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R. Erdélyi & C. A. Mendoza-Briceño, eds.

c© 2008 International Astronomical Union
doi:10.1017/S1743921308014610

Multilayered solar interface dynamos: from a
Cartesian kinematic dynamo to a spherical

dynamic dynamo

Kit H. Chan1, Xinhao Liao2

and Keke Zhang3

1Department of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong
email:mkhchan@hku.hk

2Shanghai Astronomical Observatory, Shanghai 200030, China
email:xhliao@shao.ac.cn

3Center for Geophysical & Astrophysical Fluid Dynamics, University of Exeter, UK
email:kzhang@ex.ac.uk

Abstract.
The existence of the solar tachocline, a thin differentially rotating layer at the base of the

convection zone which is inferred from helioseismology, leads to the concept of an interface
dynamo. The tachocline is magnetically coupled to the radiative interior and the overlying
convection zone. A multilayered interface dynamo is required to describe the dynamo process
involved. We first discuss a two-dimensional multilayered interface dynamo model in cartesian
geometry consisting of four horizontal layers with different magnetic diffusivities magnetically
coupled by the three sets of interface matching conditions for the generated magnetic field.
Exact solutions of the coupled dynamo system are obtained in this model. We then discuss
a fully three-dimensional and multi-layered spherical dynamic interface dynamo using a finite
element method based on the three-dimensional tetrahedralization of the whole spherical system.
The spherical dynamic interface dynamo also consists of four magnetically coupled zones. In the
convection zone, the fully three-dimensional dynamic feedback of Lorentz forces is taken into
account. It is shown that the dynamo is characterized by a strong toroidal magnetic field, selects
dipolar symmetry and propagates equatorward.
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1. Introduction
The Sun is a magnetic, slowly rotating star. The most important feature of the so-

lar magnetic field is the dark regions on its surface, known as sunspots. The sunspots
have been observed systematically over the past two thousand years, first by Chinese
astronomers and then by western astronomers with the help of telescopes. Modern obser-
vations together with historical records show that the Sun’s magnetic field has undergone
nearly periodic variations with the period about 22 years, except a suspension at the end
of the 17th century (the Maunder minimum), over the past several hundred years (see
for example, Hoyt and Schatten, 1997).

The globally systematic, ordered variation of the solar magnetic field such as the
22-year sunspot cycle can be only explained by the dynamo process associated with
the operation of non-turbulent, large-scale, regular flow that controls the solar dynamo.
Recent systematic helioseismic measurements suggest the existence of the tachocline at
the base of the convection zone, a strong radial shear in the solar differential rotation
(see for example, Brown et al., 1989; Spiegel & Zahn, 1992; Schou et al., 1998). This
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leads to the first solar interface dynamo model, with two layers, in cartesian geometry
by Parker (1993) in which the generation of a weak poloidal magnetic field and a strong
toroidal magnetic field takes place in separate fluid regions with discontinuous magnetic
diffusivities across their interface. A number of solar dynamo models in simple Cartesian
geometry have been then constructed to explain the main features of the observed solar
magnetic activity. MacGregor & Charbonneau (1997) considered a different interface
dynamo in which the shear flow and α-effects are spatially localized in the form of delta-
functions on either side of the interface. Because the shear flow and α-effects are spatially
separated, the effect of magnetic diffusion plays a more important role compared to the
model with a uniformly distributed shear and alpha. The effect of the radiative solar
interior on the interface dynamo was investigated by Zhang et al. (2004). By introducing
the action of the Lorentz force using the Malkus-Proctor mechanism, Tobias (1997)
investigated the nonlinear modulation of Parker’s interface dynamo capable of producing
the long-term modulation of the basic solar magnetic cycle and recurrent grand minima
(see also Brandenburg et al., 1989; Ponty et al., 2001). Cartesian geometry is mainly
adopted for understanding the fundamental dynamo processes because an analytical
method can be used, offering important insights into the physics of the solar dynamo
in the parameter regime where direct numerical simulations in spherical geometry are
difficult.

