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MAPSIN LOCALLY ORIENTABLE SURFACES AND INTEGRALS
OVER REAL SYMMETRIC SURFACES

I. P. GOULDEN AND D. M. JACKSON

ABSTRACT. The genus series for maps is the generating series for the number of
rooted maps with a given number of vertices and faces of each degree, and a given
number of edges. It captures topological information about surfaces, and appears in
questions arising in statistical mechanics, topology, group rings, and certain aspects of
free probability theory. An expression has been given previoudly for the genus series
for maps in locally orientable surfacesin terms of zonal polynomials. The purpose of
this paper is to derive an integral representation for the genus series. We then show
how this can be used in conjunction with integration techniques to determine the genus
series for monopoles in locally orientable surfaces. This complements the analogous
result for monopoles in orientable surfaces previously obtained by Harer and Zagier.
A conjecture, subsequently proved by Okounkov, is given for the evaluation of an
expectation operator acting on the Jack symmetric function. It specialises to known
results for Schur functions and zonal polynomials.

1. Introduction. Although the study of embeddings of graphs in surfaces is less
well developed for locally orientable surfaces than it is for orientable surfaces, there
are compelling algebraic and combinatorial reasons for studying them jointly. From the
algebraic point of view it has been shown [5] that the genus series for mapsin these two
cases correspondsto the instances b = 1, 0 of

tlo!
<‘JH= ‘J0>1+b

att = 1, wheref issummed over all partitions (of integers), Jy(X; «) isthe Jack symmetric
function in the parameter «, and ( . ), is the usual inner product (see (2)) for Jack
functions. From the combinatorial point of view it has been conjectured [6] that, in the
aboveseries, b marksacombinatorial statistic positively correlated with adeparture from
orientability. On the other hand, from the analytic point of view, arepresentation for the
genus series for maps in orientable surfaces by means of an integral over Hermitian
complex matrices has been given in [13]. The purpose of this paper is to derive an
integral representation of the genus series for maps in locally orientable surfaces. This
representation involves real symmetric matrices. These two account for two of the three
finite dimensional real division algebras (reals, the complexes and the quaternions).

(1+ byt log 01+ ) Jyy; 1+ ) Bz 1+D)).

1.1. Embeddings. Throughout this paper we are concerned with 2-cell embeddings of
graphsinlocally orientable surfaces. Two embeddingsof agraph are said to be equivalent
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if there is ahomeomorphism of the surface that maps verticesto vertices, edgesto edges,
and preserves the orientation assigned to each edge. The embedded graph is called a
map. Each edge hastwo ends, and two sides, so there are four side-end positions. A map
is rooted by distinguishing a side-end position and, throughout, all maps are assumed
to be rooted. The partition that lists the degrees of the vertices of the map is called the
vertex partition. The partition that lists the degrees of the faces of the map is called
the face partition, where the degree of a face is the number of edges that bound it. For
further details the reader is referred to [26] and to the brief account givenin [5] that is
the starting point for this paper.

Rooted maps occur in a number of contexts. These include the analysis of sur-
faces [20], the determination of the partition function [1], the determination of the re-
duced Euler characteristic [8], the generalisation of the work of Farahat and Higman [2]
and Macdonald to arbitrary structure constants of the class algebra of the symmetric
group ring [4] and, more recently, the combinatorial investigation into free probability
theory [27]. Since amost all maps have only the trivial automorphism [23], asymptotic
results for maps with a large number of edges can be obtained from a study of rooted
maps.

If Ig‘_)H is the number of maps with n edges, face partition o - 2n and vertex partition
3 F 2n, then the genus series for mapsin locally orientable surfacesis defined to be

)] Mx.y.2 =3 > 10x.y,2",
n>lagF2n
where Xi,X%2,...,Y1,Y2.... a&e commuting indeterminates, x = (X, %2,...), ¥ =

(Y1, Y25 - )y XN = (X2, . ... XN), and if 6 = (61, ....60y) is a partition, then x, denotes
X, - -+ Xg,.. Welet p(x) = (pl(x). .. ) where p;(x) is thei-th power sum symmetric func-
tion of x. The genus of the surface is recoverable from the numbers of vertices, edges
and faces, by the Euler-Poincaré theorem.

