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Abstract. We study the moment map associated to the cotangent bundle of the space of
representations of a quiver, determining when it is £at, and giving a strati¢cation of its
Marsden^Weinstein reductions. In order to do this we determine the possible dimension vectors
of simple representations of deformed preprojective algebras. In an appendix we use deformed
preprojective algebras to give a simple proof of much of Kac's Theorem on representations of
quivers in characteristic zero.

Mathematics Subject Classi¢cations (2000). Primary 16G20, 53D20.

Key words. quiver representation, moment map, preprojective algebra.

1. Introduction

Let K be an algebraically closed ¢eld and let Q be a quiver with vertex set I .
Representations of Q of dimension vector a 2NI are given by elements of the space

Rep�Q; a� �
M
a2Q

Mat�ah�a� � at�a�;K�;

where h�a� and t�a� are the head and tail vertices of an arrow a 2 Q; isomorphism
classes correspond to orbits of the group

G�a� �
Y
i2I

GL�ai;K�
 !

=K�

acting by conjugation. Using the trace pairing there is an identi¢cation of the
cotangent bundle

T�Rep�Q; a� � Rep�Q; a�;

where Q is the double of Q, obtained by adjoining a reverse arrow a�: j! i for each
arrow a: i! j in Q.
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We consider the moment map ma: Rep�Q; a� ! End�a�0 de¢ned by

ma�x�i �
X
a2Q
h�a��i

xaxa� ÿ
X
a2Q
t�a��i

xa�xa;

where

End�a�0 � �yi� j
X
i2I

tr�yi� � 0

( )
� End�a� �

M
i2I

Mat�ai;K�:

If one uses the trace pairing to identify End�a�0 with the dual of the Lie algebra of
G�a�, then this is a moment map in the usual sense. (Identifying Rep�Q; a� with
its tangent space at any point, the natural symplectic form on the cotangent bundle
corresponds to the form

o�x; y� �
X
a2Q

ÿ
tr�xaya� � ÿ tr�xa�ya�

�
on Rep�Q; a�. Now if y 2 End�a�, and f : Rep�Q; a� ! K is de¢ned by f �x� �P

i tr�yima�x�i�, then dfx�y� � o��y; x�; y� for x; y 2 Rep�Q; a�, where �y; x� is de¢ned
by �y; x�a � yh�a�xa ÿ xayt�a� for any a 2 Q.)

Now the elements of End�a�0 which are invariant under G�a� acting by conjugation
are those whose components are scalar matrices. We identify them with the l 2 KI

which have l � a �Pi2I liai equal to zero. In this paper we study the ¢bres
mÿ1a �l� and the quotients mÿ1a �l�==G�a�. These are Marsden^Weinstein reductions
[15], except that we work with schemes rather than manifolds.

This moment map has been considered before. Kronheimer [11] constructed the
Kleinian singularities and their deformations in this way from the extended Dynkin
quivers (see also [2, 5]). Later, Lusztig [14, Section 12] used the nilpotent cone
of mÿ1a �0� in his geometric construction of the negative part of the quantum group
of type Q, for any quiver Q without loops. Finally Nakajima [16^18] used the
moment map to de¢ne some quiver varieties and used these in a geometric con-
struction of integrable representations of Kac^Moody Lie algebras. In the ¢rst
of his papers he used hyper-Ka« hler quotients to de¢ne a family Mz, and this family
includes mÿ1a �l�==G�a� with K � C by [16, Theorem 3.1]. In his later papers he used
geometric invariant theory quotients, and mÿ1a �0�==G�a� appears as the variety
M0�v; 0� in [18, ½3].

Kac [7, 8] has shown that the dimension vectors of indecomposable represen-
tations of Q are exactly the positive roots for Q, and that the number of parameters
of indecomposable representations of dimension a is given by the function

p�a� � 1�
X
a2Q

at�a�ah�a� ÿ a � a;

where a � a �Pi2I a
2
i . After some preliminaries in Sections 2 and 3, we use Kac's
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Theorem in Section 4 to compute the dimension of mÿ1a �l� and then use his `canonical
decomposition' to prove the following result.

THEOREM 1.1. If a 2NI then the following are equivalent

(1) ma is a £at morphism.
(2) mÿ1a �0� has dimension a � aÿ 1� 2p�a�.
(3) p�a�X Pr

t�1 p�b�t�� for any decomposition a � b�1� � � � � � b�r� with the b�t� positive
roots.

(4) p�a�X Pr
t�1 p�b�t�� for any decomposition a � b�1� � � � � � b�r� into nonzero

b�t� 2NI .

The deformed preprojective algebra introduced by M. P. Holland and the author
[5] (see also [3]) is the algebra de¢ned for l 2 KI by

Pl � KQ
� X

a2Q
�a; a�� ÿ

X
i2I

liei

 !
;

where KQ is the path algebra ofQ, the trivial path at vertex i is denoted ei, and �a; a��
is the commutator aa� ÿ a�a.

Clearly if l 2 KI and l � a � 0, then mÿ1a �l� is identi¢ed with the space of
representations of Pl of dimension vector a. Now the closed orbits of G�a� on
Rep�Q; a� correspond to isomorphism classes of semisimple representations of Q
of dimension a. (For example, take y � 0 in [9, Proposition 3.2].) Thus the closed
orbits of G�a� on mÿ1a �l� correspond to isomorphism classes of semisimple
representations of Pl of dimension a. Of these, the orbits on which G�a� acts freely
are those corresponding to a simple representation of Pl. Our main result is as
follows.

THEOREM 1.2. For l 2 KI and a 2NI the following are equivalent

(1) There is a simple representation of Pl of dimension vector a.
(2) a is a positive root, l � a � 0, and p�a� >Pr

t�1 p�b�t�� for any decomposition
a � b�1� � � � � � b�r� with rX 2 and b�t� a positive root with l � b�t� � 0 for all t.

In this case mÿ1a �l� is a reduced and irreducible complete intersection of dimension
a � aÿ 1� 2p�a�, and the general element of mÿ1a �l� is a simple representation of Pl.

The special case l � 0 answers some questions of Nakajima. In [17, Problem 4.6],
in the situation where Q has no loops, Nakajima asks whether if Q is connected
and non-Dynkin then P0 has a simple representation which is not one-dimensional.
This is true, for in Theorem 1.2 one can take a to be any minimal imaginary root.
In [18, Question after Lemma 4.9], he asks which elements of the fundamental region
are dimension vectors of simple representations of P0. The answer is given by
Theorems 1.2 and 8.1.
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Henceforth we write Sl for the set of a satisfying the conditions in part (2) of
Theorem 1.2. In Section 5 we study the set Sl, and provide another characterization
of it. In Section 6 we use Kac's Theorem again to prove that mÿ1a �l� is irreducible of
dimension a � aÿ 1� 2p�a� for a 2 Sl. We then use Scho¢eld's theory of general
representations of quivers to show that the general element of mÿ1a �l� is a simple
representation. This proves (2)�) (1). The implication (1)�) (2) is more com-
plicated and is proved in Sections 7 to 10.

If a 2 Sl, how many simple representations of dimension a are there? The
G�a�-orbit of a simple representation has dimension a � aÿ 1. Thus if a is a real root
(so p�a� � 0), there is a unique simple representation up to isomorphism, while if
a is an imaginary root (so p�a� > 0), there are in¢nitely many non-isomorphic simple
representations.

Now suppose that K has characteristic zero. In Section 11 we study the af¢ne
quotient schemes mÿ1a �l�==G�a�. Recall that the points of this quotient are in
one-to-one correspondence with the closed orbits, so with isomorphism classes
of semisimple representations of Pl of dimension a. Given a semisimple represen-
tation X , we can decompose it into its simple components X � X�k11 � � � ��
X�krr where the Xt are non-isomorphic simples. If b�t� is the dimension vector of
Xt, we say that X has representation type t � �k1; b�1�; . . . ; kr; b�r��: For t to occur
as the representation type of a semisimple representation of dimension a, clearly
one must have a � k1b�1� � � � � � krb�r� and b�t� 2 Sl for all t. In addition, although
the b�t� need not be distinct, any real root can occur as at most one of the b�t�.

THEOREM 1.3. If t is a representation type, then the set of semisimple represen-
tations of type t is an irreducible locally closed subset of mÿ1a �l�==G�a� of dimensionPr

t�1 2p�b�t��.

This has the following consequence.

COROLLARY 1.4. If l 2 KI and a 2 Sl then mÿ1a �l�==G�a� is a reduced and
irreducible scheme of dimension 2p�a�.

Finally, in an appendix we show how deformed preprojective algebras can be used
to give a simple proof of much of Kac's Theorem in case the base ¢eld has charac-
teristic zero. In particular, we give an explicit construction of the indecomposable
representations whose dimension vector is a real root.

Preliminary versions of these results (with l � 0) were ¢rst announced at a con-
ference on Geometry and Quivers in Hamburg in November 1996. I should like
to thank the organisers O. Riemenschneider and P. Slodowy for inviting me to attend
the meeting. I would also like to thank M. P. Holland for some useful discussions.

Remarks added in April 2000 (after writing the paper [4]). We would like to
explain some additional applications of the results in this paper to the study of
Nakajima's quiver varieties.
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Let Q0 be a quiver with vertex set I . In case Q0 has no oriented cycles this is to
correspond to an orientation O of a graph �I;E� as in [18, Section 3.1]. For
v;w 2NI , let M�v;w� be the space

Rep�Q0; v� �
M
k2I

Mat�vk � wk;K� �
M
k2I

Mat�wk � vk;K�:

There is a natural action of the group Gv �
Q

k2I GL�vk;K� and a moment map

m:M�v;w� !
M
k2I

Mat�vk;K�

whose k-th component sends �B; i; j� toX
a2Q0
h�a��k

BaBa� ÿ
X
a2Q0
t�a��k

Ba�Ba �
X
k2I

ikjk:

One of the spaces that Nakajima considers is

M0�v;w� � mÿ1�0�==Gv:

Let Q be the quiver obtained from Q0 by adjoining a new vertex1 and wk arrows
from 1 to k for each k 2 I ; let a be the dimension vector for Q whose restriction
to I is equal to v and with a1 � 1. By dividing the matrices in Mat�vk � wk;K� into
their columns, and the matrices in Mat�wk � vk;K� into their rows, one can identify

M�v;w� � Rep�Q; a�; Gv � G�a�:
Moreover, m corresponds to the usual moment map ma, so we have

M0�v;w� � mÿ1a �0�==G�a�:
Thus the set Mreg

0 �v;w� of [18, ½3.v] is nonempty if and only if a 2 S0.
The other space that Nakajima considers is the quiver variety

M�v;w� � mÿ1�0�==�Gv; w0� � mÿ1a �0�==�G�a�; w�
in the notation of [9], where w0:Gv ! K� is the character de¢ned by w0�g� �Q

k2I det�gÿ1k �, and w is the corresponding character of G�a�. This is a smooth variety.
We say that a representation of P0 of dimension b is v-cogenerated (where v is a
vertex with bv � 1) if it has no nonzero subrepresentation which is zero at v. This
is dual to the notion of `v-generated' of [4, Section 2]. By [18, Lemma 3.8] the points
of M�v;w� are in one-to-one correspondence with isomorphism classes of
1-cogenerated representations of P0 of dimension a.

Now assume that K is the ¢eld C of complex numbers. It is claimed in [18,
Theorem 6.2] that M�v;w� is connected, but this is retracted in [19, Section 7.5].
Nakajima has mentioned to the author that connectivity can be recovered in some
cases, the following argument works in all cases, however.
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De¢ne l by lk � ÿ1 for k 2 I and l1 �
P

k2I vk. Thus l � a � 0, but l � b 6� 0 for
all 0 < b < a. If a is a root then trivially a 2 Sl, so Theorem 1.2 implies that
mÿ1a �l�==G�a� is nonempty and irreducible. On the other hand, if a is not a root, then
Theorem 1.2 implies that there is no representation of Pl of dimension a, so that
mÿ1a �l�==G�a� is empty. Now there is a bijection

mÿ1a �l�==G�a� ! mÿ1a �0�==�G�a�; w� �M�v;w�:
which is continuous for the analytic topology. (See [16, ½½3,4] and [4, ½3].) It follows
that M�v;w� is either non-empty connected or empty, according to whether a is
a root for Q or not.