Parker’s cartesian interface dynamo has also been extended to spherical geometry
(see, for example, Charbonneau & MacGregor,1997; Markiel & Thomas,1999; Dikpati &
Charbonneau,1999; Zhang et al.,2003; Bushby,2003; Chan et al.,2004). Spherical interface
dynamos usually employ a solar-like internal differential rotation profile obtained from
the helioseismic inversion. As far as magnetic field generation is concerned, the radial
shear in the tachocline plays a much more significant role than the latitudinal variation
in the differential rotation. In particular, Markiel & Thomas(1999) demonstrated that
the magnetic boundary condition can play a critical role in determining the key features
of an interface dynamo and that the radial shear in the tachocline dominates the pro-
cess of magnetic field generation even though the latitudinal shear is present. Without
the effect of the tachocline, the conventional nonlinear α2 dynamo is usually station-
ary and equatorially symmetric or antisymmetric even though numerical simulations are
fully three-dimensional and time-dependent. In a fully three-dimensional and multilay-
ered spherical kinamtic interface dynamo, Zhang et al. (2003) showed that the action of
the steady tachocline always gives rise to an oscillatory dynamo with a period of about
two magnetic diffusion units and the spherical kinematic interface dynamo selects dipo-
lar symmetry and propagates equatorward with the strength of the generated toroidal
magnetic field dramatically amplified by the effect of the tachocline.

In this review article, we shall first discuss a multilayered two-dimensional kinematic
interface dynamo in which the exact solution can be obtained, which is given in Section 2.
This is followed by a fully three-dimensional and multilayered spherical dynamic interface
dynamo using a finite element method based on the three-dimensional tetrahedralization
of the whole spherical system presented in Section 3. Section 4 closes the paper with a
summary and some remarks.

2. A Multilayered Cartesian Interface Dynamo
We first consider a multilayered cartesian interface dynamo in which the alpha-effect

and velocity shear are uniformly distributed throughout the corresponding regions. In
this case, the mathematical analysis is analytically tractable, while retaining the essential
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Figure 1. Schematic geometry of the two-dimensional multi-layered interface dynamo with
four regions.

physics of the problem. The model, depicted schematically in Figure 1, consists of four
different regions (see Zhang et al., 2004).

The radiative zone in −∆ > z > −∞ has constant magnetic diffusivity λi . The mag-
netic field Bi there is governed by the equations

∂Bi

∂t
+ λi∇×∇× Bi = 0, −∆ > z > −∞, (2.1)

∇ · Bi = 0, −∆ > z > −∞. (2.2)

There is no flow in the radiative zone so the magnetic field Bi cannot be generated
in this region. But Bi is usually non-zero because of the magnetic diffusion and the
magnetic coupling with the tachocline. This process could control the characteristics of
the dynamo solution in the whole system. Above the radiative zone is the tachocline
in −∆ < z < 0, a region of strong differential rotation with a flow velocity given by
u(z). The differential rotation shears the weak poloidal magnetic field that is generated
in the convection zone and penetrates into the tachocline. This amplification process in
the tachocline is described by the equations

∂Bt

∂t
= ∇× (u × Bt) − λt∇×∇× Bt , −∆ < z < 0, (2.3)

∇ · Bt = 0, −∆ < z < 0, (2.4)

where λt is the magnetic diffusivity in the tachocline and u(z) is given by

u(z) = U0u(z) = Uey u(z), −∆ < z < 0, (2.5)

where U0 is a constant vector, U is constant and u(z) satisfies

u(z) = 0, z = −∆; u(z) = 1, z = 0. (2.6)

The cartesian coordinate system (x, y, z) with unit vectors (ex , ey , ez ) is oriented in such
a way that the directions of increasing x, y and z are along the directions of the spherical
polar coordinates θ, φ and r, respectively. In this case, the shear flow u(z) is in the
azimuthal direction (y-direction).

https://doi.org/10.1017/S1743921308014610 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308014610


Interface dynamos 25

Fully turbulent convection is assumed in the region 0 < z < d with eddy magnetic
diffusivity λo and magnetic field Bo generated by an α-effect which is described by

∂Bo

∂t
= ∇× (U0 × Bo) + ∇× (αoBo) − λo∇×∇× Bo , 0 < z < d, (2.7)

