{p-1} \bar{z}^{p} \frac{\partial}{\partial w} \tag{2.1}
\end{equation*}
$$

is a complex tangential vector on the boundary $b E_{p, q}$ of the complex ellipsoid. By simple calculation,

$$
\begin{equation*}
[Z, \bar{Z}]=-i \lambda T \tag{2.2}
\end{equation*}
$$

with T defined as in (1.14) and

$$
\begin{equation*}
\lambda=p q(p, q)|z|^{2 p-2}|w|^{2 q-2} \tag{2.3}
\end{equation*}
$$

It is easy to see that T is transverse to the span $\{Z, \bar{Z}\}$. The complex ellipsoid is weakly pseudoconvex, since the degenerate locus $\lambda=0$ is the union of two circles $\{(z, 0) ;|z|=1\}$ and $\{(0, w):|w|=1\}$. Points not lying on these two circles are strongly pseudoconvex. It is easy to see that the type of points in $\{(z, 0) ;|z|=1\}$ is $2 q$ and the type of points in $\{(0, w):|w|=1\}$ is $2 p$. Therefore, the boundary $b E_{p, q}$ of complex ellipsoid is of type $\max \{2 p, 2 q\}$.

Let's calculate $U_{\phi *} Z$. For $P=(z, w)$ and $Q=\left(z^{\prime}, w^{\prime}\right)=\left(U_{\phi} z, U_{\phi} w\right)=$ $\left(e^{i q^{\prime} \phi} z, e^{i p^{\prime} \phi} w\right)$,

$$
\begin{align*}
\left(U_{\phi *} Z\right) & (Q) f(Q, \bar{Q}) \tag{2.4}\\
= & Z(P) f\left(U_{\phi} P \overline{U_{\phi} P}\right) \\
= & \left(q w^{q-1} \bar{w}^{q} \frac{\partial}{\partial z}-p z^{p-1} \bar{z}^{p} \frac{\partial}{\partial w}\right) f\left(e^{i q^{\prime} \phi} z, e^{i p^{\prime} \phi} w, e^{-i q^{\prime} \phi} \bar{z}, e^{-i p^{\prime} \phi} \bar{w}\right) \\
= & \left(\left(q e^{i q^{\prime} \phi} w^{q-1} \bar{w}^{q} \frac{\partial}{\partial z}-p e^{i p^{\prime} \phi} z^{p-1} \bar{z}^{p} \frac{\partial}{\partial w}\right) f\right) \\
& \left(e^{i q^{\prime} \phi} z, e^{i p^{\prime} \phi} w, e^{-i q^{\prime} \phi} \bar{z}, e^{-i p^{\prime} \phi} \bar{w}\right) \\
= & e^{i\left(p^{\prime}+q^{\prime}\right) \phi}\left(\left(q w^{\prime q-1} \overline{w^{\prime}} q \frac{\partial}{\partial z^{\prime}}-p z^{\prime p-1} \overline{{z^{\prime}}^{\prime} p} \frac{\partial}{\partial w^{\prime}}\right) f\right)\left(z^{\prime}, w^{\prime}, \bar{z}^{\prime}, \bar{w}^{\prime}\right)
\end{align*}
$$

Hence,

$$
\begin{equation*}
U_{\phi *} Z=e^{i\left(p^{\prime}+q^{\prime}\right) \phi} Z \tag{2.5}
\end{equation*}
$$

It is obvious that

$$
\begin{equation*}
U_{\phi *} T=T \tag{2.6}
\end{equation*}
$$

It follows from (2.5) that

$$
\begin{equation*}
[T, Z]=-i\left(p^{\prime}+q^{\prime}\right) Z \tag{2.7}
\end{equation*}
$$

by a theorem about Lie derivatives [BC, pp. 16-17]. (2.7) can also be checked by direct calculation of the Lie bracket.

