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ROLLING OF A BODY ON A PLANE OR A SPHERE:
A GEOMETRIC POINT OF VIEW

S. REza MOGHADASI

A pair of bodies rolling on each other is an interesting example of nonholonomic
systems in control theory. Here the controllability of rolling bodies is investigated
with a global approach. By using simple geometric facts, this problem has been
completely solved in the special case where one of them is a plane or a sphere.

1. INTRODUCTION

In this paper we study the controllability of two rigid bodies rolling on each other.
The main question is: “Beginning from an initial contact configuration of two rigid bodies,
which configurations could be achieved only by rolling them on each other?”

This problem has its origin in dexterous manipulations, and has been studied in sev-
eral papers: Montana [8] derived a differential-geometric model of the rolling constraint
between general bodies and discussed its application to robotic manipulation. Li and
Canny [6] showed that the plate ball system as well as two unequal spheres is control-
lable. Levi [5] gave explicit formulas for evaluating the final configuration of the ball after
a circular motion of the plate. Marigo and Bicchi [7] showed that the generated involutive
distribution of this system at each point of the phase space is either two dimensional or
the entire five dimensional space. Moreover, in the first case, the two bodies should be
specular images of each other, that is, around the contact point they are locally mirror
symmetries of each other. Then they concluded that the reachable manifolds of such a
system are some disjoint two dimensional and five dimensional manifolds. Agrachev and
Sachkov [1] showed that the generated involutive distribution is two dimensional if and
only if the Gaussian curvatures of the surfaces at the contact point are equal. Also they
showed that two-dimensional orbits are in one to one correspondence with the isometries
of the surfaces.

The approach of this papér differs from the usual techniques of control theory. The
main idea is that if a homogeneous space S, like a plane or a sphere, rolls along a
closed curve on a given rigid body, it returns to its previous location, so this rolling
gives an isometry of S. We show that the set of isometries obtained in this manner is
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an arcwise connected subgroup of the isometry group of S which is known to be a Lie
group. Therefore it should be a Lie subgroup of the isometry group by Yamabe theorem.
This is exactly the same process as the one used for showing that the holonomy group
of a connection on a vector bundle is a Lie subgroup of general linear group of the fibre.
Because of simplicity of the isometry group of the plane and the sphere, we are able to
show that when S is the plane this subgroup must be the entire isometry group, and when
it is the sphere this subgroup may be the entire isometry group or the trivial subgroup.
The latter case occurs exactly when the other rigid body is also a sphere with the same
radius as the S. The controllability results will be obtained from these facts.

In Section 1 we first review some terminology that we shall use later and then
study the rolling constraint and its equivalent conditions. In Section 2 we show that all
contact configurations are accessible when one of the bodies is a plane. In Section 3 this
proposition will be proved when one of the bodies is a sphere, except in the case where
the other is also a sphere with the same radius. In all cases the main tools are some
elementary facts in differential geometry.

2. RoLLING OF Two BODIES

RIGID TRANSFORMATIONS IN EUCLIDEAN SPACES. The group of orientation preserv-
ing rigid transformations in Euclidean space V = R" is denoted by SE(V') which is a
Lie group. For each g € SE(V) there is a unique rotation R € SO(V) and a unique
translation by T' € V such that g(p) = Rp+T. Themap r: SE(V) = SO(V); r(g) = R,
is a Lie group homomorphism whose kernel is all translations in V. In fact r(g) gives the
rotation part of the rigid transformation g.

RIGID MOTIONS. Suppose A C R" is a subset that is not contained in any hyperplane
of R*. Each rigid motion of A is uniquely represented by ¢°(A) where a < s < b and
¢° = (R(s), T(s)) is a continuous path in SE(R"). We may interpret g°(A) as the location
of A at instant s.

PHASE SPACE OF CONTACT CONFIGURATIONS. Suppose A and B are two smooth strictly
convex subsets of R®. Since the Gauss mapng : B — S? is one to one in this case, for each
z € A and R € SO(3), there is a unique translation that makes R.B := {Rz | z € B}
tangent to A at x € A. Therefore the phase space for all contact configurations of two
bodies can be represented by A x SO(3).

Using this terminology the controllability problem of rolling bodies can be stated
in the following way: “Beginning from a given initial configuration, which points of
A x SO(3) are accessible by rolling the bodies on each other?”

