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ON THE DVORETZKY-ROGERS THEOREM

by FUENSANTA ANDREU

(Received 9th April 1983)

The classical Dvoretzky-Rogers theorem states that if £ is a normed space for which
li(E) = l1{E} (or equivalently Z 1 ® , , ^ / 1 ® ^ ) , then £ is finite dimensional (see [12]
p. 67). This property still holds for any I" ( l<p<oo) in place of I1 (see [7] p. 104 and
[2] Corollary 5.5). Recently it has been shown that this result remains true when one
replaces I1 by any non nuclear perfect sequence space having the normal topology (see
[14]). In this context, De Grande-De Kimpe [4] gives an extension of the Devoretzky-
Rogers theorem for perfect Banach sequence spaces.

In this paper, we show that the Dvoretzky-Rogers theorem holds for any echelon
space of order p( l<p<oo) or order (p,q) (see [1]). We also give a characterization of
the nuclearity for echelon spaces of order (p, q).

1. Preliminaries

All classical notations and properties concerning locally convex spaces and sequence
spaces are taken from [9]. We follow [12] for nuclearity and [10] for tensor products.

We fix the following notations: We denote by K the field of real or complex numbers,
by N the set of positive integers. Given a and fi in IK we define (a; /?) as 0 if /? = 0 and
a//? if /?#0. We write |a;/J| instead of |(a;/?)|. If not specified, in what follows £ is a
separated locally convex topological vector space over the field IK with topological dual
E'. The spaces c0 and lp ( l ^p<oo) will represent the classical Banach spaces, whose
definitions and properties can be seen in [9]. If £ is a vector space, <u(£) is the vector
space of all sequences in £ and </>(£) is the subspace of <u(£) of all sequences x = (xj)
which have finitely many non-zero Xj. If £ is the field K, we write co and </> instead of
a>(K) and (/>(IK) respectively. Given £ and F locally convex spaces, the symbol E~F has
the following meaning: £ and F are equal as vector spaces and the identity mapping is a
topological isomorphism between them. If X is a sequence space, we define

: J; \xjyj\ < co for all (Xj) eA.F = Iy = (yj) £ a>

If X = {l")a, then A is called a perfect sequence space. Given a perfect sequence space k
whose topology is defined by the seminorms {pitiel} and (£,|| ||) a normed space, we
consider the following generalized sequence spaces (see [3], [11] and [13])

= {x = (xj)e«(£):(<x,.,u»eI for all ue£'},
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provided with the e-topology defined by the seminorms:

e,(x) = sup {p,«Xj, u»: u £ U0}, i e I,

U° being the polar set in E' of the closed unit ball U of E. If x = (x;) ea>(E), the sections
of x are defined by

n

for every neN, et being the sequence (<50). The subspace of 2[£] of all the elements x
such that {x(n)} converges to x for the e-topology is denoted by X(E), and we consider it
endowed with the induced topology. Finally,

provided with the 7r-topology defined by the seminorms:

ni(x)=pi(\\xJ\\), iel.

If k = l1, the former spaces are studied in [12]. The same notations and definitions will
be used if X is a space of double sequences, having in mind that in this case the sections
x(n) of x = (x,-j) are defined by

n

for every neN,eij being the double sequence whose coordinates are null save the (i,j)
coordinate which has value one.

2. The Dvoretzky-Rogers Theorem for echelon spaces of order p

Let {a{r) = {dp)} be a sequence of elements of co satisfying:

(i) 4 r ) > 0 for all r,je4
(ii) a<r)^a<r + 1) for all r,jeN.

If p is a real number with p^. 1, we denote by Xp the echelon space of order p defined by
the steps {a(r)} (see [9] and [15]), i.e.,

f oo -)
i x = (xj)eoi-.Y. \ x j a V \ P < ° ° f o r a11 reN h
f

Xp = ix =

endowed with the topology defined by the seminorms:

1/P

1 r=i 2
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Analogously km and Xo denote the echelon spaces of order infinite and of order zero,
respectively, defined by the steps {a(r)} with its usual topology (see [5] and [15]). It is
well known (see [15]) that Xp is a nuclear space if and only if given a positive integer r
there is a positive integer k>r such that

£ (flj";aj*>)<oo.
j = i

By the former result and the Grothendieck-Pietsch criterion (see [8]), we get:

Proposition 2.1. If p is a real number with p>\, Xp is a nuclear space if and only if
given a positive integer r there is a positive integer k>r such that

By [12] page 99, Xt is a nuclear space if and only if Xt ~X0~Xm.
The next result is a consequence of this result and the former proposition.