Let θ, θ^{1} and $\theta^{\overline{1}}$ be the dual of T, Z and \bar{Z}, which are globally nowhere vanishing 1 -forms. The operator $\bar{\partial}_{b}$ is defined as (1.5). By the definition of exterior differentiation, for a $C^{\infty} k$-form ω and $(k+1)$-tuples of C^{∞} vectors V_{1}, \ldots, V_{k+1},

$$
\begin{align*}
& d \omega\left(V_{1}, \ldots, V_{k+1}\right) \tag{2.8}\\
& \quad=\sum_{j}(-1)^{j-1} V_{j} \omega\left(V_{1}, \ldots, V_{j-1}, V_{j+1}, \ldots, V_{k+1}\right) \\
& \quad+\sum_{j<j^{\prime}}(-1)^{j+j^{\prime}} \omega\left(\left[V_{j}, V_{j^{\prime}}\right], \ldots, V_{j-1}, V_{j+1}, \ldots, V_{j^{\prime}-1}, V_{j^{\prime}+1}, \ldots, V_{k+1}\right)
\end{align*}
$$

the duals of (2.2) and (2.7) are

$$
\left\{\begin{array}{l}
d \theta=i \lambda \theta^{1} \wedge \theta^{\overline{1}} \tag{2.9}\\
d \theta^{1}=i\left(p^{\prime}+q^{\prime}\right) \theta \wedge \theta^{1} \\
d \theta^{\overline{1}}=-i\left(p^{\prime}+q^{\prime}\right) \theta \wedge \theta^{\overline{1}}
\end{array}\right.
$$

which are the structure equations of CR manifold $b E_{p, q}$. The dual of (2.5) is

$$
\begin{equation*}
U_{\phi}^{*} \theta^{1}=e^{i\left(p^{\prime}+q^{\prime}\right) \phi} \theta^{1} \tag{2.10}
\end{equation*}
$$

and obviously

$$
\begin{equation*}
U_{\phi}^{*} \theta=\theta \tag{2.11}
\end{equation*}
$$

Since T, Z and \bar{Z} are globally nowhere vanishing sections of the complexified tangent space $T(M) \otimes \mathbb{C}$, we can define an inner product on $T(M) \otimes \mathbb{C}$ by requiring T, Z and \bar{Z} to be an orthonomal basis. So, an inner product is defined on $\Omega^{0,1}(M)$. Define the volume element

$$
\begin{equation*}
d V=i \theta \wedge \theta^{1} \wedge \theta^{\overline{1}} \tag{2.12}
\end{equation*}
$$

Proposition 2.1
(1) $F_{m} \perp F_{m^{\prime}}$ for $m \neq m^{\prime}$;
(2) For each integer m,

$$
\begin{equation*}
Z: F_{m} \cap \operatorname{Dom} Z \rightarrow F_{m-p^{\prime}-q^{\prime}}, \quad \bar{Z}: F_{m} \cap \operatorname{Dom} \bar{Z} \rightarrow F_{m+p^{\prime}+q^{\prime}} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\square_{b}: F_{m} \cap \operatorname{Dom} \square_{b} \rightarrow F_{m} \tag{2.14}
\end{equation*}
$$

where the Kohn Laplacian $\square_{b}=\bar{\partial}_{b}^{*} \bar{\partial}_{b}=-Z \bar{Z}$.

Proof (1) Since $U_{\phi}^{*}\left(\theta \wedge \theta^{1} \wedge \bar{\theta}^{1}\right)=\theta \wedge \theta^{1} \wedge \bar{\theta}^{1}$ by (2.10-2.11), the volume element $d V$ is invariant under the action U_{ϕ}. For $f \in F_{k}, g \in F_{k^{\prime}}, k \neq k^{\prime}$,

$$
\begin{equation*}
\int_{M} f \bar{g} d V=\int_{M} U_{\phi}^{*}(f \bar{g}) U_{\phi}^{*} d V=e^{i\left(k-k^{\prime}\right) \phi} \int_{M} f \bar{g} d V \tag{2.15}
\end{equation*}
$$