Assume A and B are smooth strictly convex as before. First note that if g{(A) and
g5(B) represent a rolling of A and B on each other in R3, then for another rigid motion
h*, h®ogi(A) and h* o g§(B) are also a rolling of A and B, because in both cases the
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Figure 1: At instant so the location of B is given by ¢*(B), ng(sp) coincides with n4(sg)
and ¢(sg) coincides with p(sp).

motion of B relative to A is given by (g{)™! o g3(B). So we may assume A is fixed in R®
and ¢°(B) = R(s).B + T(s) represents a rolling of B and A on each other.

Now suppose p(s) and ¢(s) are two curves on A and B traced out by the rolling.
These curves are smooth if the motion ¢° is smooth. In the following theorem we consider
the conditions that are forced on these curves by the rolling constraint, and show that
these curves uniquely determine the rolling.

THEOREM 1.

(a) If p and q are two curves on A and B corresponding to a rolling then
they have the same speed and geodesic curvature. That is, for every s:
|1')(3)| = Iq(s)| and ky(s) = ka(s).

(b) Any two curves p on A and ¢ on B with the same speed and geodesic
curvature, uniquely identify a rolling of A and B.

(b) Furthermore, if B is tangent to A at = € A, a curve from z on A uniquely
identifies a rolling of A and B on each other.

In the case of part (c) we usually say B (or A) rolls along that curve.
PRrOOF: Since at each instant s, the two bodies are tangent to each other at p(s)
and ¢(s) we should have

(2.1) p(s) = g°(a(s)),
(2.2) na(s) = R(s)na(s),

where n4(s) is the inward normal to A at p(s) and npg(s) is the outward normal to B at
q(s). Without loss of generality we may assume

(2.3) lo(s)| = 1.

During the rolling, the motion of g(so) is given by g°(g(so)). The non-slipping assumption
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at the instant s, means

d

(2.4) E|'=ﬂo

g'(a(s0)) = 0.
By (2.1)

P(s0) = R(s0)g(s0) + R(s0)d(s0) + T'(50)
= (g, o'lats0))) + Risu)i(oo).

=29

Thus (2.4) is equivalent to

(2.5) p(s) = R(s)q(s).

Now suppose p and g are two curves on A and B parameterised by arc length. For each
instant so there is only one g* = (R(so), T(s0)) € SE(R®) such that relations (2.1), (2.2)
and (2.5) hold. So for each two curves p on A and g on B with the same length, there is
a unique non-slipping motion corresponding to them. But at each instant s, B may spin
around n4(s). The non-spinning constraint at instant s, means that the angular velocity
w(so) is perpendicular to n4(so). Let us recall that R(s)v = w(s) x R(s)v for each vector
v. By replacing ¢(so) with v we find that the non-spinning constraint is equivalent to

(2.6) R(s0)4(s0) Il n.a(50)-

By (2.5) )
B(s) = R(s)d(s) + R(s)d(s).

So (2.6) means j(s) and R(s)¢(s) have the same projection on Tp(,;)A. On the other hand
ki(s) = (B(s), nals) x p(s)) (by definition)
(R(s)i(s), R(s)(na(s) x 4(s)))  (by (2:2),(2.5) and (26) )
(d(5), (n8(5) % 4(5) ) ) = kats)

where k1 (s) is geodesic curvature of p(s) and k2(s) is geodesic curvature of ¢(s). Therefore
by assuming (2.5), ki(s) = k2(s) is equivalent to (2.6).

For the third part of the theorem it is sufficient to note that every curve on a
regular oriented surface is uniquely identified by its geodesic curvature and its initial
conditions. 0

REMARK 1. Note that the above choice of orientation (that is, directions of n4 and ng)
was for simplicity. By changing orientation, only the sign of the geodesic curvature will
change.
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REMARK 2. The regularity assumption on A and B was necessary for the above calcu-
lations. But strict convexity was too strong for this theorem. In fact it can be replaced
by the following weaker assumption

1. For each contact configuration, A and B meet each other only at one point.

Having such a condition one of the bodies may have concave parts or rolls inside
of the other. Only the orientations should be chosen so that normal vectors at contact
points coincide. Furthermore, in light of Theorem 1, one can generalise rolling motion for
any two regular surfaces by considering two curves on them having the same speed and
geodesic curvature. However, in some contact configurations they intersect each other or
coincide through a region.

In this paper we assume strict convexity for simplicity, although our arguments go
through or can easily be modified for more general cases.

CoROLLARY 1. If B rolls along a geodesic on A, the corresponding curve on B
is also a geodesic with the same length. '

As a consequence of this corollary, to obtain geodesics of A one can roll it along
straight lines of a plane.

COROLLARY 2. Iftwo bodies B, and B, roll simultaneously along a curve on A,
they also roll on each other.