Corollary 2.2. Given a real number p with p>\, Xp is a nuclear space if and only if
Xp — ^0 — Xx.

We need the following lemma essentially included in [6].

Lemma (Dvoretzky-Rogers). Let (£, || ||) be an infinite dimensional normed space and
let d = (5j) be an element of I2. Then there is x = (xj) in li(E)with \\xj\\ = \dj\for all] in N.

Theorem 2.3. Let (E, || ||) be a normed space and let p be a real number with p> 1, the
following are equivalent:

(i)
(ii)
(iii)
(iv) p p

(v) Xp is a nuclear space or E is finite dimensional.

Proof. (i)=>(ii): Since XP{E) is provided with the e-topology and
Ap{£}clp(£)c:Ap[£], we need only to show that l p [ £ ] c l p { £ } . Let x = (xj) be an
element in l p [ £ ] . Then every section xM of x is in Xp{E). By hypothesis, given a positive
integer r there is a positive integer k>r and a real number p>0 such that
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where U° is the polar set in E' of the closed unit ball U of E. Since this hold for all n,
we obtain

(ii)=>(i) is obvious. Also (iii)o(ii) is clear and (v)=>(iii) is a well known result (see [12]
7.3.3). (iii)=>(i) follows by an argument similar to [10] p. 197 and p. 291.

(i)=>(v): We suppose E is infinite dimensional. Given a positive integer r, by (i), there
is a positive integer k>r and a real number p > 0 such that pnr(x)£jek(x) for all x in
Ap(£), i.e.,

( 00 \1/P f/ 00 \1/P "I

.1 (|KII4r))pJ ^sup|( £|<Xj,u>aJ*>N :u6l/°j for all xeAp(£). (1)
Let y = (y>j) be an element in ll(E). Define y" ={y"j) for every n in N, such that

fj=(yA\yj\\llqaT) if ^ «

y" = 0 if ;>n, q being the conjugate number of p. Since y" belongs to XP{E) for all n, it
follows from (1) that

1/P (/ n . \l/p

Z\<yj,uy\)1"':ueU0\ (2)

and consequently

P\ X (aJr)'al'l))p||3;j|| ) < 0 ° for all

Applying the Dvoretzky-Rogers lemma to (3), we get that

is an element of I2.
Repeating the former argument for k and applying Holder's inequality, we can state

that, given a positive integer r, there is a positive integer s>r such that

is in /p, so by 2.1, A is nuclear.
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3. The Dvoretzky-Rogers Theorem for echelon spaces of order (p, q)

Let {a(r) = (a\r/)} be a sequence of elements of co satisfying:

(i) a\rJ>0 for all r,i,jeN
(ii) a\r>Sa\rj+1) for all r,i,jeN.

If p and q are real numbers with p ^ 1 and q*zl, we denote by A.pq the echelon space of
order (p,q) defined by the steps {o(r)} (see [1]), i.e.,

C 00 / 00 \<?/P

Ap, = |x = (*,-,) e « : I ( _ I M ? | ' J <oo for all reN

endowed with the topology defined by the seminorms:

\«/P\I/P

) )(
Analogously, we denote by km the echelon space of infinite order defined by the steps
{a{r)} and provided with the topology defined by the seminorms:

From now on p and <j will denote conjugate real numbers with p> 1 and q> 1.
In [1] we proved the following result:

Proposition 3.1. T/ie space Apq is nuclear if and only if, given a positive integer r,
there is a positive integer lor such that

2, (a}y;a\y)< co.

By this proposition and since

A ^ c A ^ c l ^ or Ap,cAM<

we get:

Corollary 3.2. 77ie space Apq is nuclear if and only if

We can now establish the following useful characterization of nuclearity:

Proposition 3.3. The space Apq is nuclear if ami only if given a positive integer r there
is a positive integer lor such that

https://doi.org/10.1017/S0013091500022203 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022203


110 FUENSANTA ANDREU

and (1)

j =

Proof. If Apq is a nuclear space it follows from Proposition 3.1 that the condition (1)
is satisfied.