where each number $\phi \in[0,2 \pi)$. It follows that $\int_{M} f \bar{g} d V=0$.
(2) It follows from (2.10) that $U_{\phi}^{*} \theta^{\overline{1}}=e^{-i\left(p^{\prime}+q^{\prime}\right) \phi} \theta^{\overline{1}}$. Noting that exterior forms are invariant under coordinate transformations, for $u \in F_{m}$,

$$
\begin{align*}
e^{i m \phi} \bar{Z} u \cdot \theta^{\overline{1}} & =e^{i m \phi} \bar{\partial}_{b} u=\bar{\partial}_{b} U_{\phi}^{*} u=U_{\phi}^{*}\left(\bar{\partial}_{b} u\right)=U_{\phi}^{*}\left(\bar{Z} u \cdot \theta^{\overline{1}}\right) \tag{2.16}\\
& =U_{\phi}^{*}(\bar{Z} u) U_{\phi}^{*} \theta^{\overline{1}}=e^{-i\left(p^{\prime}+q^{\prime}\right) \phi} U_{\phi}^{*}(\bar{Z} u) \theta^{\overline{1}}
\end{align*}
$$

we find

$$
\begin{equation*}
U_{\phi}^{*}(\bar{Z} u)=e^{i\left(m+p^{\prime}+q^{\prime}\right) \phi} \bar{Z} u \tag{2.17}
\end{equation*}
$$

This completes the proof of Proposition 2.1.
For example, $w \in F_{p^{\prime}}$ and $Z w=-p z^{p-1} \bar{z}^{p} \in F_{-q^{\prime}}$, which satisfies (2.13).
By the structure equations (2.9), the Lie derivative of $d V$ is

$$
\begin{align*}
L_{\bar{Z}} d V & =\sqrt{-1}(d i(\bar{Z})+i(\bar{Z}) d)\left(\theta \wedge \theta^{1} \wedge \theta^{\overline{1}}\right) \tag{2.18}\\
& =-\sqrt{-1} d\left(\theta \wedge \theta^{1}\right)=0,
\end{align*}
$$

by the formula of Lie derivative $L=d i+i d$, where

$$
(i(X) \omega)\left(X_{1}, \ldots, X_{k}\right)=\omega\left(X, X_{1}, \ldots, X_{k}\right)
$$

for any $(k+1)$-form ω and vector fields X, X_{1}, \ldots, X_{k}. This property of volume element is very important in finding ker $\bar{\partial}_{b}^{*}$. The inner product on $\Omega^{0,1}(M)$ can be defined as follows. For $\omega, \omega^{\prime} \in \Omega^{0,1}, \omega=f \theta^{\overline{1}}$ and $\omega^{\prime}=f^{\prime} \bar{\theta}^{1}$ for some functions f, f^{\prime} on M, define

$$
\begin{equation*}
\left\langle\omega, \omega^{\prime}\right\rangle=\int_{M} f \bar{f}^{\prime} d V \tag{2.19}
\end{equation*}
$$

Proposition 2.2 The formal adjoint $\bar{\partial}_{b}^{*}$ of $\bar{\partial}_{b}$ is

$$
\begin{equation*}
\bar{\partial}_{b}^{*}\left(f \theta^{\overline{1}}\right)=-Z f \tag{2.20}
\end{equation*}
$$

Proof For $u \in C^{\infty}(M), \eta=v \theta^{\overline{1}} \in \Omega^{0,1}(M)$,

$$
\begin{equation*}
\left\langle\bar{\partial}_{b} u, \eta\right\rangle=\int_{M} \bar{Z} u \bar{v} d V=-\int_{M} u \overline{Z v} d V-\int_{M} u \bar{v} L_{\bar{Z}} d V \tag{2.21}
\end{equation*}
$$

which implies (2.20) by (2.18). The second equality follows from $\int_{M} L_{\bar{Z}}(u \bar{v} d V)=$ $\int_{M}(d i(\bar{Z})+i(\bar{Z}) d)(u \bar{v} d V)=\int_{M} d(i(\bar{Z})(u \bar{v} d V))=0$ by Stokes' formula and M having no boundary.