1.2. The main result. The main result of this paper, given as Theorem 1.1 below, is
a representation for the genus series by an integral over the vector space Wy of al
N x N real symmetric matrices M = [m jInxn € Wi, with measure gtraceM?/4q\
where dM = [T1<i<j<n dm j. The expectation operator ( )y, is defined formally for a
polynomial function f (M) of the entries of M by

1
/ f(M)e 3raeMgy

W,
<f (M)>WN = . 1
— ~traceM?
./vae 4 dMm

and its existence is ensured by the existence of Jue /2t

THEOREM 1.1. Let X = diag(xy, ..., Xn). Then the integral representation for the
genus series for mapsin locally orientable surfacesis

k
M(pn). - 2) = 423% |09<exp(k§l gyktrace (XM)¢) >WN,
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In Section 3.2 we give a proof of this result, using an algebraic expression for the
genus series in terms of zonal polynomials that was given in [5], and a combinatorial
construction for maps using pairings. The necessary background material for this is
developed in Sections 2 and 3.1. In Section 4, using the integral representation, we
derive an explicit expression for the genus series for monopoles in localy orientable
surfaces, given as Theorem 4.2. Both of theseresults are new. Theintegral representation
complementstheresult of Jackson [13] inthe case of orientablesurfaces, usingintegration
over complex Hermitian matrices. The monopole expression complements the one that
was obtained by Harer and Zagier [8] in the case of orientable surfaces.

Anindirect consequenceof thiswork is (Lemma 3.3(2)) that the expectation operator
acts remarkably simply on zona polynomials. An analogous result for Schur functions
integrated over complex Hermitian matrices hasbeen given adirect proof in Jackson [14].
These two results are evidence for Conjecture 3.4, involving an analogous expectation
operator acting on Jack symmetric functions. This conjecture was subsequently proved
by Okounkov [21]. Finally, another application of the integral representation given
here appears in [3], where a closed form expression is obtained for the virtual Euler
characteristic for the moduli spaces of real algebraic curves. Moreover, Conjecture 3.4
is used there to support in turn a further conjecture concerning the existence of moduli
spaces whose virtual Euler characteristics interpolate between the cases of real and
complex algebraic curves.

2. Zonal polynomials and the genus series. The approach that we adopt makes
use of an expression, given as Theorem 2.1 below, that was derived in [5] for the genus
seriesin terms of the zonal polynomials. To state the result the following terminology is
needed.

Let Ag denote the set of all symmetric functions in x of bounded degree, with
coefficients that are rational. For a partition A of n (written X\ F n), let C, be the
conjugacy class of &, with natural index A, let I(\) be the number of parts of A, and let
|A| be the sum of the parts of A (so |A| = ninthis case). Then, if « is an indeterminate,

C
(2) < p)w p/t>o( = al()\) ué}\.u

Al
can be extended bilinearly to an inner product on A. Let < denotelexicographic ordering
on the set of partitions. The zonal polynomials Z, are the unique polynomials [12] that
are orthogonal with respect to thisinner product with o = 2, that satisfy the triangularity
condition [m,]Z, = 0 for A < u, and that have the normalization [my1n)]Z, = nl, where
m,, isamonomial symmetric function.

Let B, denote the hyperoctahedral group embedded in &,, as the stabiliser of a
prescribed matching, so |Bn| = 2™n!. The double cosets of &, by B, are indexed
naturally by partitions of n, and the double coset indexedin thisway by A - nisdenoted
by K. Their sizeis readily determined to be

3) K| =227 By |Cy.
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The set of al formal sums of the elements of K, for A - 2n, span a commutative
subalgebraof C&,, called the double coset algebra. Let

V)= Y XP0).

UGKN

where x* is the character of the ordinary irreducible representation of &, indexed by
A F n,and 2)\ isthe partition obtained from A by multiplying each part by 2. The product
of the hook lengths of X is H,. The zonal polynomials can be expanded in the power
sum basis by

1
4 =
4) Z Bal

> W ()p,.

nk2n

For aconcise account of the double coset algebra, and for the properties of thisalgebra
that are used here the reader is referred to [7]. For properties of zonal polynomials that
are used here, the reader is referred to the account on Jack symmetric functions given by
Stanley [24], since specialisation to zonal polynomialsis by setting the Jack parameter
equal to 2. For terminology associated with symmetric functions the reader is directed
to Macdonald [17].

Thefollowing result for the genus series can be obtained by specialising theexpression
for the genus series of hypermaps given in [5], where a hypermap is a map whose faces
can be coloured with two colours such that no pair of faces with a common edge have
the same colour. The specialisation is by constraining the faces of one colour to have
degree two, and then contracting each such face to an edge.