2. Notation and Re£ection Functors

Let Q be a quiver with vertex set I and let K be an algebraically closed ¢eld. In this
section we introduce some standard notation, recall the re£ection functors, and
determine the effect of re£ection functors on the ¢bres mÿ1a �l�.

We call elements of ZI (or sometimes RI ) vectors, and write ei for the coordinate
vector at a vertex i. We partially order ZI via aX b if ai X bi for all i, and we write
a > b to mean that aX b and a 6� b. We say that a is sincere if ai > 0 for all i.

The Ringel form on ZI is de¢ned by

ha; bi �
X
i2I

aibi ÿ
X
a2Q

at�a�bh�a�:

Let �a; b� � ha; bi � hb; ai be its symmetrization. The corresponding quadratic form
q�a� � ha; ai � 1

2 �a; a� is the Tits form, and we have p�a� � 1ÿ q�a�. The fundamental
region is the set of 0 6� a 2NI with connected support and with �a; ei�W 0 for every
vertex i.

If i is a loopfree vertex (so q�ei� � 1), there is a re£ection si:ZI ! ZI de¢ned by
si�a� � aÿ �a; ei�ei. The real roots (respectively imaginary roots) are the elements
of ZI which can be obtained from the coordinate vector at a loopfree vertex
(respectively � an element of the fundamental region) by applying some sequence
of re£ections at loopfree vertices.

There is a re£ection ri:KI ! KI which is dual to si. It is de¢ned by ri�l�j �
lj ÿ �ei; ej�li. It satis¢es ri�l� � a � l � si�a� for all a.

We say that the re£ection at a loopfree vertex i is admissible for the pair �l; a� if
li 6� 0. Let � be the smallest equivalence relation on KI �ZI with �l; a� � �ri�l�;
si�a�� whenever the re£ection at i is admissible for �l; a�.

If the re£ection at i is admissible for �l; a� then by [5, ½5] there is a re£ection functor
from representations of Pl to representations of Pri�l� which acts as as si on
dimension vectors. (In fact these re£ection functors were discovered earlier, by
Rump [21].)

We brie£y describe the construction. Assume for simplicity that no arrow in Q has
tail at i, and let H � fa 2 Q j h�a� � ig. Suppose that V is a representation of Pl,
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given by vector spaces Vj for each vertex j and linear maps Va:Vt�a� ! Vh�a� for each
arrow a 2 Q. De¢ne V� �

L
a2H Vt�a� and let ma:Vt�a� ! V� and pa:V� ! Vt�a� be

the canonical inclusions and projections. De¢ne m:Vi ! V� and p:V� ! Vi by

m �
X
a2H

maVa� ; p � 1
li

X
a2H

Vapa:

The relations forPl ensure that pm � 1Vi , so that mp is an idempotent endomorphism
of V�. By de¢nition the re£ection functor sends V to the representation V 0 of Pri�l�

given by vector spaces V 0j = Vj for j 6� i and V 0i � Im�1ÿ mp�, and by linear maps
V 0a � Va and V 0a� � V 0a for a 2 Q with h�a� 6� i, and

V 0a � ÿli�1ÿ mp�ma:V 0t�a� ! V 0i ; V 0a� � pajV 0i :V
0
i ! V 0t�a�;

for a 2 H.
We use the re£ection functors to relate the schemes mÿ1a �l� and mÿ1si�a��ri�l��

(equipped with their scheme structure as ¢bres of the moment map). For our geo-
metric arguments all schemes are quasiprojective over K , and all points are closed
points.

LEMMA 2.1. If 0 6� n 2 K and m; n are non-negative integers, then the projection
from

S � f�X ;X�;Y ;Y �� j XX� � n1;YY � � ÿn1;X�X ÿ Y �Y � n1g
�Mat�n� �n�m�;K� �Mat��n�m� � n;K��
�Mat�m� �n�m�;K� �Mat��n�m� �m;K�

to

X � f�X ;X�� j XX� � n1g
�Mat�n� �n�m�;K� �Mat��n�m� � n;K�

is a principal GL�m;K�-bundle. Moreover, the natural scheme structures on S and X
given by the indicated relations are reduced.

Proof. By rescaling X and Y one can replace the equations by XX� � 1, YY � � 1,
andX�X � Y �Y � 1, so the matrices de¢ne inverse isomorphisms betweenKn�m and
Kn � Km. The result is now standard.

LEMMA 2.2. Suppose given a pair �l; a� with l � a � 0. If i is a loopfree vertex with
li 6� 0 then there is a scheme T and morphisms

mÿ1a �l�  
f

T !g mÿ1si�a��ri�l��

where the map f is a principal GL�si�a�i;K�-bundle and g is a principal GL�ai;K�-
bundle. In particular, mÿ1a �l� and mÿ1si�a��ri�l�� have the same number of irreducible
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components, and

dim mÿ1si�a��ri�l�� ÿ si�a� � si�a� � dim mÿ1a �l� ÿ a � a:

Proof. We suppose for simplicity that no arrow in Q has tail at i. We can do this
because the deformed preprojective algebra Pl does not depend on the orientation
of Q, see [5, Lemma 2.2]. (If a were an arrow with tail at i we could reverse it
by sending xa to xa� and xa� to ÿxa for x 2 Rep�Q; a�.) Let H � fa 2 Q j h�a� � ig.

Let Q0 be the quiver obtained from Q by deleting all arrows in H, and let
R0 � Rep�Q0; a�. Letting n � ai and

m � si�a�i � ÿai �
X
a2H

at�a�;

one can combine the matrices for the arrows incident at i into block matrices, and
identify

Rep�Q; a� � R0 �Mat�n� �n�m�;K� �Mat��n�m� � n;K�;
so that if x 2 Rep�Q; a� corresponds to a triple �x0;X ;X�� then

ma�x�i �
X
a2H

xaxa� � XX�:

Also one can identify

Rep�Q; si�a�� � R0 �Mat�m� �n�m�;K� �Mat��n�m� �m;K�
and if y corresponds to �x0;Y ;Y �� then

msi�a��y�i �
X
a2H

yaya� � YY �:

We now apply Lemma 2.1 with n � li to obtain a principal GL�m;K�-bundle
f 0:R0 � S ! R0 � X � fx 2 Rep�Q; a� j ma�x�i � li1g;

where S and X are as in Lemma 2.1. Exchanging the role of the X 's and Y 's, we also
obtain a principal GL�n;K�-bundle

g0:R0 � S ! fy 2 Rep�Q; si�a�� j msi�a��y�i � ri�l�i1g:

To show that f 0 and g0 restrict to give a scheme T and principal bundles f and g, we
need to show that for each vertex j 6� i and each z 2 R0 � S we have

ma�f 0�z��j ÿ lj1 � msi�a��g0�z��j ÿ ri�l�j1
in Mat�aj;K�.

Now if x � f 0�z� and y � g0�z� then the relation X�X ÿ Y �Y � li1 for S implies
that xa�xa ÿ ya�ya � li1 for any a 2 H. Also xa � ya for any arrow a not incident
at i, so that xa�xa ÿ ya�ya � 0 if a 2 Q and h�a� 6� i. Thus, if j is a vertex different
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from i, we haveX
a2Q
t�a��j

xa�xa �
X
a2Q
t�a��j

ya�ya �Nli1;

where N is the number of arrows from j to i. Clearly we also haveX
a2Q
h�a��j

xaxa� �
X
a2Q
h�a��j

yaya�

since j 6� i. It follows that

ma�x�j ÿ msi�a��y�j � ÿNli1 � �lj ÿ ri�l�j�1;
as required.

3. Lifting Representations from Q to Pl

Let Q be a quiver with vertex set I and let l 2 KI . In this section we determine which
representations of Q lift to representations of Pl. That is, for a 2NI we determine
the image of the projection p: mÿ1a �l� ! Rep�Q; a�. (For Dynkin quivers this problem
has been studied by Rump [21]. His methods are, however, quite different.) In
addition, if U is a constructible subset of Im�p� which is G�a�-stable (that is, a union
of G�a�-orbits), we relate the dimension of pÿ1�U� to the number of parameters of
G�a� on U . Recall that if X is a scheme, G is an algebraic group acting on X ,
andU is a constructible subset ofX which isG-stable, then the number of parameters
(or modularity) of G on U , is de¢ned by

dimG U � max
d

dim�U \ Xd � � d ÿ dimG� �;

where Xd is the locally closed subset of X consisting of those points whose stabilizer
has dimension d, so which have orbit of dimension dimGÿ d.

LEMMA 3.1. If x � �xa�a2Q 2 Rep�Q; a�, then there is an exact sequence

0! Ext1�x; x�� ! Rep�Qop; a� !c End�a� !t End�x�� ! 0;

where c sends �ya� � 2 Rep�Qop; a� to Pa2Q�xa; ya� � and t sends �yi� to the linear map
End�x� ! K sending �fi� to

P
i tr�yifi�.

Proof. This is just a fuller statement of [5, Lemma 4.2].

LEMMA 3.2. If l 2 KI and x is a representation of Q which lifts to Pl, thenP
i litr�yi� � 0 for any y 2 End�x�.
Proof.Applying Lemma 3.1, since x lifts, one deduces that l is in the image of c, so

in the kernel of t.
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THEOREM 3.3. If l 2 KI then a representation of Q lifts to a representation ofPl if
and only if the dimension vector b of any direct summand satis¢es l � b � 0. Moreover,
if x 2 Rep�Q; a� does lift, then pÿ1�x� � Ext1�x; x��

Proof. If the representation lifts, and there is a direct summand of dimension b
then letting y be the projection onto this summand, we have l � b � 0 by Lemma 3.2.

For the converse, it suf¢ces to prove the liftability of any indecomposable x whose
dimension vector a satis¢es l � a � 0. Now any endomorphism y of x is the sum of a
nilpotent matrix and a scalar matrix, so

P
i litr�yi� � 0. Thus, considering l as

an element of End�a�, it is in the kernel of the map t of Lemma 3.1. Thus l is
in the image of c, and this gives a lift to Pl.

LEMMA 3.4 If U is a G�a�-stable constructible subset of Rep�Q; a� contained in the
image of p, then

dim pÿ1�U� � dimG�a�U � a � aÿ q�a�:

If in addition U is a G�a�-orbit, then pÿ1�U� is irreducible of dimension a � aÿ q�a�.
Proof. By partitioning U we may suppose that all representations x 2 U have

endomorphism ring of dimension e. Now if x 2 U then by Theorem 3.3 the ¢bre
pÿ1�x� is isomorphic to Ext1�x; x��, so has dimension eÿ q�a� by Lemma 3.1. Thus
dim pÿ1�U� � dimU � eÿ q�a� On the other hand, each orbit of G�a� on U has
dimension dim G�a� � 1ÿ e, so dimG�a�U � dimU ÿ 1� eÿ dim G�a�. The dimen-
sion formula follows.

Now suppose in addition that U � G�a�x. Since dimG�a�U � 0 the inverse image
pÿ1�U� has dimension a � aÿ q�a�. It remains to prove that it is irreducible. Observe
that G�a� acts on mÿ1a �l� and p is equivariant. Now if pÿ1�U� is not irreducible
one can ¢nd nonempty disjoint G�a�-stable open subsets Z1;Z2. But p�Zi� � U ,
so pÿ1�x� \ Zi (i � 1; 2) are non-empty disjoint open subsets of pÿ1�x�, which is
impossible since pÿ1�x� is irreducible.

4. Application of Kac's Theorem

Let Q be a quiver with vertex set I . Kac's Theorem [7, 8] asserts that the dimension
vectors of indecomposable representations of Q are exactly the positive roots for
Q. Moreover, if a is a positive real root then there is a unique indecomposable rep-
resentation of dimension a, while if a is a positive imaginary root then
dimG�a� I�a� � p�a� where I�a� � Rep�Q; a� is the set of indecomposable represen-
tations.