It follows that the formal adjoints of Z and \bar{Z} are $-\bar{Z}$ and $-Z$, respectively.
Proposition 2.3 The kernel of $\bar{\partial}_{b}^{*}$ is orthogonal to \mathcal{F}_{1}, i.e., the range of $\bar{\partial}_{b}$ contains $\left\{f \theta^{\overline{1}} ; f \in \mathcal{F}_{1}\right\}$.

Proof Let $\eta=v \theta^{\overline{1}} \in \operatorname{ker} \bar{\partial}_{b}^{*}$. There exists a sequence of

$$
\eta^{\nu}=v^{\nu} \theta^{\overline{1}} \in C^{\infty}\left(M, T^{0,1}(M)\right)
$$

such that $\eta^{\nu} \rightarrow \eta$ in $L^{2}\left(M, T^{0,1}(M)\right)$ and $\bar{\partial}_{b}^{*} \eta^{\nu} \rightarrow 0$ in $L^{2}(M)$. Let

$$
\begin{equation*}
\eta=\sum_{m} \eta_{m}=\sum_{m} v_{m} \theta^{\overline{1}} \quad \text { and } \quad \eta^{\nu}=\sum_{m} \eta_{m}^{\nu}=\sum_{m} v_{m}^{\nu} \theta^{\overline{1}} \tag{2.22}
\end{equation*}
$$

where $v_{m} \in F_{m}, v_{m}^{\nu} \in F_{m} \cap C^{\infty}(M)$ for each m, ν. Then, $v_{m}^{\nu} \rightarrow v_{m}$ and $\bar{\partial}_{b}^{*} \eta_{m}^{\nu}=$ $-Z v_{m}^{\nu} \rightarrow 0$ in $L^{2}(M)$ by F_{m} being mutually orthogonal by Proposition 2.1 and the fact that (2.20) holds for $f \in C^{\infty}(M)$. Now, for each m,

$$
\begin{align*}
\left\|\bar{\partial}_{b}^{*} \eta_{m}^{\nu}\right\|^{2} & =\left\langle\bar{\partial}_{b} \bar{\partial}_{b}^{*} \eta_{m}^{\nu}, \eta_{m}^{\nu}\right\rangle=-\int_{M} \bar{Z} Z v_{m}^{\nu} \cdot \bar{v}_{m}^{\nu} d V \\
& =-\frac{1}{2} \int_{M}(\bar{Z} Z+Z \bar{Z}) v_{m}^{\nu} \cdot \bar{v}_{m}^{\nu} d V+\frac{1}{2} \int_{M}[Z, \bar{Z}] v_{m}^{\nu} \cdot \bar{v}_{m}^{\nu} d V \tag{2.23}\\
& =\frac{1}{2} \int_{M}\left(\left|Z v_{m}^{\nu}\right|^{2}+\left|\bar{Z} v_{m}^{\nu}\right|^{2}\right) d V-\frac{i}{2} \int_{M} \lambda T v_{m}^{\nu} \cdot \bar{v}_{m}^{\nu} d V
\end{align*}
$$

where λ is defined by (2.3). We have used Stokes' formula (2.21) to get the last equality. By the definition of F_{m} (1.15), $T v_{m}^{\nu}=i m v_{m}^{\nu}$. When $m>0$, the last integral in (2.23) is $\frac{m}{2} \int_{M} \lambda v_{m}^{\nu} \cdot \bar{v}_{m}^{\nu} d V \geq 0$. So,

$$
\begin{equation*}
\frac{m}{2} \int_{M} \lambda\left|v_{m}^{\nu}\right|^{2} d V \leq\left\|\bar{\partial}_{b}^{*} \eta_{m}^{\nu}\right\|^{2} \rightarrow 0 \tag{2.24}
\end{equation*}
$$

as $\nu \rightarrow \infty$. It follows from Fatou's Lemma that

$$
\int_{M} \lambda\left|v_{m}\right|^{2} d V \leq \lim _{\nu \rightarrow \infty} \int_{M} \lambda\left|v_{m}^{\nu}\right|^{2} d V=0
$$

Since λ vanishes only on two circles, $v_{m}=0$ for all positive integers. The proposition is proved.

