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SINGULARITIES AND HIGHER TORSION 
IN SYMPLECTIC COBORDISM 

BORIS I. BOTVINNIK AND STANLEY O. KOCHMAN 

ABSTRACT. In this paper we construct higher two-torsion elements of all orders in 
the symplectic cobordism ring. We begin by constructing higher torsion elements in the 
symplectic cobordism ring with singularities using a geometric approach to the Adams-
Novikov spectral sequence in terms of cobordism with singularities. Then we show 
how these elements determine particular elements of higher torsion in the symplectic 
cobordism ring. 

1. Introduction. The symplectic cobordism ring MSp* is the homotopy of the Thorn 
spectrum MSp and classifies up to cobordism the ring of smooth manifolds with an Sp-
structure on their stable normal bundles. Although MSp* only has two-torsion, its ring 
structure is far more complicated than any of the other cobordism rings MG* for the 
classical Lie groups G = O, SO, Spin, U, SU which have been completely computed. 
Over the past thirty years, these cobordism rings MG* have had a major impact on 
differential topology and homotopy theory. On the other hand, if the complexity of the 
ring MSp* were understood, then symplectic cobordism theory MSp*(-) would have the 
potential to become a powerful tool in algebraic topology. 

The symplectic cobordism ring MSp* is still far from being computed and understood 
despite much research on the subject over the past twenty years. It seems beyond present 
methods to completely compute MSp* in the near future. Nevertheless, we can try to 
determine some general structural properties of this ring. The most striking example of 
such a result is the application of the Nilpotence Theorem [5] to MSp* which says that 
all of its torsion elements are nilpotent. Another basic structural question is: 

(1) Do there exist elements of order 2k in the ring MSp* for allk > 1 ? 

Note that the corresponding structural property is well-known for all other classical 
cobordism rings as well as for framed cobordism, the stable homotopy groups of spheres. 
This paper gives an affirmative answer to (1). 

We begin by describing the background of our research. In the torsion of MSp* there 
are the fundamental Ray elements [13]: (f>o = r] G MSp} which comes from framed 
cobordism, and <j>t G MSp8/_3 for / > 1. These are nonzero indecomposable elements 
of order two, and all torsion elements of MSp* can be constructed from these Ray 
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elements by using Toda brackets. These </>/ determine basic patterns in all approaches to 
understanding the structure of symplectic cobordism. In particular, projections of these 
elements to the Adams and Adams-Novikov spectral sequences for MSp have had a 
major impact on the description of their structure. 

The approach based on the Adams spectral sequence (ASS) E*'* =^> MSp* was devel­
oped in North America. Computations through the 29 stem were made by D. Segal [14] 
in 1970. Subsequently the second author in [6], [7], [8] computed the E2 and E3-terms, 
showed that the spectral sequence does not collapse, computed the image of MSp* in 
9T, found elements of order four beginning in degree 111 and computed the first 100 
stems. 

The other approach based on the Adams-Novikov spectral sequence (ANSS) 
££<* => MSp* was developed in the former Soviet Union. In particular, V. Vershinin [ 16] 
computed the ANSS through the 52 stem and showed that the first element of order four 
in MSp* occurs in degree 103 (unpublished). 

It became apparent from both approaches that if there was torsion of order greater 
than four in MSp* then it would occur in such a high degree that it would not be 
reasonable to try to discover it through stem by stem computations. In addition, there 
were no candidates for elements in Ei of either the ASS or ANSS which might represent 
elements of higher torsion. (The only such family of candidates in the ASS was shown 
in [7] to be the image of higher differentials.) The determination of elements of higher 
torsion required new geometric ideas. 