PRrROOF: Suppose p, 1 and ¢, are curves respectively on A, B; and B, corresponding
to this rolling. By Theorem 1, these curves have the same speed and geodesic curvature.
But by another use of Theorem 1, the motion of B, and B, corresponding to curves ¢;
and ¢, should be a rolling. 0

CorOLLARY 3. If initially B, and B, are mirror images of each other relative
to the common tangent plane, at each time during the rolling they will also be mirror
images of each other with respect to the new common tangent plane. It means only a
section of the fibre bundle A x SO(3) = A is accessible from the first configuration,
which is a connected two dimensional submanifold of the phase space.

PROOF: Suppose P is a plane and ¢ is an arbitrary smooth curve on B;. When B,
rolls on P along g, its mirror image with respect to P also rolls on P simultaneously. So
by the previous corollary, B, and its image should roll on each other along ¢. This is
nothing except rolling of By and B; on each other along ¢ and at each instant they are
mirror images with respect to P which is their common tangent plane. 0

2.1. A GEOMETRIC INTERPRETATION We know from elementary courses in differential
geometry that if there is a vector field Y(s) along a regular curve g(s) on a surface B
such that it is linearly independent of ¢(s) and satisfyies nng(s).Y'(s) = 0, then the ruled
surface

(2.7) u(s,t) =q(s) +tY(s) tel, s€(—¢¢)
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Figure 2: During the rolling B on the plane P along the curve g, the corresponding
developable surface rolls simultaneously on P and this rolling gives an isometry between
it and P.

is a regular developable surface (that is, n, the normal map of u, is constant along the
lines p(sp) + tY (sg)). One of the important properties of such an osculating developable
surface is that its Gaussian curvature vanishes identically. So it is locally isometric to
an open set of the plane. It means that it can be locally flattened on the plane (see for
example [4]).

Suppose g* € SE(R®) represents a rolling of B on a plane P and q and p are the
corresponding curves on B and P. We claim that by rolling of B, u rolls as well on P and
this rolling induces an isometry between u and an open subset of P. Thus the geodesic
curvature of ¢ on u is equal to the geodesic curvature of p on P. But the geodesic
curvatures of ¢ on v and B are the same. This might be considered as an intuitive
argument for Theorem 1. Moreover it implies that a parallel vector field along q on B
induces a vector field along p on P which is parallel in the usual sense.

Let us prove our intuitive claim:

First note that at instant so, line g(so)+tY (so) lies entirely on P, so ¢**(u) is tangent
to P along g*(g(s0) + tY (s0)) = g* (¢(s0)) + t¥ (s0), where ¥ (s5) = R(s0)Y (55). Our
claim is that the map u(s,t) — %(s,t) = p(s) + t¥ (s) is a local isometry. But we have

%(s,_t) = p(s) + tY(s) %%(3, t)=Y(s)
%’;‘(s, t) = p(s) + t¥(s) gt—u(s,t) =Y(s).

Since R(s)¢(s) = p(s) and R(s)Y(s) = )7(3), our claim will be proved if we show
R(s)Y(s) = Y (s).

):7(3) = disR(s)Y(s) = R(s)Y(s) + R(s)Y(s) = w(s) x R(s)Y(s) + R(s)Y (s).

By the choice of Y, R(s)Y(s) is perpendicular to R(s)ng(s) = np and R(s)np(s). also
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w(s)Llnp and

R(s)ng(s) = np = const = R(s)np(s) = —R(s)np(s)
= w(s) x R(s)np(s) = —R(s)np(s).

This implies w(s) LR(s)np(s), so we should have w(s)||R(s)Y (s).

3. ROLLING ON A PLANE

Suppose P is a plane and A is tangent to P at a point a € A.
THEOREM 2. By rolling alone, all contact configurations could be achieved.

PROOF: At first we pose this question: “By rolling, which of the points of P can
the point a coincide with?” Note that such a rolling corresponds to a closed curve on A
with base a. Let P,A be the set of all closed piecewise smooth curves on A with base
at a. By rolling along v € P, A, the tangent space T, A moves rigidly and coincides with
P again with the same orientation, so it induces a rigid transformation j(y) € SE(P)
where j: P,A = SE(P).