We need some properties of dimG which are easy to prove using Chevalley's
Theorems.

LEMMA 4.1. Let X be a scheme on which an algebraic group G acts. Suppose that
Z � Y � X are constructible subsets, with Y being G-stable and Z being H-stable,
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where H is a closed subgroup of G. If Y � GZ and the intersection of Z with any
G-orbit in Y is a ¢nite union of H-orbits, then dimH Z � dimG Y.

LEMMA 4.2. Suppose that algebraic groups Gi act on schemes Xi. If Yi � Xi are
Gi-stable constructible subsets, then setting G �Qi Gi and Y �Qi Yi, we have
dimG Y �Pi dimGi Yi.

For arbitrary a, suppose that a � b�1� � � � � � b�r� is a decomposition of a as a sum
of positive roots for Q, and let I�b�1�; . . . ; b�r�� be the subset of Rep�Q; a� consisting
of the representations whose indecomposable summands have dimension b�t�.
Clearly this is a G�a�-stable constructible set.

LEMMA 4.3. If a � b�1� � � � � � b�r� with the b�t� positive roots, then

dimG�a� I�b�1�; . . . ; b�r�� �
Xr
t�1

p�b�t��:

Proof. Let R0 � Rep�Q; b�1�� � � � � �Rep�Q; b�r��, and consider it as a subset of
Rep�Q; a� using block-diagonal matrices. Let I 0 be the constructible subset of R0

consisting of the elements in which each representation of dimension b�t� is
indecomposable. By the Krull^Schmidt Theorem, Lemma 4.1 applies to the subsets

I 0 � I�b�1�; . . . ; b�r�� � Rep�Q; a�
with H the subgroup of G�a� corresponding to the product

Q
t G�b�t��. Thus

dimG�a� I�b�1�; . . . ; b�r�� � dimH I 0 �
X
t

dimG�b�t�� I�b�t��

by Lemma 4.2, and this is
P

t p�b�t�� by Kac's Theorem.

THEOREM 4.4. Given a pair �l; a� with l � a � 0, we have

dim mÿ1a �l� � a � aÿ q�a� �m;

where m is the maximum value of
Pr

t�1 p�b�t��, where rX 1 and a � b�1� � � � � � b�r� is a
decomposition with each b�t� a positive root and l � b�t� � 0. In particular, mÿ1a �l� is
non-empty if and only if there is such a decomposition.

Proof. Let p: mÿ1a �l� ! Rep�Q; a� be the projection. We decompose Rep�Q; a� as a
union of sets of the form I�b�1�; . . . ; b�r��, and consider the inverse images
pÿ1�I�b�1�; . . . ; b�r���. If some b�t� has l � b�t� 6� 0 then this inverse image is empty.
Otherwise, by Lemmas 3.4 and 4.3 this inverse image has dimensionPr

t�1 p�b�t�� � a � aÿ q�a�. The result follows.
We now turn to the proof of Theorem 1.1. We use Kac's `canonical decom-

position'. (See [8, Section 1.18].)
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LEMMA 4.5. If a 2NI has canonical decomposition a � b�1� � � � � � b�r� with rX 2,
then p�a� <P

t p�b�t��.
Proof. This holds since �b�s�; b�t��X 0 for s 6� t by [8, Proposition 1.20].

Proof of Theorem 1.1. Let d � a � aÿ 1� 2p�a�, the relative dimension of ma.
(1)�) (2) Since ma is £at, its image U is an open subset of End�a�0. Now apply [6,

Corollaire 6.1.4] to the map Rep�Q; a� ! U . Clearly 0 2 U , so mÿ1a �0� has dimension
d.

(2)�) (3) Follows from Theorem 4.4.
(3)�) (4) If p�a� <P

t p�b�t�� for some decomposition a � b�1� � � � � � b�r�, then
Lemma 4.5 shows that the inequality remains true when we replace each b�t� by
all the terms in its canonical decomposition. But now the terms are positive roots.

(4)�) (1) By Lemma 4.5 the canonical decomposition of a can only have one
term. It follows that a is a Schur root. (See [8, Section 1.18].) This means that there
is a representation of Q of dimension a whose endomorphism algebra is the base
¢eld K . If x 2 Rep�Q; a� is such a representation, then the map c of Lemma 3.1
has 1-dimensional cokernel. Since Im�c� is clearly contained in End�a�0, it follows
that Im�c� � End�a�0. It follows that any element of End�a�0 is the image under
the moment map ma: Rep�Q; a� ! End�a�0 of an element of Rep�Q; a� whose
restriction toQ is equal to x. In particular the moment map is surjective. We consider
its ¢bres mÿ1a �f�with f 2 End�a�0. Let ~p: mÿ1a �f� ! Rep�Q; a� be the projection. Now
if U is a constructible G�a�-stable subset of Rep�Q; a� then

dim ~pÿ1�U�W dimG�a�U � a � aÿ q�a�:

by the same argument as Lemma 3.4. It follows by Lemma 4.3 and the hypothesis
that mÿ1a �f� has dimension at most d. Clearly, in fact, it is equidimensional of
dimension d. Now [6, Proposition 6.1.5] implies that ma is £at.

5. Properties of the Set Sl

Throughout this section, Q is a quiver with vertex set I . We prove some combina-
torial results about the set Sl which are needed later. In the course of this, we obtain
another characterization of Sl, Theorem 5.6.

We write R�l for the set of positive roots a with l � a � 0. Thus Sl is the set of
a 2 R�l with the property that p�a� >P

p�b�t�� for any decomposition
a � b�1� � � � � � b�r� with rX 2 and all b�t� 2 R�l . We write NR�l for the set of sums
of elements of R�l (including 0).

LEMMA 5.1. Given any pair �l; a� with a 2NR�l , if i is a vertex with li � 0 and
�a; ei� > 0, then aÿ ei 2NR�l .

Proof. Since �a; ei� > 0 there cannot be a loop at i, and therefore there is a re£ection
at i, although it is not admissible. Now a is a sum of positive roots

Pr
t�1 g

�t�. If any g�t�
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is equal to ei then we're done. Otherwise all si�g�t�� are positive roots, so in R�l . Thus
si�a� � aÿ �a; ei�ei 2NR�l . Now adding on a suitable number of copies of
ei 2 R�l , it follows that aÿ ei 2NR�l .

LEMMA 5.2. If �l; a� � �l0; a0� then
(1) a 2 R�l if and only if a0 2 R�l0.
(2) a 2NR�l if and only if a0 2NR�l0.
(3) a 2 Sl if and only if a0 2 Sl0.

Proof. It suf¢ces to prove (1), for then the other parts follow. Consider the admiss-
ible re£ection at a loopfree vertex i with li 6� 0. Now if a is a positive root, then so is
si�a�, except when a � ei. However, this case cannot occur since l � ei 6� 0, so that
ei =2R�l .

LEMMA 5.3. Given any pair �l; a� with a 2NR�l , there is an equivalent pair �l0; a0�
with the property that �a0; ei�W 0 whenever l0i 6� 0.

Proof. Amongst all equivalent pairs, choose �l0; a0� with a0 minimal. This is poss-
ible since Lemma 5.2(2) ensures that a0X 0. Now if l0i 6� 0 and there is a loop at
i then �a0; ei�W 0 is automatic, while if l0i 6� 0 and i is loopfree then �a0; ei�W 0,
for otherwise the pair �ri�l0�; si�a0�� is smaller.

LEMMA 5.4. Suppose that 0 6� a 2NR�l and �a; ei�W 0 for all vertices i with li 6� 0.
If �b; aÿ b�W ÿ 2 whenever b; aÿ b are nonzero and in NR�l , then a is either a
coordinate vector or in the fundamental region.

Proof. Suppose that a is not a coordinate vector. We have �a; ei�W 0 for all i, for if
�a; ei� > 0 then we must have li � 0. Now the inequality �a; ei� > 0 implies that i is
loopfree, so �ei; ei� � 2. Thus

�aÿ ei; ei� � �a; ei� ÿ 2 > ÿ2:
This contradicts the hypotheses, since aÿ ei 2NR�l by Lemma 5.1.

Next, the support quiver of a is connected. By assumption a 2NR�l , so we can
write a �Pr

t�1 g
�t� with the g�t� 2 R�l . Now supposing that the support of a is a dis-

joint union C [D with no arrows connecting C to D, then each g�t� has support
contained in either C or D. Letting b be the sum of the g�t� with support contained
in C gives �b; aÿ b� � 0, contrary to the assumption.

Thus a is in the fundamental region.

LEMMA 5.5. If 0 6� a 2NR�l and �b; aÿ b�W ÿ 2 whenever b; aÿ b are nonzero
and in NR�l , then a 2 R�l .

Proof. By Lemma 5.2 we may replace the pair �l; a� by any equivalent pair. Thus
by Lemma 5.3 we may suppose that �a; ei�W 0 whenever li 6� 0. Now by the previous
lemma a is either a coordinate vector or in the fundamental region. Thus it is in R�l .

We now have another description of the set Sl.

GEOMETRY OF THE MOMENT MAP FOR REPRESENTATIONS OF QUIVERS 269

https://doi.org/10.1023/A:1017558904030 Published online by Cambridge University Press

https://doi.org/10.1023/A:1017558904030


THEOREM 5.6. If a 2NI then a 2 Sl if and only if 0 6� a 2NR�l and
�b; aÿ b�W ÿ 2 whenever b; aÿ b are nonzero and in NR�l .

Proof. Suppose ¢rst that a 2 Sl. Clearly we have 0 6� a 2NR�l . We prove that
�b; aÿ b�W ÿ 2 whenever b; aÿ b are nonzero and in NR�l . For a contradiction,
suppose that �b; aÿ b�X ÿ 1 with b; aÿ b nonzero and in NR�l . It follows that
p�a�W p�b� � p�aÿ b�. This gives a decomposition of the form

a �
Xr
t�1

b�t�; 0 6� b�t� 2NR�l ; p�a�W
Xr
t�1

p�b�t��

with r � 2. Choose a decomposition of this type with rmaximal. Now each term b�t�

in this sum is nonzero, and belongs toNR�l . By maximality, if g; b�t� ÿ g are nonzero
and in NR�l , then p�b�t�� > p�g� � p�b�t� ÿ g�, so �g; b�t� ÿ g� < ÿ1 and, hence,
b�t� 2 R�l by Lemma 5.5. Now this decomposition contradicts the fact that a 2 Sl.

For the converse, suppose that 0 6� a 2NR�l and �b; aÿ b�W ÿ 2 whenever
b; aÿ b are nonzero and in NR�l . By Lemma 5.5 we have a 2 R�l . Assuming that
a =2Sl, there is a decomposition a �Pr

t�1 b
�t� with b�t� 2 R�l and with p�a�WPr

t�1 p�b�t��. It follows that q�a� ÿPr
t�1 q�b�t��X 1ÿ r, so

Xr
t�1
�b�t�; aÿ b�t�� �

X
t 6�k
�b�t�; b�k�� � 2

�
q�a� ÿ

Xr
t�1

q�b�t��
�
X 2ÿ 2r:

This implies that �b�t�; aÿ b�t�� > ÿ2 for some t, contrary to the assumption.

Note in particular that NR�0 �NI , giving the following simple description of S0.

COROLLARY 5.7. If a 2NI then a 2 S0 if and only if a > 0 and �b; aÿ b�W ÿ 2
whenever b 2NI and 0 < b < a.

Combining Lemmas 5.2, 5.3, 5.4 and Theorem 5.6, we have proved:

THEOREM 5.8. If a 2 Sl then there is an equivalent pair �l0; a0� with a0 either the
coordinate vector at a loopfree vertex or in the fundamental region. The ¢rst case
occurs if a is a real root; the second case if a is an imaginary root.

6. Existence of Simple Representations

LetQ be a quiver with vertex set I . In this section we prove the implication (2)�) (1)
of Theorem 1.2.