V. Vershinin's paper [17] provided new perspectives for viewing the symplectic 
cobordism ring. He constructed a sequence 

MSp* —> MSp*1 —> MSp*2 > > MSp*" > > MSp* 

of cobordism rings MSp*" of symplectic manifolds with singularities which starts with 
the ring MSp* and ends with MSp*, a polynomial ring over the integers. In the two-local 
category, the spectrum MSp1 splits as a wedge of suspensions of the spectrum BP. Here 
£ = (P i , . . . , P„,. . .) and Zn = (P i , . . . , Pn) are sequences of closed Sp-manifolds which 
represent the Ray elements [Pi ] = r\ and [P,] = </>2«-2 for / > 2. This led to the description 
of the Adams-Novikov spectral sequences for the spectra MSp1" in terms of cobordism 
with singularities [2], and, in particular, to a precise formula for the Adams-Novikov 
differential d\ that reduces the computation of the £2-term to elementary algebraic 
manipulations. 

The opportunity that we have had to work together at York University has led to the 
understanding that the geometry of manifolds with singularities can be used to uncover 
the deep interaction between the Adams and Adams-Novikov spectral sequences for 
MSp thereby constructing torsion elements of all orders 2k in MSp*. 

First we construct higher torsion elements in MSp*" for n > 3. The keys to this 
construction are that the cobordism ring MSp*" has new elements w\,..., wn that have 
the same degrees and behavior as the elements v i , . . . , vn G BP* and that the Toda 
brackets (</>;, wk, <j>j) are defined for k < n. In Section 5, we prove the following theorem. 
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THEOREM A. For each n > 3 and n < i\ < • • • < iSi there exist indecomposable 
elements r„( / i , . . . , is) G MSp4^+1 with the following properties: 

(i) rn(i\) = (t>2>i~2; 

(ii) rn(i\,..., is) G (<t>2h-2,wn-i,Tn(i\,..., is-i)); 

(Hi) Tn(i\,..., is) has order at least 2^s+^'2^ for s > 1. 

Using Bockstein long exact sequences we deduce Theorem B which gives a positive 
answer to question (1). 

THEOREM B. For each k > 1 there exist elements of order 2k in the symplectic 
cobordism ring MSp^. 

Theorem B does not give a particular way to construct higher torsion elements 
in MSp*. The remainder of this paper is devoted to the construction of elements 
a ( / i , . . . , is) G MSp* from the elements T3O1,..., is) G MSp*3. Consider the diagram 
below 

MSp? - ^ MSp? - ^ MSp*< - ^ MSp, 
\ 7T 

MSp, 

We define the elements cc'(i\,..., is) = ft ( ft (r3 (i 1 , . . . , isfj ) in the ring MSpjj;1. Then we 

construct elements a(i\,.. .,is) £ MSp4*+1 such that 7r(a(/i,..., 4)) and 2a /(i ' i , . . . , 4) 

in MSp*1 project to the same element of £^'4*+1(MSpZl) in the Adams-Novikov spectral 

sequence. Finally we prove that the ct{i\,..., is) G MSp4;tc+1 are elements of higher order 

inMSp,. 

THEOREM C. The element ot{i\,..., is) G MSp4;,+1 has order at least 2[(s+l)/2]~3 for 
s > 7 and 3 < i\ < • • • < is. 

We describe the contents of this paper in more detail. In Section 2, we summarize the 
basic facts about the spectra MSpXn which we will be using. In Section 3, we give the 
definition and basic properties of three-fold Toda brackets of manifolds with singularities. 
These Toda brackets will be used to inductively define the elements we construct. In 
Section 4, we study the Adams-Novikov spectral sequence for the MSpz\ The key 
technical and conceptual fact we use is that the Adams-Novikov spectral sequence for 
the spectrum MSp* coincides with the Z-singularities spectral sequence which is defined 
in terms of cobordism with singularities [2]. The Z-singularities spectral sequence gives 
us a specific resolution M(n) for computing £2 of the ANSS for MSpz". In particular, 
we identify torsion elements tn(i) of all orders 2k in the first line of the ANSS 

4*=Ext^*p(BP*(MSpz"),BP*). 