THEOREM 2.1. The genus seriesfor maps on locally orientable surfacesis

M( (). p(y).2) = 425~ log 1+ 3 >° Mze(x)za(y)z“)
e 0z =143 227(2n)! Hyy ’

Note that this expression for the genus series is with respect to the power sum
symmetric function basis in both x and y, whereas in Theorem 1.1 the genus series
is expressed with respect to power sums in Xy, but with respect to y itself. Although
Theorem 2.1 could be expressed directly in terms of x and y using the expansion (4), the
resulting expression would disguise the simplicity of the presentation in terms of zonal
polynomials.

3. The genus series and the combinatorics of the expectation operator. In this
section we determine the genus series for maps in locally orientable surfaces. The
approach that we adopt makesuse (in part (1) of Lemma 3.3) of an adaptation of the “ fat-
graph” construction [1, 10, 22] that involves interconnecting regions homeomorphic
to open discs (local orientability) by “ribbons’ that are allowed at most one “twist”.
This operation is represented algebraically by summing over all “pairings’, and aresult
which expressessuch asumin termsof the expectation operatorisgivenin Section3.1as
Lemma3.2. Our construction resultsin the determination of the required map cardinality
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in terms of asingle undetermined scalar. This scalar isthen determined, using the results
of [5] outlined in Section 2 above, in terms of zonal polynomials. Standard symmetric
function results are then used to explicitly determine the integral representation for the
genus series.

3.1. The expectation operator and pairings. Let P, bethe set of all permutations

(m(D): p2(1), - ., p1(K), p2(K))
of {1...., 2n} such that
p1(1) <--- <pu(K), and  pa(j) <p2j). forj=1.....k
An element of Py is called a pairing, and the pairs are {p1(j). p2(j)}. The number of
pairingsis
(2k)!
2%k

ProOPOSITION 3.1. Let U beanN x N symmetric matrix of (algebraically independent)
indeter minates. Then

Py =

1 1
>trace UM _ qytraceU?
(e2 Jw, =€ :
PROOF. Let U be an arbitrary real symmetric matrix. Then the change of variables
M — M — U gives

/W ef%ltraceMsz /W ef%ltrace(M 7U)2dM
N N

ef%ltraceu2 / e%traceUM ef%ltraceMsz
Wi
since traceMU = traceUM. The result is established for all real symmetric matrices
U, and therefore for the case when the independent elements of U are algebraically
independent indeterminates. ]

In the next result, we show that a combinatorial sum over pairings naturally arises
when applying the expectation operator to a monomial in the entries of M. The result
is an adaptation of Wick’s Lemma, using an integral representation for the “ propagator”
given asthe righthand side of part (2).

LEMMA 3.2. Letl1<ry,S...., rn.s <N. Then

(D) (Mys o Myshy, =0 122k+1>1,
() (MM, = Orndss, +0n 08,1,
k
(3) <m1«,51 e ml«,5|>WN = PZ:JI:J]:_ <mﬂ1(j).sﬂ1(j)md2(j).Sw,z(j)>WN ) I = 2k Z 2
2k 1=
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ProoF. First we consider only thecaser; < s forj =1,..., [. Then suppose that
rji.§ = a,bforfyp choicesof j=1...., [,foreachl <a,b <N.

Let U = [u;,j]nxn, and equate coefficients of uy, s, - - - Uy, 5 0N both sides of Proposi-
tion 3.1. Thisgives

1 2
<mr1.91 oMy s >WN _ {U u ] ez Licasaen s
[T N - r,s """ YnLs f1 144, °
2ha N.N Hi,j \/E 11 N.N

If | is odd, the coefficient on the righthand side of (5) is zero. This gives part (1) of the
result whenr; <'s. When| = 2, equation (5) gives

©)

2 ifri=s=ry=s,
(M sMos)w, =1 ifri=rasi=s.rn#s,
otherwise.

o

Part (2) of the result followsfor r; <.
When| = 2k, we have

1 1 1 )
5 tcacsnCy = { ] 5 XicacpenYas
}ez sesrster = 2 LT Ur 10080000 Ui | 82 25095 1

{Url.sl sl N
Iij= fij! By =2

Substituting this on the righthand side of (5) gives part (3) of theresult for r; < s.