Proposition 2.3 for three-dimensional circle bundles (including S^{3}) was established in [E1] by using Kodaira's vanishing theorem for positive line bundles on a Riemann surface. Here we use direct calculation, which is a version of Bochner's technique to prove the vanishing theorem.

3 Proof of the Theorem

To prove Theorem 1.1, we only need to solve equation

$$
\begin{equation*}
\bar{Z}^{\psi}(h+\xi)=0, \tag{3.1}
\end{equation*}
$$

for $h=z$ or w, i.e.,

$$
\begin{equation*}
\bar{Z} \xi=-\psi Z(h+\xi) \tag{3.2}
\end{equation*}
$$

To solve (3.2), we use iteration,

$$
\begin{equation*}
\xi_{0}=0, \quad \text { and } \quad \bar{Z} \xi_{n}=-\psi Z\left(h+\xi_{n-1}\right) \tag{3.3}
\end{equation*}
$$

Proposition 3.1 Suppose $h \in \operatorname{ker} \bar{\partial}_{b} \cap \mathcal{F}_{1} \cap C^{\infty}, \psi \in \mathcal{F}_{2\left(p^{\prime}+q^{\prime}\right)}$ and $\psi \in C^{k}$ for some positive integer $k \geq 4$. Then, (3.3) have solutions $\xi_{n} \in \mathcal{F}_{1}$ for all $n=1,2, \ldots$.

Before the proof of this proposition, we summarize the regularity property of the $\bar{\partial}_{b}$ operator given by Smith in the following theorem (see Theorems 1.2, 1.3, 4.17, and 4.18 in [S]). Let $\Psi_{\rho}^{m}(M)$ be a class of operators defined in [S, p. 139], where $m \in \mathbb{R}^{1}$, ρ is a symbol.

Theorem 3.2 ([S])

(1) If $T_{1} \in \Psi_{\rho}^{m_{1}}(M)$ and $T_{2} \in \Psi_{\rho}^{m_{2}}(M)$, then the composition $T_{1} \circ T_{2} \in \Psi_{\rho}^{m_{1}+m_{2}}(M)$.
(2) If $T_{1} \in \Psi_{\rho}^{m_{1}}(M)$, then $T_{1}^{*} \in \Psi_{\rho}^{m_{1}}(M)$.
(3) If $T \in \Psi_{\rho}^{m}(M), m \leq 0$, then T is a bounded operator from $L_{s}^{2}(M)$ to $L_{s}^{2}(M)$, where $L_{s}^{2}(M)$ is the standard Sobolev space of degree s on M.
(4) Suppose M to be a three-dimensional CR manifold of finite type and the range of $\bar{\partial}_{b}$ to be closed. There exists a mapping $P: L^{2}(M) \rightarrow L^{2}(M)$, such that

$$
\begin{align*}
\bar{Z} P & =I-S_{2} \\
P \bar{Z} & =I-S_{1} \tag{3.4}
\end{align*}
$$

where Z is a globally nowhere-vanishing complex tangential vector, $S_{1}, S_{2} \in$ $\Psi_{\rho}^{0}(M), P \in \Psi_{\rho}^{-1}(M), S_{1}$ and S_{2} are the Szegö projections $S_{1}: L^{2}(M) \rightarrow \operatorname{ker} \bar{Z} \cap$ $L^{2}(M), S_{2}: L^{2}(M) \rightarrow \operatorname{ker} Z \cap L^{2}(M)$.
(5) $G=\square_{b}^{-1}=P \circ P^{*} \in \Psi_{\rho}^{-2}(M)$ and $Z, \bar{Z} \in \Psi_{\rho}^{1}(M)$.