LEMMA 6.1. If X is an equidimensional scheme, Y is an irreducible scheme and
f :X ! Y is a dominant morphism with all ¢bres irreducible of constant dimension
d, then X is irreducible.
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Proof. If X is not irreducible, one can ¢nd disjoint irreducible open subsets Z;Z0.
Now the restriction of f to Z is a map Z! f �Z� whose ¢bres have dimension
at most d, so d � dim f �Z�X dimZ � dimX � d � dimY , so f �Z� � Y , and for
the general point y 2 Y the ¢bre Z \ f ÿ1�y� has dimension d. Similarly, for the gen-
eral point y 2 Y the ¢bre Z0 \ f ÿ1�y� has dimension d. But f ÿ1�y� is irreducible
of dimension d, so these two sets must intersect. A contradiction since Z;Z0 are
disjoint.

Recall that a representation is said to be a brick if its endomorphism algebra is the
base ¢eld K . We denote by B�a� � Rep�Q; a� the set of bricks for Q of dimension a.

If a is a dimension vector in the fundamental region and q�a� < 0 then by Kac's
Lemma 1 (see [8, Section 1.10]), the set B�a� is a dense open subset of
Rep�Q; a�, we have dimG�a� B�a� � p�a�, and dimG�a��I�a� n B�a�� < p�a�.

On the other hand, if a is in the fundamental region but q�a� � 0, then there need
not be any bricks. In this case the support quiver of a is extended Dynkin, a is
a multiple of the minimal imaginary root d, and we have the following result.

LEMMA 6.2. If Q is an extended Dynkin quiver with minimal imaginary root d and
a � md with mX 1, then every indecomposable representation of Q of dimension
a has endomorphism algebra of dimension m, and I�a� is an irreducible locally closed
subset of Rep�Q; a� with dimG�a� I�a� � 1.

Proof. Of course the fact that dimG�a� I�a� � 1 is one of the things that needs to be
veri¢ed during the proof of Kac's Theorem.

The indecomposable representations of Q of dimension a are known by the rep-
resentation theory of extended Dynkin quivers. They all belong to the tubular family
T of [20, ½3.6 (5), (6)]. Recall from [20, ½3.1] that T is a serial abelian category. Its
simple objects are called simple regular modules.

We claim that an indecomposable in T , say in a tube of rank r, has dimension a if
and only if it has a composition series in T of length mr. Namely, suppose Q
has no oriented cycles. (The case of an oriented cycle follows by [20, ½3.6 (6)].)
Inspecting the proof of [20, Theorem 3.4], we see that the tube contains a module
W0�r� of length r and with a composition series involving each simple regular module
in the tube. By the proof of [20, ½3.6 (5)], the moduleW0 corresponds to the maximal
root for the corresponding Dynkin quiver, so W0�r� has dimension d. The claim
follows.

It follows from this description that all indecomposables of dimension a have
endomorphism algebra of dimension m. Now I�a� is locally closed by [10, ½2.5
Proposition]. It is a union of in¢nitely many G�a�-orbits. We show that each orbit
is contained in an irreducible open subset of I�a� whose complement is a ¢nite union
of orbits. This implies the irreducibility of I�a�.

If U is a ¢nite set of simple regular modules, the perpendicular category is the full
subcategory

U? � fM j Hom�S;M� � Ext1�S;M� � 0 for all S 2 Ug:
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of the category of KQ-modules. Using the fact that the tubes are standard, and the
Auslander^Reiten formula [20, ½2.4 (5)] we see that an indecomposable of dimension
a is in U? if and only if its regular socle (in T ) is not in U .

We consider the orbit corresponding to an be an indecomposable module X of
dimension a. Choose a ¢nite collectionU of simple regular modules with the proper-
ties that (a)U does not contain the regular socle of X ; (b) at most one simple regular
module in each tube is not in U ; (c) if Q has no oriented cycles then there is a unique
tube which has all its simple regular modules in U , if Q is an oriented cycle then no
tube has all its simple regular modules in U . As in [3, Lemma 11.1], there is a
homomorphism y:KQ!Mat�N;K �x�� (where N �Pi di) such that restriction
induces an equivalence from the category of Mat�N;K �x��-modules to U?. Thus
there is aKQ-K �x�-bimodule L, free of rankN overK �x�, such that the tensor product
functor L
K �x� ÿ is an equivalence from K �x�-modules to U?. It follows that as
l 2 K varies, the modules L
K�x� K�x�= �xÿ l�m run through all indecomposables
in U? of dimension a. Choosing generators of L, this induces a morphism
f:K ! Rep�Q; a� from the af¢ne line, whose image meets all G�a�-orbits in I�a�
in U?. Now consider the map

G�a� � K ! Rep�Q; a�; �g; l�7!gf�l�:

The image is contained in I�a�, it contains the orbit for X , it is G�a�-stable, and it
omits only ¢nitely many orbits, so it is open in I�a�. Since G�a� � K is irreducible,
so is the image.

LEMMA 6.3. If �l; a� is a pair with a 2 Sl then mÿ1a �l� is irreducible of dimension
d � a � aÿ 1� 2p�a�. In particular it is a complete intersection.

Proof. By Theorem 5.8 and Lemma 2.2 we may reduce to the case where a is either
a coordinate vector, or in the fundamental region. If a is a coordinate vector at a
loopfree vertex, the result is trivial, so we suppose that a is in the fundamental region.

By Theorem 4.4 the space mÿ1a �l� has dimension d. Moreover, since d is the relative
dimension of ma, it is equidimensional of dimension d. It remains to prove that it is
irreducible.

Let p be the projection mÿ1a �l� ! Rep�Q; a�. Thus the image of p is given by
Theorem 3.3, and any nonempty ¢bre pÿ1�x� is isomorphic to Ext1�x; x��, so is
irreducible.

As in Theorem 4.4 we write mÿ1a �l� as a union of sets of the form
pÿ1�I�b�1�; . . . ; b�r���. All except pÿ1�I�a�� have dimension strictly smaller than d.

Suppose ¢rst that q�a� < 0. As mentioned before Lemma 6.2, the set B�a� of bricks
is a dense open subset of Rep�Q; a�. Now the set pÿ1�I�a� n B�a�� has dimension less
than d. Thus it suf¢ces to prove that pÿ1�B�a�� is irreducible. This space is open
in mÿ1a �l�, so it is equidimensional of dimension d. Moreover every ¢bre of the
map pÿ1�B�a�� ! B�a� is irreducible. Therefore pÿ1�B�a�� is irreducible by
Lemma 6.1.
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If q�a� � 0 and a is indivisible the same argument holds. The set B�a� of bricks is a
dense open subset, and there are only ¢nitely many other orbits of indecomposa-
bles.

Finally suppose that q�a� � 0 and a is divisible. Thus the support of a is extended
Dynkin with minimal positive imaginary root d, and a � md for some mX 2.
Now l � d 6� 0, for the decomposition a � d� � � � � d contradicts the fact that
a 2 Sl. However l � a � 0, so the only possibility is that the ¢eld K has characteristic
p > 0 and m is a multiple of p. Now in fact m � p, for otherwise the decomposition
a � pd� � � � � pd contradicts the fact that a 2 Sl.

Now the image of p is contained in the set of representations of Q with no
summand of dimension kd with k < p. Thus it consists of I�a� and only ¢nitely many
other orbits. Now pÿ1�I�a�� is obtained from mÿ1a �l� by removing the inverse images
of ¢nitely many orbits. These inverse images have dimension strictly less than d.
It follows that pÿ1�I�a�� is equidimensional of dimension d, and by the same argu-
ment pÿ1�I�a�� is irreducible, hence so is mÿ1a �l�.

LEMMA 6.4. Given a pair �l; a� with l � a � 0, if bW a then the set of elements of
mÿ1a �l� such that the corresponding representation of Pl has a subrepresentation
of dimension vector b is closed.

Proof. If Gr�k; n� denotes the Grassmannian of k-dimensional subspaces of an
n-dimensional space, then the set of pairs consisting of an element of mÿ1a �l� and
a subrepresentation of dimension b is a closed subset of mÿ1a �l� �

Q
i2I �bi; ai�: Since

Grassmannians are projective, its image under the projection onto mÿ1a �l� is closed.
(See [22, Lemma 3.1].)

LEMMA 6.5. Given a pair �l; a� with l � a � 0, if x 2 mÿ1a �l� corresponds to a rep-
resentation of Pl which is a brick (that is, has endomorphism algebra equal to
the base ¢eld K) then mÿ1a �l� is smooth at x.

Proof. It suf¢ces to prove that ma is smooth at x. Now this holds by [3, Lemma
10.3]. Alternatively, note that x corresponds to a brick if and only if x has trivial
stabilizer in G�a�, and the claim is standard differential geometry.

LEMMA 6.6. Let Q be an extended Dynkin quiver with minimal imaginary root d and
a � md with mX 1. Let b 2NI . If the general element of I�a� has subrepresentations
of dimension b and aÿ b, then b is a multiple of d.

Proof. If Q has no oriented cycles then clearly b must have defect zero, so the
subrepresentations of dimensions b and aÿ b must be regular. Now the general
element of I�a� is in a homogeneous tube, so all regular subrepresentations have
dimension a multiple of d. If Q is an oriented cycle then the same argument works,
for the general element of I�a� involves m copies of a simple representation of Q
of dimension d.
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THEOREM 6.7. If �l; a� is a pair with a 2 Sl then mÿ1a �l� is a reduced and irreducible
complete intersection of dimension a � aÿ 1� 2p�a�, and the general element of
mÿ1a �l� is a simple representation of Pl.

Proof. By Lemma 6.3, mÿ1a �l� is irreducible of the right dimension.By Lemma 6.4,
the simple representations are an open subset of mÿ1a �l�, so to show that the general
element is simple it suf¢ces to prove the existence of one simple representation
of dimension a. Now because the re£ection functors of [5] are equivalences, we
may assume as in Lemma 6.3 that a is a coordinate vector or in the fundamental
region. Clearly there is a simple representation if a is a coordinate vector, so assume
that a is in the fundamental region.

Assume for a contradiction that there is no simple representation. The
irreducibility of mÿ1a �l� implies that there is some b such that the general represen-
tation ofPl of dimension a has a subrepresentation of dimension b. Then by Lemma
6.4 this holds for every representation of Pl of dimension a.

First suppose that q�a� < 0 or a is indivisible. Then a is a Schur root. Thus the
general representation of Q of dimension a is indecomposable, so extends to a rep-
resentation of Pl, and hence has a subrepresentation of dimension b. Similarly,
the general representation of Qop of dimension a has a subrepresentation of
dimension b. Considering duals, this implies that the general representation of Q
of dimension a has a subrepresentation of dimension aÿ b. Now by [22, Theorem
3.4] the general representation of dimension a decomposes as a direct sum of
representations of dimension b and aÿ b, contrary to the fact that a is a Schur root.

Now suppose that q�a� � 0 and a is divisible. As in Lemma 6.3 the support of a is
extended Dynkin with minimal positive imaginary root d and a � pd where K
has characteristic p > 0 and l � d 6� 0. Now any element of I�a� extends to a represen-
tation of Pl, and hence has a subrepresentation of dimension b. Similarly, by
considering duals and the opposite quiver, any element of I�a� has a subrepre-
sentation of dimension aÿ b. Now by Lemma 6.6 we have b � kd with
0 < k < p. But then l � b 6� 0, contradicting the fact that there are representations
of Pl of dimension b.

Finally, since the general element x of mÿ1a �l� is a simple representation, it is a
brick, and hence by Lemma 6.5 it is a smooth point. Thus mÿ1a �l� is generically
reduced. Since it is also a complete intersection, hence Cohen^Macaulay, it is
reduced.