Now M is symmetric, so m, 5 = m_, in al cases. Moreover, the expressions on the
righthand sides of parts (1), (2) and (3) of the result are al symmetricinr;, s, and the
result follows for arbitrary r;. s, forj = 1.. ... l. "

3.2. Expectation of symmetric functions and the genus series. Consider a graph em-
bedded in a locally orientable surface, so an open neighbourhood of each vertex is
homeomorphic to an open disc. In each face, and parallel to the bounding edges, draw
aline within distance ¢ of the edge. The two parallel lines on either side of an edge are
called the thick edge corresponding to the edge of the graph. The segments of a thick
edge associated with an edge in an open neighbourhood D, containing the vertex v are
called the thick half-edge associated with the edge incident with v, and we say that such
athick half-edgeisincident with v. If the degree of visk, therewill bek thick half-edges
incident with v, and D, is called a disc with k thick half-edges. A corner of afaceis a
consecutive pair of thick half-edgesin cyclic order at v, which isidentified with the open
region of D, that is bounded by the two thick half-edges.

The next result involves a combinatorial construction using discs with half-edges
attached, independent of the graph from which such discs are obtained in the above
description. The result gives an evaluation of the expectation of symmetric functions of
real symmetric matrices in terms of zonal polynomials. We use the notation p(M) =
traceM¥, for k > 1, and as usua py(M) = pg, (M), ..., s, (M), for a partition 6 =
(01, - ... 0m). Then Z4(M) is defined using the expansion (4) in terms of the power sums.
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LEMMA 3.3. If v - 2n, then

@) (B (XM))y, = ﬁ > V@ k)
@ (ZXM))w, = Smioh 2,050

PROCOF. (1) Supposethe partition v = (v1,...,vm) F 2n has m parts, and consider
the canonical permutation

c=02 --v)(w1+1---vi+vy)---

with m cycles and cycle-type v (so o € C,). Let D, be a disc with »; thick half-

edges, i = 1,..., m. Associate one of these with each digjoint cycle of ¢ as follows.
The k-cycle (i o(i) --- o*7X(i)) gives a disc with k thick half-edges and the corners
labelled i, o(i). ... .0*(i) in cyclic order in the clockwise circulation of the vertex.

Thus{j, o(j)} is associated with a unique thick half-edgefor eachj =1,...,2n.

Now consider the effect of taking all pairings of the 2n thick half-edges, and for each
pair (i, a(i)) and (j, a(j)) of thick half-edgesin such a pairing, connecting themin either
of the following two ways:

(1) thei side of the first thick half-edge is connected to the j side of the second and
the o(i) side of thefirst is connected to the o(j) side of the second;
(2) thei sideof thefirst thick half-edgeis connected to the o( j) side of the second and
the o(i) side of thefirst is joined to the | side of the second.
In al cases the connected thick half-edges give athick edge joining the vertices corre-
sponding to the discs.

Let A be the set constructed by this procedure. Each member of A corresponds to
a collection of rooted maps in locally orientable surfaces, with vertex distribution v,
when taken together over all connected components. The multiplicity with which each
collection of maps occurs will be determined indirectly below.

However, first we refine the construction to give aset A¢ as follows. Assign colours
1..., N, without condition, to each of the 2n corners, and supposethat the corner labelled
i receivescolour ¢, fori=1...., 2n. Thethick half-edges are paired and connected as
before, with the additional condition that sideswhich are connected must have the same
colour, in all cases. Theresulting elements of A¢ are identified simply as elements of A
with coloured faces, since the colouring condition forces every corner on aface to have
the same colour (which isthusthe colour of theface). But parts (2) and (3) of Lemma3.2
together imply that the number of elementsin A€, for eachfixed ¢y, .. ., Con, IS

Now in this expression ¢; is the colour of the face containing the corner labelled i, so we
conclude that the generating series for A¢, with faces of degree j marked by p;(xn) for
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j>1is

<HX01mC| Cn(l)> <pl/(XM)>WN
1<cy,...,con<N ‘'i=1

Ontheother hand, A¢is, upto amultiplicity to be determined, an unordered collection
of rooted maps. From Theorem 2.1, the genus series for maps, up to a multiplicity that
depends on the number of edges, is

0 on
09(1+ % = ot 820 2i)2).

n>160+k2n

sothegenerating seriesfor ACis, up to amultiplicity that dependson the vertex partition,

02"
1+> > ng(x)zg(y)z“.

n>16+2n
Then

S (e,

1<¢y,....Con<N ‘i=1
up to amultiplicity that dependson v, isequal to

> @ 0200
29

fk2n
so we conclude that
1
(6) (P XMy, = @3- =07 (2) () Zo(xn),
ft2n T120

where o, is aconstant depending only on v.
To determine o, we equate coefficients of x{" on each side of (6). For the lefthand
side of (6), we obtain