If $\Omega^{0,1}(M)$ has a globally nowhere-vanishing section $\theta^{\overline{1}}$, then we can identify $L^{2}\left(M, \Omega^{0,1}\right)$ with $L^{2}(M)$ by mapping $f \theta^{\overline{1}} \rightarrow f$. Under this identification, the L^{2} closure of $\bar{\partial}_{b}$ and \bar{Z} are the same on $L^{2}(M)$, and the L^{2} closure of $\bar{\partial}_{b}^{*}$ and $-Z$ are the same on $L^{2}(M)$ by Proposition 2.2.

Proof of Proposition 3.1 Suppose $\xi_{n-1} \in \mathcal{F}_{1} \cap \operatorname{Dom}(Z)$. Since $h \in \mathcal{F}_{1}$ and $\psi \in$ $\mathcal{F}_{2\left(p^{\prime}+q^{\prime}\right)}$, it follows from Proposition 2.1 that

$$
\begin{equation*}
\psi Z\left(h+\xi_{n-1}\right) \in \mathcal{F}_{p^{\prime}+q^{\prime}+1} . \tag{3.5}
\end{equation*}
$$

Hence, $\psi Z\left(h+\xi_{n-1}\right) \perp$ kernel Z and $\psi Z\left(h+\xi_{n-1}\right) \in$ the range of \bar{Z} by Proposition 2.3. Since the complex ellipsoid $E_{p, q}$ is embedded in \mathbb{C}^{2}, the range of $\bar{\partial}_{b}$ is closed by Theorem B. We can apply Theorem 3.2. Note

$$
\begin{equation*}
\left(I-S_{2}\right)\left(\psi Z\left(h+\xi_{n-1}\right)\right)=\psi Z\left(h+\xi_{n-1}\right) \tag{3.6}
\end{equation*}
$$

by the definition of S_{2}. Now we can apply the first equation of (3.4) of Theorem 3.2 to find a solution ξ_{n} of (3.3) with

$$
\begin{equation*}
\xi_{n}=-P(\psi Z)\left(h+\xi_{n-1}\right) \tag{3.7}
\end{equation*}
$$

We claim $\xi_{n} \perp \operatorname{ker} \bar{Z}$. It follows from the second equation of (3.4) that if $v \in$ the range of \bar{Z}, i.e., $v=\bar{Z} v^{\prime}$ for some v^{\prime}, then $P v=P \bar{Z} v^{\prime}=v^{\prime}-S_{1} v^{\prime}$, i.e., $P v \perp$ kernel \bar{Z}. Therefore, $\xi_{n} \perp \operatorname{ker} \bar{Z}$ by $(\psi Z)\left(h+\xi_{n-1}\right) \in$ the range of \bar{Z}.

Let's check $\xi_{n} \in \mathcal{F}_{1}$. Let $\xi_{n}=\xi_{n}^{\prime}+\xi_{n}^{\prime \prime}$ with $\xi_{n}^{\prime} \in \mathcal{F}_{1}$ and $\xi_{n}^{\prime \prime} \perp \mathcal{F}_{1}$. Then,

$$
\begin{equation*}
\bar{Z} \xi_{n}^{\prime}+\bar{Z} \xi_{n}^{\prime \prime}=\bar{Z} \xi_{n}=-\bar{Z} P(\psi Z)\left(h+\xi_{n-1}\right)=-\psi Z\left(h+\xi_{n-1}\right) \in \mathcal{F}_{p^{\prime}+q^{\prime}+1} \tag{3.8}
\end{equation*}
$$

as above. Note $\bar{Z} \xi_{n}^{\prime} \in \mathcal{F}_{p^{\prime}+q^{\prime}+1}$ and $\bar{Z} \xi_{n}^{\prime \prime} \perp \mathcal{F}_{p^{\prime}+q^{\prime}+1}$ by Proposition 2.1. It follows that $\bar{Z} \xi_{n}^{\prime \prime}=0$, by F_{m} being mutually orthogonal. Then, $\xi_{n}^{\prime \prime}=0$ by $\xi_{n} \perp \operatorname{ker} \bar{Z}$. So, $\xi_{n} \in \mathcal{F}_{1}$.
ξ_{n} is smooth and hence in $\operatorname{Dom}(Z)$ by the arguments in the following proof of Proposition 3.3. We can iterate equations (3.3) now. The proposition is proved.