For 1, v2 € P, A, arolling along -, and then along +,, is a rolling along v, *v; € P, A.
Also by rolling along v and rolling back along it we obtain the identity map of P, that is

(3.8) J2xm) =3()itm) () =3

where 4~ is v with the reverse orientation. Thus G := j(P,A) is a subgroup of SE(P).
For every v € P, A there is a contraction of v to a by curves y* € P,A whose length
decrease to zero. Clearly j(v*) is a path in SE(P) joining j(v) to lsgp). Now by a
theorem of Yamabe [3] every path connected subgroup of a Lie group is a Lie subgroup.
Connected Lie subgroups of a Lie group are in one to one correspondence with Lie
subalgebras of that group so in simple cases they could be characterised easily. Path
connected Lie subgroups of SE(P) are
The trivial subgroup {1}.
All rotations around a fixed point.
All translations along a line.
All translations in P.
SE(P).
Now it is enough to prove the following.

LEMMA 1. G isequal to SE(P).

Ol W e

This lemma says that only by rolling, all configurations in which A is tangent to P
at a, are accessible. Assume this lemma for a moment and consider any arbitrary contact
configuration of A and P. By rolling along a curve v on A joining the point of contact

https://doi.org/10.1017/5S0004972700034468 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700034468

252 S.R. Moghadasi (8]

to a, A will be tangent to P at a. By the lemma there is a rolling which transfers A to
this last configuration. So by rolling back along v we get the desired configuration. [

Proor oF LEMMA 1: If G is of types (1), (2), or (3), a might only coincide with
the points of a circle or a line. Let S be a circle and L be a linein P and p € P be a
point whose distance from L and S is more than M := 2(max,pca da(a,b) +1). If we
roll A along a curve on P with the end at p and then along a curve on A that joins the
point of contact to a with length less than M/2, then a coincides with a point g € P with
distance less than M /2 from p. Thus it couldn’t lie on S or L. This argument shows that
G couldn’t be of types (1),(2) or(3).

We claim that the case (4) is also impossible for G: If v is a closed smooth Jordan
curve on A with base at a, by the Gauss-Bonnet theorem

/K+/kg:27r,
B 7

where K is the curvature of A, S is the region inside 7 (S is on the left side of %), and
kg is the geodesic curvature of . Suppose 7 is a curve on P corresponding to the rolling
of A along v. We know that for any regular curve 7 : {a,b] — P:

[ % = 46it@),500).

If G is of type (4) we should have /Eg = 2lr for some [ € Z (see Figure 2). Since

5

4| = [7] and &, = k,, we have [Eg = /kg. Thus
7 8]
/K=2107l’ lo=1—l.
s

By continuous deformation of -, / K varies continuously and for small regions S, it is

s
[x=0
S

for every such S. But it implies that K = 0 every where in A. This contradicts the
compactness of A. So the only possible case for G is (5). 0

also small. Therefore

4. ROLLING ON A SPHERE

Suppose B is a sphere with radius 7.

THEOREM 3. Starting from an initial state, all contact configurations of A and
B could be achieved, except in the case where A is a sphere equal to B. In this case, the
reachable manifold is a two dimensional submanifold of the phase space.
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PROOF: Let PA be the set of all piecewise smooth curves on A. Also suppose that
B is initially tangent to A at z € A and, after rolling along v € PA, its position is given
by g(B), where g € SE(R®). Define a map j : PA — SO(3) by j(7) := r(g), that is, the
amount of rotation of B after this rolling, and let G, = j{P;A).

Similarly to the previous section it can easily be proved that

(4.9) i * 1) = §()im)ity) = 5()

and the subgroup G, C SO(3) is pathwise continuous, so by the Yamabe theorem [3] it
is a Lie subgroup of SO(3). In addition, if v € PA joins z to y, then

()G (1) € Ga
F(MG=i(v7) € Gy
Connected Lie subgroups of SO(3) are

(4.10) } = j(1)7'Gyi(r) = Ga.

1. Trivial subgroup {1}.

2. All rotation around a fixed direction.

3. S0(3).
Case 3. If G; = SO(3), then by (4.10) G, = SO(3) for all y € A, so from the initial
state all points of the phase space A x SO(3) are accessible.
Casg 1. If G; = {1} then G, = {1} for all y € A, so there is exactly one point of B that
can be in contact with y. We denote it by f(y). According to corollary 1 if 7y is a geodesic
on A with length I, f(7y) is also a geodesic with length [. Therefore f : A — B is a local
isometry. Since B has constant curvature 1/rg > 0, A has also constant curvature 1/rg.
Therefore by the sphere rigidity theorem (see [2]), A should be a sphere with radius rp.

By corollary 3, when A and B are equal spheres, the reachable manifold is two
dimensional submanifold of the phase space.

CASE 2 . We shall show that G, could not be of type (2) and this completes the proof
of Theorem 3.