_ Jymhe ™ dm oy

S

using integration by parts. For the righthand side, note that (see [24], p. 80)

_ | 0 for 6 #(2n).
H—%Zg(l 0~---)—{ﬂ312_n for 6 = (2n)

and
Y (p) = Z X4 (o) = K,

UGH
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Thusfor theri ghthand side of (6) we obtain

M > o L@ ) Zoxw) = a0 Y ilp"(zn) V() Z4(1.0.....0)

0F2n [ 2n

- (2n) ron (2n)
al/|B |¢ 2" v(v)

=y |K 2n| IK,/|
|B | (@)
Equating the coefficients from the two sides gives
Ban|(2n)! 1

O(V = =
Kl Kyt K|
from (3) and the result now follows from (6).

(2) From (4) and part (1) of this result,

(ZyXM))w, |BZn| > () (Pu (XM,

uh2n

_ 1 W(Zn)
|BZn|Z Hzo Zol) 2

ak2n uh2n

1
V().
K]
But the character sums ¢’ satisfy the orthogonal ity relation

1
T ()P (1) = Bas
HZO( ‘u%n |K |
and this givesthe result directly. ]
We can now prove the main result, which gives an integral representation for the
genus series for mapsin locally orientable surfaces.

PROOF OF THEOREM 1.1. Let M(p(xn). . 2) be temporarily denoted by My. Then
from Theorem 2.1 and (4), with x replaced by xy and p(y) by y, we get

02n 0
My = 4z |og(1+z |B z Y o MZ&(X ))
n>1 P2n|” yi2n gF2n Hay
= 42— |Og<l+ Z |B2 |2 ; |Ku|y;t <pll(XM)>WN)
Nl pk2n

from part (1) of Lemma3.3. Let p = (1%2%--.) soa; +2a, + - - - = 2n. But from (3), the
size of the double cosetindexed by 1 is|K,| = |B2n| |C,| 22711 s0

MN—4z—Iog(1+Zz” > <H ! ( y,trace(XM)’) > )
n>1 aéaz 02 aJI WN
a;+2ap+---=2n

From Lemma 3.2(1), the terms of odd degree in M contribute zero to the sum, and the
result follows. -
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The expectation of the zonal polynomial givenin part (2) of Lemma 3.3 can be made
particularly striking, by reexpressing the righthand side to obtain
(7 (Zo(XM))w,, = ZoOn) ([Pn]Z)-
The simplicity of this result suggests that it might be possible to prove it directly using
analytic properties of the zonal polynomials, which, together with Theorem 2.1, would
give a proof of the integral representation of the genus series (the main theorem) that

avoidsthe combinatorial and topological constructions used in the above proof. Indeed,
there is an analogous result [ 14] associated with orientable surfaces, namely

® (9 (XM))y,, = s50) ([P

where sy is the Schur symmetric function (orthonormal with respect to the inner product
{ . )1), and the expectation operator ( )y, isdefined by

1
J PoWe 2" ==
N

_1 2
/ g 2traceM? g\
‘VN

(Pe(M))y,, =

withdM = (ITj<  Sdmy ) (ITj<k Fodm ), and V isthe vector spaceof all Nx NHermitian
complex matrices. Macdonald [18] has obtained such a proof using the orthogonality
result of James[15] for integrating zonal polynomials over positive definite matrices.

Notethat (8) isgivenin[14] only for the case X = 1, but the proof given there can be
adapted easily to arbitrary X. Theintroduction of the matrix X in thisway into the results
of this section combinatorially allows us to mark the degrees of faces. It also makes an
interesting departure from, for example, the model of Kontsevich [16], who considers
integrals over complex Hermitian matrices with an arbitrary matrix A introduced to
modify the weight in the expectation operator from e-traeM?/2 tg gtraceAM?/2,

Results (7) and (8) suggest that there may be a comparable result for Jack functions.
For this purpose we introduce the expectation operator

/R V)P e 2PE()) dA
LV e

<f ()‘)>RN

Then we make the following conjecture.
CONJECTURE 3.4.

(o 1/7))pn = Jo(An; 1/7) ([P5'190),
where 1y is the vector with N 1's, and 6 + 2m.

This correctly specialisesto (7) and (8) through the Weyl integration theoremsto diago-
nalise the families of matrices Wy and Vy, respectively. In addition, we have confirmed
this conjecture computationally for N = 4,6 - 6, with v = 2 and 3. The integration was
reduced to theknown momentsof the normal distribution by expanding the Vandermonde
determinant and the Jack function into monomials.