Since $z \in F_{q^{\prime}}, w \in F_{p^{\prime}}$, we can apply Proposition 3.1 to $h=z$ or w. Now what remains is to prove that the sequence ξ_{n} converges in appropriate topology for ψ small. Theorem 1.1 follows from the following proposition, i.e., we find C^{1} solutions of (1.17).

Proposition 3.3 Suppose $h \in \operatorname{ker} \bar{\partial}_{b} \cap \mathcal{F}_{1} \cap C^{\infty}, \psi \in \mathcal{F}_{2\left(p^{\prime}+q^{\prime}\right)}$ and ψ has sufficiently small C^{k+1} norm for some positive integer $k \geq 3$. Then

$$
\begin{equation*}
\bar{Z}^{\psi}(h+\xi)=0 \tag{3.9}
\end{equation*}
$$

has a unique $C^{\alpha}\left(\alpha=k-\frac{3}{2}\right)$ solution orthogonal to $\operatorname{ker} \bar{\partial}_{b}$ with

$$
\begin{equation*}
\xi \in \mathcal{F}_{1} \quad \text { and }\|\xi\|_{C^{\alpha}} \leq C\|\psi\|_{C^{k+1}} \tag{3.10}
\end{equation*}
$$

for some constant $C>0$.

Proof Note $P Z \in \Psi_{\rho}^{0}(M)$ and $P \in \Psi_{\rho}^{-1}(M)$ are bounded on $L^{2}(M)$ by Theorem 3.2(1), (3), (5). As operators on $L^{2}(M)$,

$$
\begin{align*}
\|P(\psi Z)\| & \leq\|P Z \psi\|+\|P[\psi, Z]\| \tag{3.11}\\
& \leq\|P Z\| \cdot\|\psi\|_{C^{0}(M)}+\|P\| \cdot\|[\psi, Z]\|_{C^{0}(M)} \leq C\|\psi\|_{C^{1}(M)}
\end{align*}
$$

for some constant $C>0$. Thus, if $\|\psi\|_{C^{1}(M)}$ is sufficiently small, $\left\|\xi_{n}-\xi_{n-1}\right\|_{L^{2}(M)} \leq$ $\rho\left\|\xi_{n-1}-\xi_{n-2}\right\|_{L^{2}(M)}$ with constant $\rho<1$ by (3.7) and (3.11). Hence, the sequence ξ_{n} obtained in Proposition 3.1 converges to a solution of (3.2) in $L^{2}(M)$.

Now fix a positive integer k. By the definition of Sobolev space $L_{k}^{2}(M)$,

$$
\begin{equation*}
\|\psi \cdot f\|_{L_{k}^{2}(M)} \leq C_{1}\|\psi\|_{C^{k}(M)} \cdot\|f\|_{L_{k}^{2}(M)} \tag{3.12}
\end{equation*}
$$

for some constant $C_{1}>0$. Thus, as operators on $L_{k}^{2}(M)$,

$$
\begin{align*}
\|P(\psi Z)\| & \leq\|P Z \psi\|+\|P[\psi, Z]\| \tag{3.13}\\
& \leq\|P Z\| \cdot\|\psi\|_{C^{k}(M)}+\|P\| \cdot\|[\psi, Z]\|_{C^{k}(M)} \leq C\|\psi\|_{C^{k+1}(M)}
\end{align*}
$$