7. The Set Fl

In this section Q is a quiver with vertex set I . If l 2 KI , recall that R�l is the set of
positive roots a with l � a � 0. We de¢ne Fl to be the set of a 2 R�l with the property
that �a0; ei�W 0 for any �l0; a0� � �l; a� and any vertex i with l0i � 0. It is a sort of
fundamental region with respect to l. (Of course F0 is precisely the fundamental
region.) We prove that if there is a simple representation of Pl of dimension a, then
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either �l; a� is equivalent to a pair �l0; a0� with a0 the coordinate vector of a loopfree
vertex, or a 2 Fl.

By de¢nition, if �l; a� � �l0; a0� then a 2 Fl if and only if a0 2 Fl0 . Now Lemma 5.3
immediately implies the following result.

LEMMA 7.1. If a 2 Fl then there is an equivalent pair �l0; a0� � �l; a� with a0 in the
fundamental region. In particular a is an imaginary root.

LEMMA 7.2. If Pl has a simple representation of dimension a and i is a vertex, then
either a � ei, or li 6� 0, or �a; ei�W 0.

Proof. For simplicity we may suppose that no arrow has tail at i. Suppose that
li � 0. Let V be a simple representation of dimension vector a, with vector space
Vj at each vertex j. Letting V� � �Vt�a�, where the sum is over all arrows in Q with
head at i, the linear maps in V combine to give maps

Vi
ÿ!y ÿÿ
f

V�

with fy � 0.
Now if Ker�y� 6� 0 then V has a nonzero subrepresentationW whereWi � Ker�y�

and Wj � 0 for all j 6� i.
On the other hand, if Im�f� 6� Vi then V has a proper subrepresentation W with

Wi � Im�f� and Wj � Vj for all j 6� i.
Thus, assuming that V is simple and a 6� ei, we deduce that y is injective and f is

surjective. Since fy � 0 the map f induces a surjection V�=Im�y� ! Vi, and hence
dimV�X 2 dimVi. Thus �a; ei� � 2 dimVi ÿ dimV�W 0.

LEMMA 7.3. If there is a simple representation of Pl of dimension a then there is a
pair �l0; a0� � �l; a� with a0 a coordinate vector or in the fundamental region. In par-
ticular a is a root.

Proof. If �l0; a0� � �l; a� then, because of the re£ection functors, there is a simple
representation of Pl0 of dimension a0. In particular a0 > 0, so we can choose a pair
�l0; a0� with a0 minimal. Now either a0 is a coordinate vector, or in the fundamental
region. Namely, supposing that a0 is not a coordinate vector, since there is a simple
representation of dimension a0, it has connected support. Thus it suf¢ces to prove
that �a0; ei�W 0 for any vertex i. This is true if there is a loop at i, so we may suppose
that i is loopfree. If li � 0 then �a0; ei�W 0 by Lemma 7.2. If li 6� 0 then the re£ection
at i is admissible, and �a0; ei�W 0 by the minimality of a0.

LEMMA 7.4. If there is a simple representation ofPl of dimension a then either �l; a�
is equivalent to a pair �l0; a0� with a0 the coordinate vector of a loopfree vertex, or
a 2 Fl.
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Proof. Supposing that there is no equivalent pair �l0; a0� with a0 the coordinate
vector of a loopfree vertex, we show that a 2 Fl. Of course a is a root by Lemma
7.3. If �l0; a0� � �l; a� then there is a simple representation of Pl0 of dimension
a0. Now if i is a vertex with l0i � 0 then either there is a loop at i, in which case
�a0; ei�W 0 automatically, or if there is no loop at i, then �a0; ei�W 0 by Lemma 7.2.

8. Classi¢cation of Fl n Sl

Let Q be a quiver with vertex set I . It follows from Theorem 6.7 and Lemma 7.4 that
the set of imaginary roots in Sl is a subset of Fl. In this section we show that this is
quite close to being an equality. Not only is this a good way of determining the
elements of Sl (especially when l � 0, so there are no admissible re£ections), it
is also essential for the proof of our characterization of the dimension vectors of
simple representations of Pl.

THEOREM 8.1. If �l; a� is a pair with a 2 Fl n Sl, then after ¢rst passing to an equiv-
alent pair, and then passing to the support quiver of a and the corresponding
restrictions of l and a, one of the following cases holds:

(I) Q is extended Dynkin with minimal positive imaginary root d, and either l � d � 0
and a � md with mX 2 or, if the ¢eld K has characteristic p > 0, l � d 6� 0 and
a � m0pd with m0X 2.

(II) I is a disjoint union J [ K, withPi2K liai � 0, there is a unique arrowwith one end
in J and the other in K, say connecting vertices j 2 J and k 2 K, and aj � ak � 1.

(III) I is a disjoint unionJ [ K, there is a unique arrowwith one end inJ and the other in
K, say connecting vertices j 2 J and k 2 K, aj � 1, the restriction of Q to K is
extended Dynkin with extending vertex k and minimal positive imaginary root
d, l � d � 0, and the restriction of a to K is a multiple md with mX 2.

(Recall that ifQ is an extended Dynkin quiver and d is its minimal imaginary root,
then an extending vertex is a vertex i with di � 1.)

The proof of this theorem takes the rest of this section. Throughout, we assume
that a 2 Fl. In particular a is a root, so if it is sincere then Q is connected. We
say that b 2NI is a �ÿ1�-vector for the pair �l; a� if b; aÿ b 2NR�l and
�b; aÿ b� � ÿ1. We say that b is a divisor for �l; a� if it is a �ÿ1�-vector,
�b; ei�W 0 for every vertex i, and �aÿ b; ei�W 0 whenever �b; ei� � 0. If b is a divisor
for �l; a�, then

ÿ1 � �b; aÿ b� �
X
i

�aÿ b�i�b; ei�;

and all terms in this sum are W 0. Thus there is a vertex j, which we call the critical
vertex for b, with �b; ej� � ÿ1 and �aÿ b�j � 1, and for every other vertex i one
has �b; ei� � 0 or �aÿ b�i � 0.
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LEMMA 8.2. If q�a� < 0 then �b; aÿ b� < 0 for any b with b and aÿ b both nonzero
and in NR�l .

Proof. Suppose that �b; aÿ b�X 0 with b; aÿ b nonzero and in NR�l . By Lemma
7.1 there is an equivalent pair �l0; a0� with a0 in the fundamental region. Applying
the same sequence of re£ections to b gives a vector b0 with �b0; a0 ÿ b0�X 0 and
b0 and a0 ÿ b0 both nonzero. Now

q�a0� � q�a0 ÿ b0� � q�b0� � �b0; a0 ÿ b0�X q�a0 ÿ b0� � q�b0�

so by [10, Lemma 2, p123] the support quiver of a0 is extended Dynkin and a0 is a
multiple of the minimal imaginary root. But this implies that q�a� � q�a0� � 0, a con-
tradiction.

LEMMA 8.3. If a 2 Fl n Sl and q�a� < 0 then there is a �ÿ1�-vector b for �l; a�.
Proof. Combine the Lemma 8.2 with Theorem 5.6.

LEMMA 8.4. If a 2 Fl n Sl, q�a� < 0 and b is a �ÿ1�-vector for �l; a�, then there is an
equivalent pair �l0; a0� � �l; a� which has a divisor b0 satisfying b0W b.

Proof. Amongst all �ÿ1�-vectors b0 for all pairs �l0; a0� equivalent to �l; a�, choose
b0 to be minimal with b0W b. Then choose an equivalent pair �l0; a0� with a0 minimal
amongst those having b0 as a �ÿ1�-vector.

We claim that �b0; ei�W 0 for every vertex i. This is automatic if there is a loop at i,
so we may suppose that i is loopfree, and for a contradiction suppose that �b0; ei� > 0.
We divide into two cases according to whether or not l0i � 0.

Suppose that l0i 6� 0. This ensures that ei =2R�l0 , so any positive root in R�l0 remains a
positive root on applying the re£ection si. Thus si�b0� and si�a0 ÿ b0� are in NR�ri�l0�
and, hence, si�b0� is a �ÿ1�-vector for �ri�l0�; si�a0��. Now since �b0; ei� > 0 it follows
that si�b0� is strictly smaller than b0, a contradiction.

Suppose on the other hand that l0i � 0. The vector b0 ÿ ei is inNR�l0 by Lemma 5.1.
It is also nonzero, for if b0 � ei then

ÿ1 � �ei; a0 ÿ ei� � �a0; ei� ÿ 2;

which is impossible since �a0; ei�W 0 because a 2 Fl. Now b0 ÿ ei is a �ÿ1�-vector for
�l0; a0�, since

�b0 ÿ ei; a0 ÿ b0 � ei� � �b0; a0 ÿ b0� ÿ �ei; ei� ÿ �a0; ei� � 2�b0; ei�
X ÿ 1ÿ 2ÿ 0� 2 � ÿ1;

so �b0 ÿ ei; a0 ÿ b0 � ei� � ÿ1 by Lemma 8.2. This contradicts the minimality of b0.
Thus the claim is proved.

Finally, suppose that i is a vertex with �b0; ei� � 0. If l0i � 0, then �a0 ÿ b0; ei� �
�a0; ei�W 0 since a 2 Fl. On the other hand, if l0i 6� 0 then the re£ection at i is admiss-
ible for �l0; a0�, but si has no effect on b0, so if �a0 ÿ b0; ei� > 0 then b0 is a �ÿ1�-vector
for �ri�l0�; �sia0��, contradicting the minimality of a0. Thus b0 is a divisor for �l0; a0�.
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LEMMA 8.5.Let b be a divisor for �l; a�, and let j be the critical vertex for b. Suppose
that x is a vector whose components are nonnegative real numbers, with support con-
tained in the support of aÿ b, with xj � 0, �x; ej� � ÿ1 and with �x; ei� nonnegative
and integer-valued for every vertex i 6� j. Then there is at most one vertex i at which
�x; ei� is strictly positive, and at this vertex �x; ei� � 1.

Proof. If i is a vertex with xi 6� 0 then i 6� j and by assumption �aÿ b�i 6� 0, so
�b; ei� � 0 and, hence, �aÿ b; ei�W 0. It follows that �aÿ b; x�W 0. Now since
�aÿ b�j � 1 we have

�aÿ b; x� �
X
i

�aÿ b�i�x; ei� � ÿ1�
X
i 6�j
�aÿ b�i�x; ei�

Now the terms in this last sum are non-negative integers, so at most one term is
nonzero. Now if �x; ei� > 0 then certainly xi 6� 0, so by hypothesis �aÿ b�i 6� 0,
and hence the corresponding term in the sum is nonzero.

LEMMA 8.6.Let b be a divisor for �l; a�, and let j be the critical vertex for b. Suppose
there are vertices vi (1W iW n) and the only arrows connected to the vi are of the
following form (the orientation of the arrows is irrelevant): either

with nX 1, or

with nX 3. Then �aÿ b�vi � 0 for some i.
Proof. Supposing otherwise, we obtain a contradiction using Lemma 8.5. In the

¢rst case take x to be the vector with xvi � i for all i, and x zero at all other vertices.
In the second case take x to be the vector with xvi � i for iW nÿ 2,
xvnÿ1 � xvn � �nÿ 1�=2, and x zero at all other vertices.

LEMMA 8.7. Suppose that b is a divisor for �l; a�, and let j be the critical vertex for b.
Let Q0 be an extended Dynkin subquiver of Q contained in the support of aÿ b, and let
d be its minimal positive imaginary root. If for any vertex i 2 Q0 we de¢ne

si �
X
a2QnQ0
h�a��i

bt�a� �
X

a2QnQ0
t�a��i

bh�a�;

then either j =2Q0 and si � 0 for all vertices i 2 Q0, or j 2 Q0 and dj �
P

i2Q0 disi.
Proof. For any vertex i in Q0 we have �b; ei� � �bjQ0 ; ei�Q0 ÿ si. Thus �b; d� �
ÿPi disi. Since �aÿ b�i 6� 0 for all i inQ0, we have �b; ei� � 0 for any i 6� j. The result
follows.
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LEMMA 8.8. If Q0 is an extended Dynkin quiver and r and s are distinct extending
vertices, then there is no vector g with integer components, with �g; er� � 1, and with
�g; ei� � 0 for all i 6� r; s.