This conjecture was subsequently proved by Okounkov [21].
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4. The genus series for monopoles. A monopole is a rooted map with a single
vertex. The genus series for monopolesin locally orientable surfaces with n edges, for
n>o,is

Fn(u) = Z fn,kuk

k>1

where f, x is the number of monopolesin locally orientable surfaces with n edgesand k
faces. Since the set of all mapswith n edgesisfinite, Fn(u) is a polynomial in u. In this
section we determine the genus series for monopoles by applying Theorem 1.1 and then
explicitly carrying out the integration over real symmetric matrices, taking advantage
of the polynomiality and using the following transformation. This result is obtained by
means of the orthogonal group, the diagonalising group for Wy. For a proof, see, for
example, [9].

PrOPOSITION 4.1. Let A = (Aq,..., An), and V(A) = Ti<i<j<n(Aj — Ai) be the Van-
dermonde determinant. Then for a polynomial g,

JVOOle ™/ g(p) dx
./RN|V(A)|e*pz/4dA '

(9(P(M)) ), =

where py denotes px()).

The absolute value of the Vandermonde determinant in this result presents problems,
but these are surmounted in the monopole case below by a number of appeals to sym-
metry. In the proof we make extensive use of techniques that have been employed in
mathematical physics; a good source for such techniques is Mehta [19]. In particular,
the series ¢;(X) that appears in the proof is a “wave function”, but is used here simply
as a convenience. Hermite polynomials also arise, since they are closely related to wave
functions; for general properties of the Hermite polynomials see Szegt [25]. The result
that is obtained is of interest inits own right, since it is the counterpart of the monopole
seriesin the orientable case obtained by Harer and Zagier [8] (seeaso[11, 13, 16, 22]),
in astudy of singularities on orientable surfaces.

Some notation is needed. We write A = [&; jJmn to mean that A is a block matrix
whose (i, j)-block is the matrix & j, with indexingi = 1...., mandj=1....nIf &
isal x 1 matrix then we write it asascalar.

THEOREM 4.2. The genus series F,(u) for monopolesin locally orientable surfaces
with n edges, for n > 0, is

() B

k=0 r

ProOF. From Theorem 1.1 we obtain immediately

> 1lon Pl = [YnZ'IM(p(xn). ¥, 2) = (trace XM)™), .

ak2n
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Thus, replacing the x;’s by 1, we obtain Fr(N) = <traceM 2“>WN, and applying Proposi-

tion 4.1 gives

FaN) = [ VOV ]e ™/ *pan dA

./RN|V()\)|e‘p2/4 d).
It is convenient to change variablesin theseintegrals by A; — /2 fori = 1.....N, so
1,(N)

9 Fn(N) = 2"N-
where
(10) 1n(N) = [, IV(\)|e P/ 2pan X,

and, in this context, pp = N. But F(N) isapolynomial in N, soit is sufficient to consider
only the casewhere N = 2m, to obtain the seriesas apolynomial in m, and then to replace
mformally in this by N /2. Because of polynomiality, the resulting expression holds for
all N, and thus N can be replaced by the indeterminate u.

Thefirst part of our strategy in determining I,(2m) isto introduce a set of polynomials
that are orthogonal with respect to the measure. Thus consider the Hermite polynomials
(H; (x))j>0, defined by the recurrence equation Hj+; = 2xH; — 2jH;_; for j > 0, with
initial conditions Hy = 1, H_; = 0. These are orthogonal with respect to the measure
e ¥dxonR. Then ‘o
e s,

a2

where a; = 2'i! /7, for i > 0, satisfy the orthonormality relation

oi(x) =

[0, dx=615, i.j>0.
Let ,
o) = [ ai(dx.

and notethat ¢;j(+00) = dj(—o0) = 0. We now re-expressthe Vandermonde determinant
in terms of the submatrices

Vi(x) = [2(())(())] and V/(x) = [qs:,gg]

and subsequent operations on matrices fully respect the partitioning of matrices into
these submatrices. First, note that 277H;(x) is amonic polynomial of degreej in x, so

V(\)e /2 = det| N, e /2

2m2m

= det[Z*(ifl)Hi_l()\j)}
_ (me

= 271

—P2/2
2m,2m €

) det[¢i_a (V)]