Assume, on the contrary, that G is equal to the group of rotations around an axis
I,. By (4.10), G, is also the group of rotations around I, = j(v)I;. Therefore these axes
can be identified by a fixed direction on B, described by q¢’, which rotates as B rotates
when it rolls on A (see Figure 3).

Also the set of points on B that could be in contact with y € A is exactly a circle
lying on a plane orthogonal to that fixed direction on B. In other words, they are the
points whose distances from g are constant. We denote this circle by C, (see Figure 3).
By a rolling, we may assume that ¢ € B coincides with a point p € A. Let

V=T,A=T,B,
fi=exp:V o A, fo=exp:V - B,
A B

B.={zeV:|z|<r}, S ={zeV:|zg=r}
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Figure 3: We consider C, as a fixed subset of B, moving as B moves.

and suppose for R > 0, f; : B — A and f, : Bg — B are regular maps (that is, full
rank maps).

According to Corollary 1, for each u € S* C V, the geodesics v,(s) = fi(us) and
Ya(s)
= fo(us) correspond to a single rolling. It means

(4.11) Vr >0, Vy € f1(S;) : Cy = fa(Sy).

Thus rolling along f1(S;) will also be along f>(S,). By the Theorem 1, the geodesic
curvature of f,(S,) is equal to the geodesic curvature of f,(S,). But since B is a sphere
f2(S;), has constant geodesic curvature. We shall show that this implies that f;(Bgr) and
f2(Bg) are local isometric:

LEMMA 2. The metrics (g;;) and (gi;) on By induced by f, : B — A and
fo : B — B respectively, are the same. It means f, o f; ! is a local isometry between
f1(Br) and fy(Br).

PROOF: First we recall that if (g;;) is a metric on an open set U C R", the Christoffel
symbols may be obtained by

1/0 d 0
) Vi, i E: It =< [ —(g; —(gki) — —(gs;
(4 12) ’L,] l gkl t] 2 <al (gJ’C) + a] (gk ) 8k (g J))
and with these symbols we can compute the covariant derivative as

(4.13) Veei =Y The
k
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where e; are the standard vector fields on U. Also in a geodesic polar coordinate of a
surface we have

. 0
(4.14) g =1 qg12=ga1=0 ll_rftl)gzz =0 hm 15 V92 = 1

(see [2, p. 287]). Since e, and eg are orthogonal and |e,| = 1, geodesic curvature of the
curves r = const could be obtained as

er. Vesea/lesl  er. Veseq 4 e-. ((8/80)(1/161))es _ €. Veeg

les] T esl? les] T egf?
T3
=-2 by (4.13)
g22
1 &8
= by (4.12).
~om S 97922 y (4.12)

Now by putting g = g22, § = go2 in the case of the lemma we should have

1 dg 1 dg a a, . ~
i At = = _ =1
29 0r 2% ar = ar Ing ar Ing = Ing ng+ Ci(6)

= g=C(0)§ = Vi=Ca(6 f=>—f VCa(6) \f

= 1= /Cy(0) (by last equation when r — 0 ) = g=4

This completes the proof of the lemma. 0

Assume R, = nrg and R is the largest number for which f; : B — A is regular.
By the lemma, if R < R;, in Bg we have

B2 r (22— (L0 [BI-1%

or ar or’ 08 or’ 80

Noting that f; : V — A is smooth, the above relations imply that f1 is also regular
on an open neighbourhood of Bp, a contradiction to the maximality of R. So R > Ry
and therefore f := fi 0 f; B : B/{q'} = A is a regular map. As a consequence of the
lemma, the set F of points on A which may coincide with ¢ or ¢’ is discrete. On the
other hand, by a rolling along geodesics with length R,, B will be tangent to A at ¢'.
Therefore fi(Sg,) C F. Since fi(Sg,) is a connected set, it should be a point. So we
can consider f as a well defined continuous map from B to A which is smooth except
perhaps at ¢’ € B. For sufficiently small , f: fo(B,) — fi1{B;) is a diffeomorphism and
by (4.11):

l>CR>0

Vo< << R fl(Srn)nfl(Srz):O’

which implies
f(f2(Br)%) € [i(B,)"

But f1(B,)¢ and f,(B,)° are homeomorphic to the unite disk D* C R? and f home-
omorphically maps the boundary of the former to the boundary of the latter, so
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f i f2(B,)¢ = fi(B,)¢ is surjection. Since f : A — B is surjective and by Lemma
2 it is a local isometry, A has constant curvature 1/rg. Thus by the sphere rigidity
theorem, A should be a sphere with radius rg. But as mentioned before, in this case
G, = {1}. This proves our claim that G, cannot be of type (2). 0
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