∇ · Bo = 0, 0 < z < d, (2.8)
where αo is assumed to be a constant, positive parameter. The effect of the weak dif-
ferential rotation in the convection zone is neglected by assuming that U0 is uniform.
The velocity is continuous across the convection-tachocline interface as indicated by (2.5)
and (2.6) while the velocity shear (du/dz) is discontinuous. The upper exterior to the
convection zone, d < z < ∞, is assumed to be electrically insulating and its magnetic
field Be is governed by

∇× Be = 0, ∇ · Be = 0, d < z < ∞. (2.9)

We nondimensionalize length by the thickness of the convection zone d and time by
the magnetic diffusion time d2/λo of the convection zone. The resulting four sets of
dimensionless equations for the four zones (all variables in the rest are non-dimensional)
are

∂Bi

∂t
= −βi∇×∇× Bi , ∇ · Bi = 0, −∞ < z < −∆/d; (2.10)

∂Bt

∂t
= Rω∇× (u × Bt) − βt∇×∇× Bt , −∆/d < z < 0, (2.11)

∇ · Bt = 0, −∆/d < z < 0; (2.12)

∂Bo

∂t
= Rω∇× (ey × Bo) + Rα∇× Bo −∇×∇× Bo , 0 < z < 1, (2.13)

∇ · Bo = 0, 0 < z < 1; (2.14)

∇× Be = 0, ∇ · Be = 0, 1 < z < ∞. (2.15)
There are four non-dimensional quantities that characterize the multilayered interface
dynamo: the magnetic diffusivity ratios βi , βt , the magnetic alpha Reynolds number Rα

and the magnetic omega Reynolds number Rω , which are defined by

βi =
λi

λo
, βt =

λt

λo
, Rα =

dα0

λo
, Rω =

dU

λo
. (2.16)

The governing equations for the four different zones are solved subject to a number of
matching and boundary conditions. At the three interfaces of the four zones, z = −∆/d, 0
and 1, all components of the magnetic field and the tangential component of the electrical
field must be continuous. These conditions yield

Bi = Bt at z = −∆
d

;(2.17)

ez × (βi∇× Bi) = ez × (βt∇× Bt − RωSt) at z = −∆
d

;(2.18)

Bt = Bo at z = 0; (2.19)
ez × (βt∇× Bt − RωSt) = ez × [∇× Bo − RαBo − Rωey × Bo ] at z = 0; (2.20)

Be = Bo at z = 1, (2.21)

where St = ut × Bt . Additionally, there are no sources at infinity, which implies

Bi → 0, as z → −∞; Be → 0, as z → +∞. (2.22)
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Equations (2.10-2.15) together with the matching conditions (2.17-2.21) and boundary
conditions (2.22), define a linear, multilayered kinematic interface dynamo problem. For
given parameters of the model such as Rα and Rω , exact solutions of the interface dynamo
are sought by first finding the dispersion relation and then the solutions representing
horizontally propagating dynamo waves.

The generated mean magnetic field is assumed to be independent of y. It is thus
mathematically convenient to express a magnetic field in terms of its azimuthal field in
the y-direction and a vector potential (Parker, 1993) by denoting

Bi = Bi(x, z, t)ey + ∇× [Ai(x, z, t)ey ] in −∞ < z < −∆/d;
Bt = Bt(x, z, t)ey + ∇× [At(x, z, t)ey ] in −∆/d < z < 0;
Bo = Bo(x, z, t)ey + ∇× [Ao(x, z, t)ey ] in 0 < z < 1;
Be = Be(x, z, t)ey + ∇× [Ae(x, z, t)ey ] in 1 < z < ∞. (2.23)

They automatically satisfy the divergence-free condition. Based on expression (2.23), vec-
tor dynamo equations can be rewritten as two scalar equations for the toroidal component
and the poloidal component.