2m2m’
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But
11 i = 2_ + J— :
(1) Oml) = = 7 40+ i 9
forj > 0,and ¢_1(x) = 0. Then
o _ d2i—2(Aj)
det[¢i-1(\) ], = det[ ¢2i71(/\})]m‘2m

m L 2 /
= (-1 \h} 51 det[Vzifz(Aj)}mZm

where we have substituted (11) into the even numbered rows, and used row operations.
Thus
(12) V(N /2 = dom det| v _,(N)]

where

m2m’

oy = (_1)m4m(17m) L' ﬁna_
2 @mlig "

Now we consider the integration. First we take advantage of symmetry to restrict the
region of integration to the canonical cone
R2m= {()\1----7>\2m) << )\gm}.

Since the integrand of (10) is a symmetric function of A, we thus obtain
I,(2m) = (2m)! /R ) IV(\) e P2/ 2pn dA.
Let & = X5+ X+ + M, and p® = X5 + X5 + -+ Xy, 5o, = p® + piY. Then
o VO™ ZpQdx = [ [VO)]e ™/ %p da

by the change of variables \j — —Aome1j fori = 1,..., 2m. From this additional
symmetry and the fact that [V(\)| = V(\) for A € Rom, we obtain

In(2m) = 22m)! [, V(e p dA.

(13) = 2(2m)| dZmEm.nq
where
Einn = ./Rz det[V/Zi*ZO\j)}m.Zm p(Z? da,

from (12). Now we integrate over “alternate variables™: by integrating over Apj_1 from
A2j—2 10 A}, withthe conventionthat Ag = —oo, andthen setting i = Ay, fori =1,..., m
and i = (p, .-, pm), and denoting px( 1) by p«, we obtain

Enn = ./Rm det[vai2( 1) — Vai—a( pj—1)- V/Zi—z(ﬂj)}mmDZn du

- ,/Rmdet[VZi—Z(“i)'V&i—z(ﬂj)}mmpzn dy.
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where the second equality is by column operations within the matrix. But thisintegrand
isasymmetric function of p, so resymmetrising, but now with mvariables, gives

1

Emn = m Jem det[VZi—Z( Nj)-VIZi—Z(Ni)}m_mpZn dp

1
(m—1)!

(14) [ detVai-a( ). Vii_o( ), by .

Thematrix [Vai—2( 1), V5i_o( 1£)]mmissuch that columns 2j —1 and 2j involve the same
variable. We therefore carry out m simultaneous L aplace expansions of the determinant,
one for each of the paired columns. There are three types of 2 x 2 submatricesthat arise
in consequence, namely [Vvi(X), Vi(X)]", [V{ (X). Vi, (3)]", and [vi(x), Vi (X)]'. Now, integrating
an odd function over R gives 0, so

/R det[vi(x). vie()]'dx = . /R det[v/(x). V(9] 'dx = 0,
while by the orthonormality relation for the ¢;(x) and integration by parts,
/R det[vi(x). Vi, | 'dx = —25i ..

Thus the Laplace expansionsgive
m

(15) Emn= (=21} /R(q32i72(x)¢,2i—2(x) — ¢5_2(X)) X" dx.
i=1 -

Theintegral can be simplified in the following way. Integrating (11) yields

(16) Vitiop = —vV2 ¢+ \j o1 j>0.

where ®_; = 0. But substituting for ¢5_, by means of (11) and then using (16), we get

P25 = Paiz (—4/ 52— 1) ¢ai1+,/3(2 —2) ¢2i73)

_ 05— \/%(Zi —1) @y 2¢i-1 + \/%(Zi —3) Oy 4¢3, i > 2,
T —L oo i=1
V2 01, 9

to give atelescoping sum from which it follows that

2m—2

ml (050 — Pa20%_5) = \/%(Zm — 1)®om_2¢2m-1 + g 7.
= =

We now return to the determination of F,(N). It follows from (9) and (13) that
Fa(2m) = 2"(2M)Emnn/Emo. But Eno = (—2)™m, from (15), by orthonormality and
integration by parts. Thus, from (15) and the telescoping sum above,

a7 Fn(2m) = 2"(Imn + Kmn),
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where
2m—2
Imn = ,/3(2m—1) /sznq’zrmz(x)%ml(x) dx, Kmn= j:ZO /R ¢7 (X" dx.