Conversely, suppose that condition (1) is satisfied. We consider the space

f oo / \1 ")
A1=<x = (xiJ)eco: £ I sup Ix^ajj'l I <oo for all reN>

I J = i \ ' / J

provided with the topology defined by the seminorms:

Let x be an element of Apq, then x belongs to A1 and ||x||,! rg||x||r for all r in N. On the
other hand, if x is an element of A1; given a positive integer r we suppose there exists a
positive integer k>r such that (1) is satisfied. Then

H , ^ Z [supix^ij ^z (a|';;a!;))''
a/'v/*

UP

from where it follows that A ^ ^ A j .
Analogously, it is easy to prove that A1~Ao0. Finally, applying 3.2, we obtain that

Apq is a nuclear space.

Theorem 3.4. Let {E,\\ ||) be a normed space. The following are equivalent:

(i) Apq(E)^Apq{E},
(ii) AP,[£]^AP,{£},
(iii) Apq®eE~Apq®nE,
(iv) Apq®EE~Apq®nE,
(v) Ap? is a nuclear space or E is finite dimensional.

Proof. As in the proof of 2.3, it is easy to prove that (i)o(ii), (iii)<=>(iv), (v)=>(iii) and
(iii)=>(i). We now prove (i)=>(v). Suppose that E is infinite dimensional. Since
Apq{E)~Apq{E} by assumption, given a positive integer r there is a positive integer k>r
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and a real number p>0 such that pnr(x)^ek(x) for all x in Apq(E), i.e.,

q ")

:«e£/°j (1)

pq(

oo / oo \«/p\l/« (V oo / oo \qlP\Uq

for all x = (x,j) in h.pq(E), U° being the polar set in E' of the closed unit ball U of E.
We denote by A(E) the subspace of w(E) of all the elements x = (x;j) such that

£ (.£ | 7 | jy ue [/°|< oo. (2)

Given x = (xij) in A(£), define y"=(y"j) for every n in N by

y"J=(xiJ;||xiJ||
1/9aS5)) ^ ' = " anc* ' =

y"j = 0 if i>n or j>n.

By (1), we have:
\q/p\ W«

?/p\l/«J
(f oo / oo \q/p\i/q

= ek(y")^sup|( Z ( E|<xu,M>|) J :«£l/0^,

from where it follows that

\9/P\l/«

00 / 00 \«/P\l/« )

( J ) :"e[/0} fora11

Let y = (y,) be an element of/J(£). Define zJ = (zjk) for every j in N, such that

Mj=yi,Mk = O for all fc^y, i = l , 2 , —

Obviously, zj is in A(£) and it follows from (3) that

1/P )

Z K^.'")! :«eL/0V forall ye/H^JeN. (4)
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Applying the Dvoretzky-Rogers lemma to (4), we obtain that

is a bounded subset of I2.
Repeating the former argument for k and using Holder's inequality, we can suppose

that, given a positive integer r, there is a positive integer s>r with

f (flj?;fli5y)<oo. (5)
i V = i /

We consider the space Ax defined in 3.3. As in the proof of this proposition, we can
conclude that A1^AP9. Therefore Al(E)^\l{E} and consequently, given a positive
integer r, there is a positive integer k > r and ft > 0 such that

l/9

f fsup|<xIJSM>a}5>AY/*:«eC/oJ for all xeA,(£). (6)

Let y = {y}) be an element of /*(£), for every n in H, we define x" ={x"j) by

^=(j'j;||j 'jir/pai5)) if ' ^ « a n d ^ "

x?y = 0 if i>n or _/>n.

Hence x"eA1(£) for all n in N. Now it follows from (6) that

/ n / n \\l/« f/ n \l/«

M E INI- sup(flj';;aJ5>)' ^sup XCK^.^hlWD :«6l/°

and consequently

f | C/°J for all yel\E).

Proceeding in the same way as we did to obtain (5), we establish that, given a positive
integer r, there is a positive integer s>r such that

Finally, from (5), (7) and 3.3, it follows that Apq is nuclear.

fsup(aJ5>;a|5>)Y<oo. (7)
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