Origin of Hot Bubble in NGC 6822 Hubble V Star-Forming Region

Hye-In Lee1, Heeyoung Oh2, Beomdu Lim1, Huynh Anh N. Le3, Sungho Lee2, Gregory Mace4, Daniel T. Jaffe4, Ken’ichi Tatematsu5, Sangwook Park6 and Soojong Pak1

1School of Space Research and Institute of Natural Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
emails: hyeinlee@khu.ac.kr, soojong@khu.ac.kr
2Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon, 34055, Republic of Korea
3Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
4Department of Astronomy, the University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, Texas 78712-1205, USA
5National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, JAPAN
6Physics Department, University of Texas at Arlington Box 19059, Arlington, Texas 76019, USA

Abstract. We observed a bright H\textsc{ii} complex, Hubble V in NGC 6822, using the high-resolution near-infrared spectrograph IGRINS (R = 45,000) attached on the 2.7 m telescope at the McDonald Observatory. We carried out a spectral mapping over a 15\arcsec \times 18\arcsec region in the H and K bands using a slit-scanning technique. The emission lines Br\textgreek{g} and He\textgreek{i} from ionized regions as well as molecular hydrogen lines from photo-dissociation regions (PDRs), were detected. We show three-dimensional maps of the emission lines and discuss the possibility of an expanding hot bubble structure within which many ionized components are around the central stellar cluster.

Keywords. galaxies: dwarf, galaxies: irregular, galaxies: kinematics and dynamics, galaxies: Local Group, infrared: galaxies, instrumentation: spectrographs

1. NGC 6822 Hubble V Observation

NGC 6822 is a member of the Local Group and a metal poor irregular dwarf galaxy whose star-forming environment is free of dynamical driving effects (Lee \textit{et al}. 2005). We can spatially resolve molecular clouds or star-forming regions clearly down to parsec scales at a distance of 474 \pm 13 kpc (Rich \textit{et al}. 2014). This galaxy has a bar dominated by an irregular distribution of OB associations and H\textsc{ii} regions (Israel 1997). Based on X-ray observation results, some of the bright H\textsc{ii} regions of NGC 6822 have bubbles (Kong \textit{et al}. 2004; Tennant 2006).

Hubble V is one of the brightest H\textsc{ii} region complexes in this galaxy (RA = 19h 44m 52.85, Dec = –14\degr 43’ 12.8”, J2000). The star cluster inside Hubble V has about 80 OB stars massive star candidates brighter than m\textsubscript{NUV} of 22.5 mag (Hodge 1980; Wilson 1992; Bianchi & Efremova 2006; Schruba \textit{et al}. 2017).

We obtained a spectral map toward Hubble V using Immersion GRating INfrared Spectrometer (IGRINS) attached on the 2.7 m telescope at the McDonald Observatory in 2016 May and July. IGRINS covers the whole infrared H and K bands with resolving...
power of 45,000. Using a slit-scanning technique, we mapped $15'' \times 18''$ (35×17 pc) area over Hubble V. The obtained emission lines are Br$\gamma \lambda 2.1661$ µm, He I $\lambda 2.0587$ µm from ionized regions, and molecular hydrogen lines of 1-0 S(1) $\lambda 2.1218$ µm, 2-1 S(1) $\lambda 2.2477$ µm, and 1-0 S(0) $\lambda 2.2227$ µm from PDRs.

Figure 1. Integrated intensity maps (left) and the 3D cube data (right) of Brγ and H$_2$ 1-0 S(1) emission lines. The molecular clouds surround the ionized region (halo) that extends towards the northwest.

Figure 2. Sample Spectra with Gaussian Fitting. The FWHM difference of mean velocity dispersion between Brγ emission and H$_2$ 1-0 S(1) line is about 14 kms$^{-1}$.
2. Result and Discussion

We confirmed the structure suggested by Lee et al. (2005) through the integrated intensity maps and the 3D cube data of Br\(\gamma\) and H\(_2\) 1-0 S(1). The molecular clouds surround the ionized region that extends towards the northwest (Fig. 1).

Bubbles and superbubbles have been detected in the Galaxy and nearby galaxies (Camps-Fariña et al. 2017). Bubbles blown by massive stars contain fast stellar winds (\(T > 10^6\) K) which emits diffuse X-rays and a swept-up dense shell (Chu et al. 2006).

We suggest that NGC 6822 Hubble V has a hot bubble with surrounding clumpy molecular clouds. The coronal gas and H \(\text{II}\) regions are also influenced by stellar winds from embedded stars. In spite of the expected hot bubble structure, X-ray emission has not been detected in Hubble V.

The mean velocity dispersion obtained from Full Width at Half Maximum (FWHM) of Br\(\gamma\) emission line in NGC 6822 Hubble V is \(\approx 28\) km\(s^{-1}\), while that of H\(_2\) 1-0 S(1) line is \(\approx 13\) km\(s^{-1}\) (Fig. 2). Considering the line width of \(7\) km\(s^{-1}\) in the IGRINS instrument profile, our result implies that the Br\(\gamma\) emission line profile does show neither double-peaked nor multiple-peaked emission components. From this highly dispersed emission, we argue that embedded H \(\text{II}\) regions or inside hot gas have a random motion.

References