Theproof isconcluded by making use of classical expansionsassociated with Hermite
polynomials, which are listed as they are applied, for completeness. The two integrals
are considered in turn. First,

1
2am-2 -

_ 1 —x2 /2 > on —y/2
v /[RHZm—Z(X)e /X Y "Hom-1(Yy)e dy dx

Y 2
/[R Loo Y*"Ham_1(y)Ham 2()e™/2e™Y/2 dxdy

Imn =

(18)

by reversing the order of integration. But it is readily checked that, for k > 1 and odd,

H(X) = (kgg/ zb,,kx21+1, whereb = (—1)(k—1—21")/2221jf1k! .
=0 (Lk—1-2))! (2 +1)
while, for k > 0,
X = L%ZJ ¢ xHk—21(X), wherecy = L
EN KT 2K (k- 21)!

and, fori > 1 and odd,

0 (i-1/2 )
/ 26 7/2dz= Y dgi X3 1eX/2 whereds; = (i —1)(i—3)--- (i +1— 29).
X s=0

Now apply these expansionsto evaluate expression (18) asfollows: first expand Ham-1(Y)
in powers of y using the b’s, then carry out the inner integration, giving d's, and finally
expressthe resulting powers of xin terms of the H’s using the ¢'s. Orthonormality of the

¢’sthen gives
1 m—1 n+j
Imn =5 > Bjom-1) Os2n+2j+1C1 2ne2j—25
j=0 s=0
wheren+j—s—1=m—1,and0 < | < n+j—s. Now transform the summation variables
witha=m—j—21landb=j—s—m+n+1, with the assumption that m > n > 0, to
obtain

1

5 2. Pma 12m1Co2brom—2Ona bom2n—2a-1
ab>0
a+b<n

ab>0 b a \ n

atb<n

|m.n

on rearrangement of the series. Thuswe have

(19) o = 1> (=2 ¥ (m— 3
k=0
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o ()L

where

forn,k > 0. Then
1
> ank(PXY = (1+Y) PL+x) 2 P(1+y(L+x)°

nk>0
B _1 X P
=({1+x (1_ (1+x)(1+y))

=3 (f) (X @92y,
r>0

0, evaluating the coefficient of x"yX, we obtain

ank(P) = (- 1)“*2(1‘] )(k+L_1)<f),

and substituting this into (19) gives, finally

g g )

r

For the second integral Km,, we use the expansion, for j > 0,

j okt /i
HE00 = ez where g = ,/,>~

ki \k
S0
2m—2 ' a:
Z Z 2kekJCI2n
j=0 k=0
wheren —1 =k, 0 < < n, whence
(2n)! k(M) 222 (1) _ (@2n)! «(n) [2m—1
Kimn = 22nn'§2 \k JZ; \k/ ~ 22l kZOZ \k/\ k+1 )’

The result now follows from (17), by combining the two evaluated integrals I, and
Kmn and by the polynomiality of the result in m, so m can be replaced by u/2 where u

is an indeterminate.

For example the result for n = 0, 1, 2 produces the expressions Fo(u) = u, F1(u) =
u+ U2, Fo(u) = 5u+ 5u? + 2u8, so there are, for example, 5 maps in locally orientable
surfaces with one vertex, 2 edges, and 1 face. In fact, we can be more specific than this
since the genus series for monopolesin orientable surfaces with n edges obtained in [8]

is

Gn(UI)_(zn) /)/ u )

2n! kO \k/ \k+1
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But locally orientable surfaces include both orientable and nonorientable surfaces. It
follows that the genus series for monopoles in nonorientable surfaces with n edgesis
Fn(u) — Gh(u). For example, we have G,(u) = u + 2u®, so, for orientable surfaces, there
are 2 monopoleswith 2 edges and 3 faces (they arein the sphere), and 1 with 2 edgesand
1 face (it isin the torus). Moreover, F»(u) — G,(u) = 4u + 5u?. Thus, for nonorientable
surfaces, there are 4 monopoleswith 2 edges and 1 face (these are therefore in the Klein
bottle) and 5 monopoles with 2 edges and 2 faces (these are therefore in the projective
plane).

The approach that has been used in the above result can be applied to determine the
genus series for other classes of maps. For example, in the case of dipoles, which are
maps with two vertices of equal degree, the integration proceeds as in the above result
for monopoles until we reach (14). At this stage, there is a slightly modified constant
outside, and the monomial u2" is replaced by u?_,ufl. Thus in the ensuing Laplace
expansion, the last two paired columns are treated specially, which resultsin an iterated
sum of integrals which are quartic in the ¢'s, in place of (15). We have been unable to
simplify the resulting multiple summationsin an attractive manner.
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