Proof.Adding a suitable multiple of the minimal positive imaginary root dwe may
assume that gr � 0.

Suppose that Q0 is of type ~An. Thus Q0 has shape

with p; qX 1. Now if gu1 � x and gv1 � y then the hypotheses imply that x� y � ÿ1
and gui � ix and gvi � iy for all i. Thus px � qy, so x and y have the same sign.
But then the equality x� y � ÿ1 is impossible for x; y integers.

Next suppose that Q0 is of type ~Dn, in which case there are two possibilities for the
location of r and s. The ¢rst possibility is

Now the hypotheses imply that gv1 � ÿ1, but also gvp � 2gt � 2gu, and then
gvp � gvpÿ1 � � � � � gv1 , so gv1 is even, a contradiction. The second possibility is

in which case gv1 � ÿ1, but also gv1 � 2gt, a contradiction.
Finally, suppose thatQ0 is of type ~En. For type ~E6, the components of g on the arm

containing r are successively 0;ÿ1;ÿ2 (so ÿ2 at the central vertex), but considering
the arm not containing r or s, if the component of g at the tip is x, then the com-
ponents on the arm are x; 2x; 3x. Thus we need 3x � ÿ2, which is impossible.
For type ~E7, the components of g on the arm containing r are successively
0;ÿ1;ÿ2;ÿ3, but considering the shortest arm, if the component of g at the tip
is x, then the component at the centre is 2x. Thus we need 2x � ÿ3, which is
impossible. Note that ~E8 doesn't occur since it has only one extending vertex.

LEMMA 8.9. Suppose that b is a divisor for �l; a�, that j is the critical vertex for b, and
that b and aÿ b are both sincere. If Q0 is an extended Dynkin subquiver of Q, then j is
contained in Q0, and it is not an extending vertex for Q0.

Proof. If j is not in Q0 then by Lemma 8.7 we have si � 0 for all i. Since b is sincere
this implies that any arrow with one vertex in Q0 is contained in Q0. Since Q is con-
nected we must have Q � Q0, but then j is in Q0, a contradiction. Thus j is in Q0.
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Now suppose that j is an extending vertex for Q0, that is, dj � 1, where d is the
minimal positive imaginary root for Q0. Thus by Lemma 8.7 there is a unique arrow
a in Q nQ0 with one end in Q0, say at vertex `. The other end cannot be in Q0,
say it is at vertex k. Then also bk � 1 and d` � 1. Now ` � j, for otherwise by con-
sidering the restriction of b to Q0 we obtain a contradiction by Lemma 8.8.

Now 0 � �b; ek�W 2bk ÿ bj ÿ t � 2ÿ bj ÿ t, where t is the sum of all terms bi with i
a vertex not in Q0 connected by an arrow to k. Thus bj is 1 or 2.

If bj � 2 then t � 0, so there are no arrows, apart from a incident at k. Thus there is
a linear quiver of length 1 attached to j, contrary to Lemma 8.6.

On the other hand, if bj � 1 then t � 1, so k must be connected to a unique vertex
u1 not in Q0, and bu1 � 1. Now the condition �b; eu1 � � 0 implies that u1 must be
connected to a unique vertex u2 6� k and bu2 � 1. Repeating in this way gives an
in¢nite collection of distinct vertices k; u1; u2; � � �. This is impossible.

Thus j cannot be an extending vertex for Q0.

LEMMA 8.10. If b is a divisor for �l; a� and b and aÿ b are both sincere then Q is a
star with three arms.

Proof. Since every vertex of the extended Dynkin quiver of type ~An is an extending
vertex, by Lemma 8.9 the quiver Q must be a tree.

Suppose that Q0 is a subquiver ofQ which is extended Dynkin of type ~Dn, and let d
be the minimal positive imaginary root for Q0. By Lemma 8.9, j must be contained in
Q0 and it is not an extending vertex. Thus j is on the trunk of Q0, and dj � 2. By
Lemma 8.6, there must be arrows in Q connecting to vertices on both sides of j,
so by Lemma 8.7 there are two such arrows, they attach to extending vertices
k; ` 2 Q0, and we have sk � s` � 1. Let m be the vertex in Q0 connected to k,
and let p be the other extending vertex in Q0 connected to m (or in case Q0 is of
type ~D4, let p be one of the other extending vertices with p 6� `). Since
�b; ep� � 0, we have bm � 2bp, so bm is even. On the other hand, since �b; ek� � 0
we have bm � sk � 2bk, so bm is odd, a contradiction.

Thus Q contains no subquiver of type ~Dn, and so it is a star with three arms.

LEMMA 8.11. If b is a divisor for �l; a� then b and aÿ b cannot both be sincere.
Proof. Supposing that b and aÿ b are both sincere, we derive a contradiction. By

Lemma 8.10, the quiver Q is a star with three arms. Moreover, j must be at the
tip of one of the arms by Lemma 8.6. Note that Q is not Dynkin or extended Dynkin
since �b; b� �Pi bi�b; ei� � ÿbj < 0. On deleting the vertex j, however, the quiver
must be Dynkin by Lemma 8.9.

We say that Q has type �p; q; r� if the arm containing j involves p arrows and the
other two arms involve q and r arrows respectively. Let k and ` be the vertices
at the tips of the second and third arms.

If Q has type �1; q; r�, let x be the vector which is 0 at j and 1 at every other vertex.
This gives a contradiction by Lemma 8.5.
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If Q has type �2; 1; r� for some r, let x be the vector which is 0 at j, 1 at k and the
vertex adjacent to j, and 2 at all other vertices. This gives a contradiction by Lemma
8.5.

If Q has type �2; q; r� with q; rX 2, then j is an extending vertex for a subquiver of
type ~E6. This is impossible by Lemma 8.9.

Finally suppose that Q has type �p; q; r� with pX 3. Now Q must contain an
extended Dynkin subquiver Q0. By Lemma 8.9, Q0 must contain j, but the condition
pX 3 forces j to be an extending vertex for Q0. This is impossible.

LEMMA 8.12. Suppose b is a divisor for �l; a�. Assume a is sincere but b is not. Then
bj � 0, and decomposing I as a disjoint union J [ K where K is the support of b
and J is the set of vertices where b vanishes, there is a unique arrow connecting
J to K. It connects j to some vertex k 2 K with bk � 1.

In addition there is a vertex ` 2 K (possibly equal to k) with the property that b` � 1,
�aÿ b; e`� � ÿ1, and �aÿ b; ei� � 0 for all i 2 K with i 6� `.

Proof. SinceQ is connected, at least one arrow a connects J toK. If its vertex in J
is i, then clearly �b; ei� < 0, so i � j. Now �b; ej� � ÿ1, so there can be no other arrows
between j and K, and if k is the end of a in K, then bk � 1.

Observe that �aÿ b; ei�W 0 for all i 6� j, since this is part of the de¢nition of a
divisor if �b; ei� � 0, while if �b; ei� 6� 0 then we must have �aÿ b�i � 0, and the
assertion is clear. Now since bj � 0 we have

ÿ1 � �b; aÿ b� �
X
i 6�j

bi�aÿ b; ei�

and in this sum all terms are W 0. Thus exactly one term is ÿ1, say corresponding to
the vertex i � `, and all other terms are zero. The result follows.

LEMMA 8.13. If Q0 is a Dynkin quiver it is not possible to ¢nd vertices r and s
(possibly equal) and vectors b and g with integer components, satisfying

br � 1; �b; es� � 1; �b; ei� � 0 for i 6� s;

gs � 1; �g; er� � 1; �g; ei� � 0 for i 6� r:

Proof. First observe that r 6� s, for otherwise �b; b� � 1, which is impossible since
�b; b� � 2q�b� is even.

Suppose there are vertices and arrows
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with nX 2, no other arrows attached to the vi (i < n), and all vi 6� s. Then the con-
ditions �b; evi � � 0 imply by induction that bvi � ibv1 . This is impossible since
br � 1. Similarly the con¢guration with r and s interchanged cannot occur. Thus
one of three cases occurs. We eliminate each one in turn.

(1) Q0 is of type An and r and s are the opposite tips. Starting at the vertex r, the
components of b must be 1; 2; 3; . . . ; n. But then �b; es� � 2nÿ �nÿ 1� �
n� 1 6� 1, a contradiction.

(2) Q0 is a star with three arms, and r and s occur on the same arms, with one of
them at the tip. Without loss of generality, assume that s is at the tip. Letting
x � bs, working inwards from the vertex s the components of b must be
x; 2xÿ 1; 3xÿ 2; � � �. Now if there are p arrows between r and s we have
1 � br � �p� 1�xÿ p, so x � 1. Thus the component of b at the centre of the star
is also 1, but considering either of the other arms, this is impossible.

(3) Q0 is a star with three arms, and r and s occur as tips of different arms. Let the
arm containing r contain p arrows, and let the arm containing s contain q arrows.
Now, starting from r, the components of b on the arm containing r are
1; 2; . . . ; p� 1. If x � bs then the components of b on the arm containing s are
x; 2xÿ 1; 3xÿ 2; . . . ; �q� 1�xÿ q. Thus p� 1 � �q� 1�xÿ q. Solving for x this
implies that xX 2 (since it is an integer), and then p� 1 � q�xÿ 1� � x > q� 1. Thus
p > q. A similar argument with r and s interchanged gives q > p. Contradiction.

LEMMA 8.14. If b is non-sincere divisor for �l; a�, a is sincere and aÿ b is not sincere,
then �l; a� is of type (II).

Proof. If b and aÿ b have disjoint support then it is easy to deduce from Lemma
8.12 that �l; a� is of type (II). Thus, supposing that the supports of b and aÿ b inter-
sect, we need to derive a contradiction.

We decompose K as the disjoint union of L, the set of vertices in K at which aÿ b
vanishes, and M, the intersection of K with the support of aÿ b.

SinceQ is connected there is at least one arrow b connecting L toM. If its vertex in
L is i, then clearly �aÿ b; ei� < 0, so i is the vertex ` appearing in Lemma 8.12. Now
�aÿ b; ei� � ÿ1 so there can be no other arrows between ` and M, and if m is
the end of b in M then �aÿ b�m � 1. Thus Q decomposes as follows (except that
possibly k � m).

LetQ0 be the restriction ofQ toM. Now any subquiver ofQ0must be connected by
an arrow to a vertex at which b is nonzero, soQ0 cannot contain an extended Dynkin
subquiver by Lemma 8.7. Thus Q0 is Dynkin, and considering the restrictions of b
and aÿ b to Q0, one gets a contradiction by Lemma 8.13.

282 WILLIAM CRAWLEY-BOEVEY

https://doi.org/10.1023/A:1017558904030 Published online by Cambridge University Press

https://doi.org/10.1023/A:1017558904030


LEMMA 8.15. If b is non-sincere divisor for �l; a� and aÿ b is sincere, then �l; a� is of
type (III).

Proof. LetQ0 be the restriction ofQ toK. Since aÿ b is sincere, we have �b; ei� � 0
for all i 6� j, and hence �b; ei�Q0 � 0 for all i 2 Q0. NowQ is connected, and hence so is
Q0, and then since b has support Q0, it follows from [10, Lemma 1, p123] that Q0 is
extended Dynkin and b is a multiple of the minimal positive imaginary root d
for Q0. Now bk � b` � 1, so b � d and k and ` are extending vertices for Q0. By
Lemma 8.8 we have k � `. Let g be the restriction of aÿ b to Q0. Then
�g; ei�Q0 � 0 for all i 2 Q0, so g is a multiple of d. The result follows.

Proof of Theorem 8.1. Suppose that a 2 Fl n Sl. Since a is an imaginary root,
q�a�W 0. Suppose ¢rst that q�a� � 0. By passing to an equivalent pair, we may
assume by Lemma 7.1 that a is in the fundamental region. Since q�a� � 0, this implies
by [10, Lemma 1, p123] that the support of a is extended Dynkin and a is a multiple of
the minimal imaginary root d, say a � md. If l � d � 0 then clearly mX 2, for other-
wise a 2 Sl. On the other hand, if l � d 6� 0 then since l � a � 0 the ¢eld K must have
characteristic p > 0 and m is a multiple of p, say m � m0p. Now m0X 2 for otherwise
a 2 Sl. Thus we are in the situation of case (I).