Not all the matching conditions at the three interfaces derived from (2.17-2.21) are
independent. There are four independent matching conditions required at the core and
tachocline interface

Bi = Bt, Ai = At at z = −∆/d; (2.24)
∂Ai

∂z
=

∂At

∂z
, βi

∂Bi

∂z
= βt

∂Bt

∂z
+ Rω u

∂At

∂x
at z = −∆/d. (2.25)

The two vector matching conditions at z = −∆/d give a total of four independent
conditions. Similarly, there are four independent conditions required at the interface
between the tachocline and the convection zone

Bt = Bo, At = Ao at z = 0; (2.26)

βi
∂Bt

∂z
=

∂Bo

∂z
,
∂At

∂z
=

∂Ao

∂z
at z = 0. (2.27)

The three conditions required at the outer surface of the convection zone are simply

Bo = 0, Ao = Ae,
∂Ao

∂z
=

∂Ae

∂z
at z = 1. (2.28)

Furthermore, the boundary conditions at infinity requires

Bi = 0, Ai = 0, at z = −∞; (2.29)
Ae = 0, at z = +∞. (2.30)

Altogether there are eleven matching and boundary conditions. The linear dynamo equa-
tions allow us to consider a horizontally propagating wave solution in the form

[Ai,Bi, At, Bt, Ao,Bo,Ae ](x, z, t) = [Ai,Bi, At, Bt, Ao,Bo,Ae ](z)ei(kx+ωt)+σt , (2.31)

where i =
√
−1, ω is the real frequency of a wave, k is the horizontal wavenumber

and σ is the real growth rate. When k > 0 and ω < 0, the dynamo wave propagates
toward the positive x-direction (toward the equator in spherical geometry). Using the
wave-type solution in the form (2.31), the z-dependent portion of a dynamo solution for
the toroidal and poloidal components, such as Ai(z) and Bi(z), can be readily derived.
In the radiative layer, a solution for the magnetic field can be written as

Bi(z) = B̂ie
z (Si −iQi ) , in −∞ < z < ∆/d; (2.32)
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Ai(z) = Âie
z (Si −iQi ) , in −∞ < z < ∆/d, (2.33)

where B̂i and Âi are the complex amplitude to be determined, and Si and Qi are real,
positive and defined by

Si =
1√
2

⎧⎨
⎩+

(
k2 +

σ

βi

)
+

[(
k2 +

σ

βi

)2

+
(

ω

βi

)2
]1/2

⎫⎬
⎭

1/2

,

Qi =
1√
2

⎧⎨
⎩−

(
k2 +

σ

βi

)
+

[(
k2 +

σ

βi

)2

+
(

ω

βi

)2
]1/2

⎫⎬
⎭

1/2

.

In the tachocline, we have to assume the profile of the vertical shear flow u(z). The
simplest profile is the uniform shear given by

u(z) =
d

∆

(
z +

∆
d

)
,

∂u

∂z
=

d

∆
, −∆/d < z < 0. (2.34)

In this case, a general solution in the region −∆/d < z < 0 is given by

Bt(z) =

[
B̂+

t +
Â+

t iR̂ω kz

2βt(St − iQt)

]
ez (St −iQt ) +

[
B̂−

t − Â−
t iR̂ω kz

2βt(St − iQt)

]
e−z (St −iQt ) ,

At(z) = Ât
+
ez (St −iQt ) + Ât

−
e−z (St −iQt ) , (2.35)

where B̂+
t , B̂−

t , Â+
t and Â−

t are the complex amplitude of the dynamo solution to be
determined, R̂ω is defined as R̂ω = Rω /(d∆) and St and Qt are real, positive and defined
by

St =
1√
2

⎧⎨
⎩+

(
k2 +

σ

βt

)
+

[(
k2 +

σ

βt

)2

+
(

ω

βi

)2
]1/2

⎫⎬
⎭

1/2

,

Qt =
1√
2

⎧⎨
⎩−

(
k2 +

σ

βt

)
+

[(
k2 +

σ

βt

)2

+
(

ω

βt

)2
]1/2

⎫⎬
⎭

1/2

.