for some constant $C>0$, by $P Z \in \Psi_{\rho}^{0}(M)$ and $P \in \Psi_{\rho}^{-1}(M)$ bounded on $L_{k}^{2}(M)$ by Theorem 3.2(1), (3), (5). Thus, if $\|\psi\|_{C^{k+1}(M)}$ sufficiently small, $\left\|\xi_{n}-\xi_{n-1}\right\|_{L_{k}^{2}(M)} \leq$ $\rho\left\|\xi_{n-1}-\xi_{n-2}\right\|_{L_{k}^{2}(M)}$ with constant $\rho<1$ by (3.7) and (3.13). Hence, the sequence ξ_{n} obtained in Proposition 3.1 converges to a solution of (3.2) in $L_{k}^{2}(M)$. Finally, we use the Sobolev imbedding $L_{k}^{2}(M) \hookrightarrow C^{\alpha}$ with $\alpha \leq k-\frac{3}{2}$. Proposition 3.3 is proved.

References

[BC] R. L. Bishop and R. J. Crittenden, Geometry of Manifolds. Academic Press, 1964, London.
[B] J. Bland, Contact geometry and CR structure on S ${ }^{3}$. Acta Math. 172(1994), 1-49.
[BD] J. Bland and T. Duchamp, Moduli of pointed convex domains. Invent. Math. 104(1994), 61-112.
[BE] D. M. Burns and C. L. Epstein, Embeddability for three dimensional CR-manifolds. J. Amer. Math. Soc. 3(1990), 809-841.
[CKM] Z. Chen, S. Krantz and D. Ma, Optimal L ${ }^{p}$-estimates for the $\bar{\partial}$-equation on complex ellipsoids in C^{n}. Manuscripta Math. 80(1993), 131-149.
[C1] M. Christ, Regularity properties of the $\bar{\partial}_{b}$ equation on weakly pseudoconvex CR manifolds of dimension three. J. Amer. Math. Soc. 1(1988), 587-646.
$[\mathrm{C} 2] \quad$, Embedding compact three dimensional CR manifolds of finite type in \mathbb{C}^{N}. Ann. of Math. 129(1989), 195-213.
[E1] E. L. Epstein, CR-structure on three dimensional circle bundle. Invent. Math. 190(1992), 351-403.
[E2] A relative index on the space of embeddable CR-structure, I, II. Ann. of Math. 147(1998), 1-59, 61-91.
[FK] E. L. Fefferman and J. J. Kohn, Estimates of kernels on three-dimensional CR manifolds. Rev. Mat. Iberoamericana 4(1988), 355-405.
[JT] H. Jacobowitz and F. Treves, Non-realizable CR structure. Invent. Math. 60(1982), 231-249.
[K1] J. J. Kohn, Method of Partial Differential equations in complex analysis. Proc. Sympos. Pure Math. 30(1977), 215-237.
[K2] \quad The range of the tangential Cauchy-Riemann operator. Duke Math. J. 53(1986), 525-545.
[K] M. Kuranishi, Strongly pseudoconvex CR structure over small balls, I-III. Ann. of Math. 115(1982), 451-500; 116(1982), 1-64; 116(1982), 249-330.
[L] L. Lempert, On three dimensional Cauchy-Riemann manifolds. J. Amer. Math. Soc. 5(1992), 1-50.
[S] H. F. Smith, A calculus for three-dimensional CR manifolds of finite type. J. Funct. Anal. 120(1994), 135-162.

Department of Mathematics
Zhejiang University
Zhejiang 310028,
People's Republic of China
e-mail: wangf@mail.hz.zj.cn

Department of Mathematics
University of Toronto
Toronto, Ontario
M5S 3G3
e-mail: weiwang@math.toronto.edu

[^0]: Received by the editors April 23, 2002.
 The author was partially supported by National Nature Science Foundation in China (No. 10071070). AMS subject classification: Primary: 32V30, 32G07; secondary: 32 V 35 .
 Keywords: deformations, embeddability, complex ellipsoids.
 (c)Canadian Mathematical Society 2004.