Thus suppose that q�a� < 0. We replace �l; a� by an equivalent pair to ensure that a
has support as small as possible. Then we pass to the support quiver Q0 of a and the
restrictions �l0; a0� of l and a. Clearly a0 2 Fl0 n Sl0 . Observe that if we replace
�l0; a0� by any equivalent pair �l00; a00�, then a00 is sincere (that is, has support Q0),
and �l00; a00� can equally well be obtained from �l; a� by applying the re£ections ¢rst,
and then passing to the support quiver.

Now by Lemma 8.3 there is a �ÿ1�-vector b, for �l0; a0�, and hence a divisor b0 for
some equivalent pair �l00; a00� by Lemma 8.4. Now b0 and a00 ÿ b0 cannot both be
sincere by Lemma 8.11. Thus either b0 is a non-sincere divisor, or we obtain a
non-sincere divisor for some pair equivalent to �l00; a00� on applying Lemma 8.4
to the �ÿ1�-vector a00 ÿ b0 for �l00; a00�. Thus case (II) or (III) holds by Lemmas 8.14
and 8.15.

9. Nonexistence of Certain Simple Representations

In this section we prove the following result. This is used in the next section to com-
plete the proof of Theorem 1.2.

THEOREM 9.1.Let Q0 be an extended Dynkin quiver, let k be an extending vertex for
Q0, and let Q be the quiver obtained from Q0 by adjoining one vertex j and one arrow
b: j! k. Let I be the vertex set of Q, let d 2 KI be the minimal positive imaginary
root for Q0, and let a � ej �md, where mX 2. If l 2 KI satis¢es lj � 0 and
l � d � 0, then there is no simple representation of Pl of dimension vector a.

Throughout this section we assume that Q0;Q; I; j; k; b; d; a;m and l are as in the
theorem.

GEOMETRY OF THE MOMENT MAP FOR REPRESENTATIONS OF QUIVERS 283

https://doi.org/10.1023/A:1017558904030 Published online by Cambridge University Press

https://doi.org/10.1023/A:1017558904030


LEMMA 9.2. If a � b�1� � � � � � b�r� with b�t� 2NI n f0g for each t, thenPr
t�1 p�b�t��W p�a�, with equality exactly when all but one of the b�t� are equal to d.
Proof. Reordering, we may suppose that b�1�j � 1 and b�t�j � 0 for t 6� 1. Letting

g � b�1� ÿ ej, we haveX
t

p�b�t�� � gk ÿ q�g� �
X
t 6�1

p�b�t��

Using the fact that the restriction of q to Q0 is positive semide¢nite with radical Zd,
one can easily see that p�b�t��W b�t�k for t 6� 1, with equality only possible if
b�t�k � 0 or b�t� � d. ThusX

t

p�b�t��W ak ÿ q�g� � mÿ q�g�Wm � p�a�:

Now to have equality we must have q�g� � 0 and each b�t� (t 6� 1) either equal to d, or
vanishing at k. But the condition q�g� � 0 implies that g is a multiple of d, and henceP

t 6�1 b
�t� is also a multiple of d. This is impossible unless each of the terms is equal

to d.

Let s: Rep�Q; a� ! Rep�Q0;md� be the projection. IfU is a G�md�-stable subset of
Rep�Q0;md�, then clearly sÿ1�U� is a G�a�-stable subset of Rep�Q; a�.

LEMMA 9.3. If U is a non-empty open subset of Rep�Q0;md� which is G�md�-stable,
then dimG�a��Rep�Q; a� n sÿ1�U�� < p�a�.

Proof. For a dimension vector g, we write B�g� � Rep�Q; g� for the set of bricks,
and I�g� for the set of indecomposable representations. We claim that for sX 0
the vector g � ej � sd is a Schur root, and

dimG�g��I�g� n B�g�� < p�g�:

If s � 0 this is trivial. If sX 2 then g is in the fundamental region, and the assertion
follows from Kac [8, ½1.10, Lemma 1]. Finally, if s � 1 then g is obtained from
the dimension vector d by a re£ection functor, see for example [8, ½1.7], and the
assertion follows from the fact (which we also need later) that d is a Schur root, and

dimG�d��I�d� n B�d�� < p�d�:

Indeed, I�d� n B�d� contains only ¢nitely many orbits.
Now we decompose Rep�Q; a� into sets I�b�1�; . . . ; b�r�� as in Section 4. We need to

prove that

dimG�a��I�b�1�; . . . ; b�r�� n sÿ1�U�� < p�a�:

By Lemmas 9.2 and 4.3 we only need to consider the sets I�ej � sd; d; . . . ; d� for
0W sWm (where there aremÿ s copies of d). Now by the claim above and the argu-
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ment of Lemma 4.3 it suf¢ces to prove that

dimG�a��Bs n sÿ1�U�� < p�a�;

where B�b�1�; . . . ; b�r�� denotes the subset of I�ej � sd; d; . . . ; d� in which the indecom-
posable summands are bricks.

Let R0s � Rep�Q; ej � sd� �Rep�Q; d� � � � � �Rep�Q; d�, considered as a subset of
Rep�Q; a� using block-diagonal matrices. Let B0s be the open subset of R0s consisting
of the elements in which each representation is a brick. Let H the subgroup of
G�a� corresponding to the product G�ej � sd� �G�d� � � � � �G�d�. By Lemma 4.1
we need to prove that dimH �B0s n sÿ1�U�� < p�a�. Since H acts freely on B0s this
reduces to a question of dimension, and since B0s is irreducible of dimension

dim Rep�Q; ej � sd� � �mÿ s� dim Rep�Q; d�
� dimH � p�ej � sd� � �mÿ s�p�d� � dimH � p�a�;

and sÿ1�U� is an open subset, it suf¢ces to prove that B0s meets sÿ1�U�. In other words
we need that s�B0s� meets U .

Now the canonical decomposition for dimension vector md is of the form
d� � � � � d, so U contains a representation which is a direct sum of bricks of
dimension d, and then since U is G�md�-stable, it meets P � Rep�Q0; sd��
Rep�Q0; d� � � � � �Rep�Q0; d�. Also the map B0s ! P consists of an open inclusion
followed by the projection, so the image s�B0s� is open in P. Since P is irreducible,
the two non-empty open subsets s�B0s� and U \ P must intersect. Thus s�B0s� meets
U , as required.

Let p: mÿ1a �l� ! Rep�Q; a� be the projection.

LEMMA 9.4. Under the map sp, any irreducible component of mÿ1a �l� dominates
Rep�Q0;md�.

Proof. Let V be an irreducible component of mÿ1a �l�. Clearly V is G�a�-stable, so
sp�V � is G�md�-stable. Let U be the complement of the closure of sp�V �, and
for a contradiction suppose that U is non-empty. By Lemma 9.3 we have
dimG�a��Rep�Q; a� n sÿ1�U�� < p�a�. Now V � pÿ1�Rep�Q; a� n sÿ1�U��, so by
Lemma 3.4 we have

dimV < p�a� � a � aÿ q�a� � dim Rep�Q; a� ÿ dim End�a�0:

This is impossible since mÿ1a �l� is a ¢bre of the moment map, so every irreducible
component has dimension at least dim Rep�Q; a� ÿ dim End�a�0.

Recall that a ring epimorphism A! B is said to be pseudo£at if TorA1 �B;B� � 0.
This is relevant because of [3, Theorem 0.7].
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LEMMA 9.5. If N �Pi di then there is a pseudo£at epimorphism y:KQ0 !
Mat�N;K �x�� such that the general representation of Q0 of dimension md is the
restriction of a Mat�N;K�x��-module,

Proof. This is standard. See [3, Lemma 11.1].

LEMMA 9.6. If A! B is a pseudo£at epimorphism of K-algebras, and M is a left
A-module, then the map

A M
0 K

� �
ÿ! B B 
A M

0 K

� �

is a pseudo£at epimorphism.
Proof. By [1, Proposition 5.2] it suf¢ces to observe that the diagram

A 0
0 K

� �
ÿÿÿ! B 0

0 K

� �
???y ???y

A M
0 K

� �
ÿÿÿ! B B 
A M

0 K

� �
is a pushout in the category of rings.

LEMMA 9.7. Suppose that f and g are endomorphisms of a vector space V of
dimensionmX 2. If the commutator �f ; g� has rank at most one, then V has a nontrivial
proper subspace invariant under f and g.

Proof.Replacing f by f ÿ x1 for some eigenvalue x of f , we may suppose that f is
singular. Also we may suppose that f 6� 0, for otherwise one can take an invariant
subspace for g. Let v1; . . . ; vr be a basis of Im�f �, and extend it to a basis
v1; . . . ; vm of V . Let w1; . . . ;ws be a basis of Ker�f �, and extend it to a basis
w1; . . . ;wm of V . With respect to these bases, we compute the matrices of f
and g. With the rows and columns indexed by the vi, let g take the block form
X Y
Z W

� �
; and with the rows and columns indexed by the wi, let g take the block

form P Q
R S

� �
: Now with the rows indexed by by the vi and the columns indexed

by the wi, the map f takes block form 0 C
0 0

� �
with C invertible, and then �f ; g�

takes the form

CR CS ÿ XC
0 ÿZC

� �
:

Now the rank one hypothesis implies that CR � 0 or ZC � 0, so that R � 0 or
Z � 0. In the ¢rst case Ker� f � is an invariant subspace; in the second case
Im� f � is invariant.
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Proof of Theorem 9.1. Choose a pseudo£at epimorphism y as in Lemma 9.5. By
Lemma 9.6 it induces a pseudo£at epimorphism

f:KQ � KQ0 KQ0ek
0 K

� �
ÿ! Mat�N;K �x�� Mat�N;K �x��y�ek�

0 K

� �
:

Denote the right hand algebra by R. Now the fact that dk � 1 implies that
Mat�N;K �x��y�ek� is an indecomposable projective Mat�N;K �x��-module. Thus R
is Morita equivalent to

K �x� K �x�
0 K

� �
� KQ00;

where Q00 is the quiver with two vertices j; k and arrows b: j! k and a: k! k.
Identify l 2 KI with the corresponding element of K 
Z K0�KQ�, and then identify

Pl with the algebra Pl�KQ� as in [3, Theorem 0.2]. Now f induces a map
fl:P

l! Pf��l��R�, and by [3, Theorem 0.7] the diagram

KQ ÿÿ!f R??y ??y
Pl ÿÿ!fl

Pf��l��R�
is a pushout in the category of rings.

Now suppose that there is a simple representation of Pl of dimension vector a.
Since the simple representations form an open subset of mÿ1a �l�, it follows by Lemma
9.4 that the set of simple representations dominates Rep�Q0;md�. Thus there is a
simple representation S whose restriction to Q0 is the restriction by y of a
Mat�N;K �x��-module. Thus the restriction of S to Q is the restriction by f of
anR-module. Now since the diagram above is a pushout, it follows that S is naturally
a Pf��l��R�-module, and clearly it must be simple. We show that this is impossible.

By [3, Corollary 5.5] the ring Pf��l��R� is Morita equivalent to Pm�Q00�, where
mj � mk � 0 by [3, Lemma 11.2]. Moreover S corresponds to a simple representation
T of Pm�Q00� of dimension vector g with gj � 1 and gk � m. Now the arrows a and a�

are endomorphisms of the vector space Tk with commutator equal to b�b. Since
dimTj � 1 it follows that this commutator has rank at most one, so by Lemma 9.7,
Tk has a non-trivial proper subspace invariant under a and a�. Now this subspace
and its image under b� are a nontrivial proper subrepresentation of T . This is a
contradiction.