For the convection zone in the region 0 < z < 1, a general solution is of the form

Ao(z) =
[
Â+

o +
B+

o Rαz

2(So − iQo)

]
ez (So −iQo ) +

[
Â−

o − B−
o Rαz

2(So − iQo)
B̂−

o

]
e−z (So −iQo ) ,

Bo(z) = B̂+
o ez (Si −iQi ) + B̂−

o e−z (So −iQo ) , (2.36)

where B̂+
o , B̂−

o , Â+
o and Â−

o are the complex amplitude of the solution to be determined
and, So and Qo are real, positive and defined by

So =
1√
2

{
+

(
k2 + σ

)
+

[(
k2 + σ

)2
+ ω2

]1/2
}1/2

,

Qo =
1√
2

{
−

(
k2 + σ

)
+

[(
k2 + σ

)2
+ ω2

]1/2
}1/2

.

For the vacuum exterior in the region 1 < z < ∞, a general solution is simply

Ae(z) = Âee
−kz , (2.37)
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Figure 2. Contours of the azimuthal field (B) (left panel) and the field lines of poloidal field
(A)(right panel) in the x-z plane for R̂ω = 300 and Rα = 30 for βi = 0.001, βt = 1. Solid
contours indicate the field with B > 0 or A > 0 and dashed contours correspond to B < 0 or
A < 0.

where Âe is the complex amplitude of the solution to be determined by the matching
conditions.

Substitution of (2.32)-(2.37) into the eleven interface matching conditions, yields the
eleven linear complex equations

−B̂ie
−Ci ∆/d +

(
B̂+

t − Â+
t iR̂ω k∆
2βtdCt

)
e−Ct ∆/d +

(
B̂−

t +
Â−

t iR̂ω k∆
2βtdCt

)
eCt ∆/d = 0,

−Âie
−Ci ∆/d + Â+

t e−Ct ∆/d + Â−
t eCt ∆/d = 0,

−ÂiCie
−Ci ∆/d + Ct

(
Â+

t e−Ct ∆/d − Â−
t eCt ∆/d

)
= 0,

−βiCiB̂ie
−Ci ∆/d + βt

(
Ct B̂

+
t +

Â+
t R̂ωD+

2βt

)
e−Ct ∆/d − βt

(
Ct B̂

−
t +

Â−
t R̂ωD−

2βt

)
eCt ∆/d = 0,

B̂+
t + B̂−

t − B̂+
o − B̂−

o = 0,

Â+
t + Â−

t − Â+
o − Â−

o = 0,

−Ct

(
Â+

t − Â−
t

)
+ Co

(
Â+

o − Â−
o

)
+

Rα

2Co

(
B̂+

o − B̂−
o

)
= 0,

βtCt

[
B̂+

t − B̂−
t +

iR̂ω k

2βtC2
t

(
Â+

t − Â−
t

)]
− Co

(
B̂+

o − B̂−
o

)
= 0,

B̂+
o eCo + B̂+

o e−Co = 0,(
Â+

o +
B̂+

o Rα

2Co

)
eCo +

(
Â−

o − B̂−
o Rα

2Co

)
e−Co − Âee

−k = 0,

[
CoÂ

+
o +

B̂+
o Rα

2

(
1
Co

+ 1
)]

eCo −
[
CoÂ

−
o +

B̂−
o Rα

2

(
1
Co

− 1
)]

e−Co + Âeke−k = 0,

where Ci , Ct , Co , D+ and D− are complex and defined as

Ci = Si−iQi, Ct = St−iQt. Co = So−iQo, D+ = ik

(
−∆

d
+

1
Ct

)
, D− = ik

(
∆
d

+
1
Ct

)
.

In order that the above complex equations have non-trivial solutions, its complex deter-
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Figure 3. Geometry of the three-dimensional, four-zone, dynamic interface dynamo model:
0 < r � ri , the uniformly rotating, electrically conducting core with magnetic diffusivity λi ;
ri � r � rt , the differentially rotating tachocline with magnetic diffusivity λt ; rt � r � ro ,
the convection zone with magnetic diffusivity λo ; and r > ro , the exterior with large magnetic
diffusivity λe .

minant must vanish,
Det|M(Rα,Rω , k, βi, βt , ω, σ)| = 0. (2.38)

For a given set of parameters, (Rα,Rω , k, βi, βt), the real and imaginary parts of (2.38)
give two equations for ω and σ. After solving the dispersion relation (2.38) and then
substituting (Rα,Rω , k, βi, βt , ω, σ) into the above eleven complex equations, we solve for
( B̂i , Âi , B̂

+
t , B̂−

t , Â+
t , Â−

t , B̂+
o , B̂−

o , Â+
o , Â−

o , Âe), give the exact solution for a multilayered
interface dynamo in the whole domain −∞ < z < ∞.

Dispersion relation (2.38) and the corresponding exact dynamo solution have been
calculated for a given set of the parameters of the problem. A typical dynamo solution
is shown in Figure 2 describing the azimuthal field and the field lines of poloidal field
in the x-z plane with R̂ω = 300 and Rα = 30 for βi = 0.001, βt = 1. The dynamo
wave propogates toward the positive x-direction (k > 0, ω < 0) while the strong toroidal
field generated concentrates in the region of the thin tachocline. But the poloidal field
generated in the convection zone is mainly concentrated in the convection zone since the
strong shear in the tachocline prevents the poloidal field from penetrating into the deep
radiative layer.

3. A Multilayered Spherical Dynamic Interface Dynamo
We now consider a much more complicated multilayered dynamo: a three-dimensional,

spherical, dynamic interface dynamo consisting of four different zones as illustrated in
Figure 3. The inner radiative sphere, 0 < r < ri , with constant magnetic diffusivity λi , is
assumed to rotate uniformly with the angular velocity Ω. In comparison to the kinematic
dynamo problem, the dynamic interface dynamo requires not only an additional equation
of motion but also additional physical parameters, such as the Taylor number Ta, per-
taining to the dynamic problem in rotating fluid systems. An element-by-element (EBE)
finite element method capable of taking the full advantage of modern massively parallel
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Figure 4. The butterfly-type diagram for the azimuthal flow uφ (top panel) and the radial
magnetic field Br (middle panel) at the middle surface of the convection zone, and the azimuthal
magnetic field Bφ (bottom panel) at the base of the convection zone for Rm = 200. The dynamic
dynamo solution is axisymmetric.

computers is employed in the numerical simulation of three-dimensional, spherical, dy-
namic interface dynamos. The EBE finite-element code has been carefully compared
with the well-known benchmark dynamo using spectral methods, showing a satisfactory
agreement between two fundamentally different models (Chan et al., 2007).

By scaling the equations with length by the thickness of the convection zone d =
(ro − rt), magnetic field by λo

√
ρµ/d and time by the magnetic diffusion time d2/λo of

the convection zone. Similar to the cartesian dynamo model discussed in the previous
section, we can also derive the four sets of dimensionless equations for the four zones (all
variables in the rest of the section are non-dimensional)

∂Bi

∂t
+ βi∇×∇× Bi = 0, 0 < r < ri, (3.1)

∇ · Bi = 0, 0 < r < ri ; (3.2)

∂Bt

∂t
= Rm∇× {[Ωt(r, θ)k × r] × Bt} − βt∇×∇× Bt , ri < r < rt, (3.3)

∇ · Bt = 0, ri < r < rt ; (3.4)

∂u
∂t

+ u · ∇u + Pm Ta1/2k× u = −∇p + (∇×Bo)×Bo + Pm∇2u, rt < r < ro, (3.5)

∇ · u = 0, rt < r < ro, (3.6)

∂Bo

∂t
= Rα∇×

[
α(r, θ, φ, |Bo |2)Bo

]
+∇× (u × Bo)−∇×∇×Bo , rt < r < ro, (3.7)

∇ · Bo = 0, rt < r < ro ; (3.8)

∂Be

∂t
+ βm∇×∇× Be = 0, ro < r � rm , (3.9)

∇ · Be = 0, ro < r � rm . (3.10)

There are seven non-dimensional quantities that characterize the dynamic interface dy-
namo: the three magnetic diffusivity ratios βi , βt and βm , the magnetic alpha Reynolds
number Rα , the magnetic omega Reynolds number Rm , the magnetic Prandtl number
Pm and the Taylor number Ta, which are defined by

βi =
λi

λo
, βt =

λt

λo
, βm =

λe

λo
,
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Rα =
dα0

λo
, Rm =

d2 |Ω|
λo

, Pm =
νo

λo
, Ta =

(
2d2 |Ω|

νo

)2

.