10. Dimension Vectors of Simple Representations

Let Q be a quiver with vertex set I . In this section we complete the proof of Theorem
1.2. All that remains is to prove the implication (1)�) (2), that is, if a is the
dimension vector of a simple representation of Pl then a 2 Sl. Thus suppose there
is a simple representation of Pl of dimension a, and for a contradiction assume
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that a =2Sl. Observe that there cannot be an equivalent pair �l0; a0� with a0 a
coordinate vector, for then clearly a0 2 Sl0 , a contradiction by Lemma 5.2. Thus
by Lemma 7.4 we have a 2 Fl, and so Theorem 8.1 applies. Thus we may assume
that we are in a situation as in (I), (II) or (III), and to obtain a contradiction it
suf¢ces to show that in each case there is no simple representation.

Case (I). By [3] there is a Conze embedding

Pl!Mat�N;Khx; y j xyÿ yx � l � di�

where N �Pi di. If l � d � 0 this embedding shows that Pl satis¢es the identities of
N �N matrices, so any simple representation has dimension at most N. Thus
Pl cannot have a simple representation of dimension vector md with mX 2. If
l � d 6� 0 and K has characteristic p > 0 then Khx; y j xyÿ yx � l � di embeds in
Mat�p;K �xp; y��. Thus Pl satis¢es the identities of pN � pN matrices, so any simple
representation has dimension at most pN. Thus Pl cannot have a simple represen-
tation of dimension vector m0pd with m0X 2.

Case (II). Since up to isomorphismPl does not depend on the orientation ofQ, we
may assume that the arrow connecting j and k is b: j! k. Suppose that V is a rep-
resentation ofPl of dimension a. Let Vi be the vector space corresponding to vertex
i and let Va be the linear map corresponding to an arrow a. Now at any vertex i we
have

X
h�a��i

VaVa� ÿ
X
t�a��i

Va�Va � li1Vi :

Taking traces and summing over all vertices i 2 K, almost all terms cancel, and one
obtains tr�VbVb� � � 0. Now since aj � ak � 1 this implies that Vb � 0 or Vb� � 0.
In the ¢rst case �i2JVi is a subrepresentation of V ; in the second case �i2KVi is
a subrepresentation of V . Thus V is not simple, as required.

Case (III). Suppose that V is a representation ofPl of dimension a. As in case (II)
we may assume that the arrow connecting j and k is b: j! k, and furthermore
tr�VbVb� � � 0. Thus tr�Vb�Vb� � 0, and since aj � 1 this implies that Vb�Vb � 0.

Let Q00 be the quiver obtained from Q by deleting all vertices in J except j, and all
arrows with head and tail in J . Let a00 be the restriction of a to K [ fjg, and let l00 be
the vector with l00j � 0 and l00i � li for i 2 K. In view of the observation above,
the restriction V 00 of V to Q00 is a representation of the deformed preprojective
algebra Pl00 for the quiver Q00, of dimension vector a00. Now by Theorem 9.1, the
representation V 00 cannot be simple, so it has a non-trivial proper subrepresentation
W . Now Vj is one-dimensional, so either Wj � 0 or Wj � Vj . In the ¢rst case W
can be extended to a subrepresentation of V by de¢ning Wi � 0 for all
i 2 J n fjg; in the second case W can be extended to a subrepresentation of V
by de¢ning Wi � Vi for all i 2 J n fjg. Thus V is not simple, as required.
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11. Quotient Schemes

In this section K is an algebraically closed ¢eld of characteristic zero, and Q is a
quiver with vertex set I .

Proof of Theorem 1.3. By [12, Theorem 2] the quotient scheme Rep�Q; a�==G�a� is a
disjoint union of locally closed strata according to the representation type of the
semisimple representations. Now the quotient mÿ1a �l�==G�a� can be identi¢ed with
a closed subset of Rep�Q; a�==G�a�, so the semisimple representations of a given type
t form a locally closed subset S�t�. Suppose that t is the type

t � �k1; b�1�; � � � ; kr; b�r��:
and consider the subset Z of

mÿ1b�1� �l� � � � � � mÿ1b�r� �l�

consisting of those tuples �x1; . . . ; xr� with the xt corresponding to pairwise
non-isomorphic simple representations. Clearly Z is an open subset and S�t� is
the image of the map

f :Z! mÿ1a �l�==G�a�
sending �x1; . . . ; xr� to the direct sum of the xt with multiplicities. Thus S�t� is
irreducible. Now the group H � G�b�1�� � � � � �G�b�r�� acts freely on Z, and any
¢bre of f is a ¢nite union of H-orbits. Thus

dimS�t� � dimZ ÿ dimH �
Xr
t�1

2p�b�t��;

as required.

Proof of Corollary 1.4. Since mÿ1a �l� is reduced and irreducible, so is the quotient
mÿ1a �l�==G�a�. Now the stratum of simple representations has dimension 2p�a�,
and all other strata have strictly smaller dimension.

Remark 11.1. If �l; a� is a pair with l � a � 0 but l � b 6� 0 for all 0 < b < a, then
clearly a 2 Sl if and only if it is a positive root. If it is a positive root then every
element of mÿ1a �l� must be a simple representation of Pl by [5, Lemma 4.1]. Thus
mÿ1a �l� is smooth by Lemma 6.5, and the map

mÿ1a �l� ! mÿ1a �l�==G�a�
is a principal ëtale ¢bre space for the group G�a� by Luna's slice theorem [13, ½III.1,
Corollaire 1]. It follows in this case that mÿ1a �l�==G�a� is smooth. It would be
interesting to know about the singularities of mÿ1a �l� and mÿ1a �l�==G�a� for general
l and a.
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Appendix. Application to Kac's Theorem

In this appendix we show how the lifting results of Section 3 can be used to give a
simple proof of part of Kac's Theorem assuming that the base ¢eld K has charac-
teristic zero. Recall [8, Section 1.10] that the proof of Kac's Theorem uses two
key lemmas

KAC'S LEMMA 1. If a is in the fundamental region and q�a� < 0 then the set B�a� of
bricks (representations with endomorphism algebra equal to K) is a dense open subset
of Rep�Q; a� (so dimG�a� B�a� � p�a�) and dimG�a��I�a� n B�a�� < p�a�.

KAC'S LEMMA 2.The number of indecomposable representations of dimension a (if
it is ¢nite) and dimG�a� I�a� are independent of the orientation of Q.

Kac's proof of Lemma 1 is quite natural and straightforward. On the other hand,
his proof of Lemma 2 is roundabout, and involves reducing to ¢nite ¢elds and then
using counting arguments. It would be nice to avoid Lemma 2, or ¢nd a direct proof
of it.

PROPOSITION A.1. If a 2 ZI then a is a positive root if and only if for the general
element of fl 2 KI j l � a � 0g there is an indecomposable representation of Pl of
dimension a.

Proof. Let S�a� be the statement that for the general element of fl 2 KI j l � a � 0g
there is an indecomposable representation of Pl of dimension a.

Since K has characteristic zero, if i is a loopfree vertex and a is not a multiple of ei,
then the general element of the set fl 2 KI j l � a � 0g has li 6� 0. For such l there is a
re£ection functor relating representations of Pl of dimension a and representations
of Pri�l� of dimension si�a�. It follows that S�a� holds if and only if S�si�a�� holds.

Note also that if i is a loopfree vertex and a is not a multiple of ei, then a is a
positive root if and only if si�a� is a positive root.

Now, by applying a sequence of re£ections to reduce a, it suf¢ces to prove the
theorem in the following three cases.

(1) a is a multiple of the coordinate vector at a loopfree vertex, say a � kei. In this
case a is a positive root if and only if k � 1, and also clearly S�a� holds if and only if
k � 1.

(2) a is in the fundamental region. In this case a is a positive root. Also, by Kac's
Lemma 1 and the theory of extended Dynkin quivers, there is an indecomposable
representation of Q of dimension a, and by Theorem 3.3 this lifts to a representation
of Pl for any l with l � a � 0. Thus S�a� holds.

(3) a has disconnected support, or a strictly negative component. In this case a is
not a positive root, and S�a� is false.

COROLLARY A.2. If there is an indecomposable representation of Q of dimension a
then a is a positive root.
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Proof. By Theorem 3.3 this representation lifts to an indecomposable represen-
tation of Pl for any l with l � a � 0. Thus S�a� holds.

Remark A.3. Suppose that K � C and Q has no oriented cycles. In this case
Scho¢eld [23] has used Euler characteristics to construct the positive part of the
Kac^Moody Lie algebra associated to Q. In the course of his proof he shows that
if a is a positive root then there is an indecomposable representation of Q of
dimension a. This result and Corollary 1.2 give a proof of Kac's characterization
which completely avoids ¢nite ¢elds.

If a is a positive real root, then the unique indecomposable representation of Q of
dimension a may be constructed as follows. Choose a sequence of re£ections

ei � a�0�; a�1�; . . . ; a�m� � a

with i a loopfree vertex, a�t� � sit �a�tÿ1�� for tX 1, and a�t� not a coordinate vector for
tX 1. Let l�0� 2 KI be the vector with l�0�i � 0 and l�0�j � 1 for all j 6� i, and de¢ne
l�t� � rit �l�tÿ1�� for tX 1.

PROPOSITION A.4.With the hypotheses above, the re£ection at it is admissible for
�l�t�; a�t�� for all t. Moreover, there is a unique indecomposable representation of
Q of dimension a, and it may be obtained from the trivial representation of Pl�0�

of dimension ei by applying successively the re£ection functors at the vertices it,
and then restricting the resulting representation of Pl�m� to Q.

Proof. Since K has characteristic zero, l�0� � b 6� 0 for any root bwhich is not equal
to �ei (for some component bj with j 6� i must be nonzero, and all components have
the same sign). It follows that l�t� � b 6� 0 for any root b which is not equal to
�a�t�. In particular l�t� � eit 6� 0 for tX 1. Thus the re£ections are admissible.

Now the re£ection functors give an equivalence between representations ofPl�0� of
dimension ei, of which there is only one, and representations ofPl�m� of dimension a.
Thus there is a unique representation of Pl�m� of dimension a, up to isomorphism.

Now the restriction of this representation to Q is indecomposable, for if it had an
indecomposable direct summand of dimension b, then by Theorem 3.3 one has
l�m� � b � 0. But this is impossible since b is a root, not equal to �a.

Finally, for uniqueness, observe that any indecomposable representation of Q of
dimension a lifts to a representation of Pl�m� since l�m� � a � 0. Since there is only
one representation of Pl�m� , it follows that there is only one indecomposable rep-
resentation of Q.

Finally we turn to Kac's Lemma 2. We have an elementary proof of it for indi-
visible dimension vectors, that is, vectors whose components have no common
divisor.

PROPOSITION A.5. If a 2NI is indivisible then the number of isomorphism classes
of indecomposable representations of dimension a (if ¢nite), and the number of par-
ameters dimG�a� I�a�, are independent of the orientation of Q.
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Proof. Since a is indivisible, the general element of fl 2 KI j l � a � 0g has l � b 6� 0
for all b 2NI with 0 < b < a. Choose l with this property. Clearly a representation
x 2 Rep�Q; a� lifts to a representation ofPl if and only if it is indecomposable. Thus
by Lemma 3.4 we have

dim mÿ1a �l� � dimG�a� I�a� � a � aÿ q�a�:
Moreover, if there are onlym isomorphism classes of indecomposables, then mÿ1a �l� is
a disjoint union of m irreducible locally closed subsets of dimension a � aÿ q�a�, so it
has m irreducible components (the closures of these subsets). Finally it suf¢ces to
note that up to isomorphism the scheme mÿ1a �l� does not depend on the orientation
of Q (see for example [5, Lemma 2.2]).

Remark A.6. Clearly the proposition holds for general a if one instead uses the set
E�a� of representations of dimension a with the property that any direct summand
has dimension proportional to a. In fact, using these methods it is possible to prove
all of Kac's Theorem without using Kac's Lemma 2, except the existence (and
number of parameters) of indecomposable representations of dimension a with a
a divisible positive root with q�a� � 0.
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