Our numerical simulations have focused on the fixed Taylor number Ta = 105, which is
appropriate for the solar convection zone if taking an eddy viscosity, and a unity magnetic
Prandtl number Pm = 1 with the magnetic diffusivity ratios at βi = βt = 0.1.

The four sets of equations are solved subject to a number of matching and boundary
conditions at the interfaces. At the three interfaces of the four zones, r = ri, rt and ro ,
all components of the magnetic field and the tangential component of the electrical field
must be continuous, which yield

(Bi − Bt) = 0 at r = ri ;
r × (βi∇× Bi − βt∇× Bt) = 0 at r = ri ;

(Bt − Bo) = 0 at r = rt ;
r × (−βt∇× Bt − RααBo + ∇× Bo) = 0 at r = rt ;

(Be − Bo) = 0 at r = ro ;
r × (βm∇× Be + RααBo −∇× Bo) = 0 at r = ro . (3.11)

For the boundary condition at the outer bounding surface of the dynamo solution domain
(see Figure 3), r = rm , an approximation must be made. Since there are no sources at
infinity, i.e.,

Be = O(r−3), as r → ∞, (3.12)

we can approximate the magnetic field boundary condition at r = rm as

Be = 0 at r = rm with (rm /ro)3 � 1. (3.13)

Equations (3.1-3.10) together with the matching and boundary conditions (3.11)-(3.13),
define a nonlinear dynamic interface dynamo problem in a multilayered spherical rotating
systems.

For given parameters of the dynamo model like Rα and Rm , nonlinear solutions of the
dynamic interface dynamo are obtained by performing fully three-dimensional simula-
tions on massively parallel computers. Figure 4 shows contours of the toroidal magnetic
field at the interface rt , the radial magnetic field and the toroidal flow at the middle of
the convection zone, plotted against time, for Rm = 200, revealing the typical properties
of the dynamic interface dynamos for sufficiently large magnetic Reynolds number Rm .
We find, with the strong effect of the tachocline for Rm � O(10), that (i) the action of
the strong tachocline always produces an oscillatory dynamic dynamo with a period of
about two magnetic diffusion units, (ii) the multilayered dynamic interface dynamos also
produce a torsional oscillation of the azimuthal flow with a period of about one mag-
netic diffusion unit, (iii) the dynamic dynamo is usually axisymmetric, selects dipolar
symmetry and propagates equatorward though the simulation is fully three-dimensional
and (iv) the generated magnetic field mainly concentrates in the vicinity of the interface
between the tachocline and the convection zone.

4. Remarks
We have followed the idea of Parker’s interface dynamo by separating the alpha and

omega processes spatially, an essential ingredient in any interface dynamos, in both the
cartesian and spherical multilayered interface dynamos consisting of four regions coupled
magnetically through the matching conditions at the interfaces. It is of importance to note
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that, in the multilayered interface dynamos discussed, the shear flow in the tachocline
is imposed and the complicated problem of thermal convection (see, for example, Brun
and Toomre, 2002) is avoided.

The most formidable difficulty in modelling the solar global magnetic fields such as
the 22-year solar cycle and the polarity rules is perhaps related to the questions why and
how the solar tachocline is formed and confined at the top of the radiative core and how
to treat the solar radiative core in the solar dynamo simulations (Zhang and Schubert,
2006). Understanding the formation and confinement of the tachocline represents a key
prerequisite in understanding the global properties of the solar dynamo. We must con-
sider three major zones of the Sun, the nearly solid-body rotating core, the tachocline
and the turbulent convection zone, as a single dynamically coupled magnetic system. A
sufficiently strong magnetic field in the core, which may be primordial or diffused into
the core from the above (Garaud, 2002), is needed to sustain dynamically the solid-body
rotation of the core (Gough & McIntyre, 1998). It remains a great challenge that an
interface dynamo model, containing the three major zones of the Sun, is capable of pro-
ducing the formation and confinement of the tachocline in a dynamically self-consistent
way.
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