Let i = (J'I, . . . , /y). In Section 5, we use Toda brackets to construct elements rn(\) in 
MSp^n and prove Theorems A and B. In particular, the element rn(i) has order at least 
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2Ks+\)/2] b e c a u s e it projects in the Adams-Novikov spectral sequence to the infinite cycle 
t„(t) that has order 2[(s+l)/2] in E^CMSp1"). In Section 6, we study the elements 

7(i) = /33(r3(t)) G MSp£+3 and ar'(t) = (52{l{x)) G MSpJ;+1 

and identify their projections to the third line of the ANSS. In Section 7, we prove 
Theorem C by projecting the elements a'O'i, • • •, h) to the third line / ^ (MSp 1 ' ) of the 
ANSS. We use chromatic arguments to compute the order of these projections in E%*, 
and we show that they can not be killed by ^-differentials. 

In the paper [3], we show that the elements T3(t) G MSp*3 constructed here lift 
to elements t[x] G MSpJ3 where MSp^" is the cobordism ring with singularities Ê„ = 
(P 2 , . . .,Pn)- We prove that the resulting elements a[i] = ft (#2 (*[*])) £ MSp^ have 
order at least 2[(5+1)/2]~2, an improvement upon Theorem C. The paper [3] concludes 
with four conjectures on likely generalizations of our results. 

All groups, rings and spectra are two-local throughout this paper. 
The first author would like to thank the topology community at M.I.T. for their warm 

hospitality during his visit in the spring term of 1991 as well as the Department of 
Mathematics and Statistics at York University for their kind support and hospitality. In 
addition he would like to thank Haynes Miller for important discussions on the basic 
ideas of this paper. 

2. Symplectic cobordism with singularities. In this section we collect basic con­
structions and theorems concerning the spectra MSpJ, MSpJ" and MSpJ" of symplectic 
cobordism with singularities. In particular, we determine formulas for computing the 
Bockstein operators which will be used in Sections 4 and 7 to make computations in the 
ANSS for MSp1". 

Let X = (P i , . . . , Pn , . . . ) be a sequence of closed Sp-manifolds representing the Ray 
elements such that [P\] = r\ and [P(] = <j>2i-i for / > 2. Let £„ denote the sequence 
(P i , . . . , Pn) for n > 1, and let £n denote the sequence (P2,.. . ,Pn) for n > 2. The 
bordism theory of Sp-manifolds with X-, Zn-, ^-singularities is denoted by MSp^(-), 
MSp^(-), MSpH) , respectively. By [2], [17], [18] the theories MSp^(-), MSp^(-) 
have admissible product structures, and the coefficient ring MSp*" is polynomial up to 
dimension 2n+2 — 3. (See [17], [2, Theorem 3.3.3].) The following theorem describes the 
structure of the ring MSpJ. 

THEOREM 2.1 (V.VERSHININ [17]). There exists an admissible product structure in 
the theory MSpJ(-) such that its coefficient ring MSpJ is isomorphic to the polynomial 
ring 

M S p J = Z(2)[Wi, . . . , Wj, . . . , X2, X4, X5l . . . , Xm, . . .] 

where deg Wj = 2(2; — l)forj = 1 , 2 , . . .anddegxm = Amform = 2, 3, 5 , . . . , m / 2s — 1. 
The generators Wj are represented by Sp-manifolds Wj such that d Wj - 2Pj. 

In fact, the cobordism theory MSp£(-) splits as a sum of the theories BP*(). 
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THEOREM 2.2 ([2, COROLLARY 3.5.3]). The ring spectrum MSp1 splits as 

MSpz = BPAM(G) 

where G = Z(2)[*2? • • ? Xm,...], m = 2 , 4 , 5 , . . , m ^ 2Z — 1, degjtm = 4m ««J M(G) w a 
graded Moore spectrum. 

NOTE 2.1. Theorem 2.2 implies that the ANSS based on the cohomology theories 
BP*() and MSp£(-) are isomorphic. 

There are Bockstein operators in the theory MSpJ(-) for / > 1: 

ftiMSpft.)—+MSp£(.). 

They have the following properties: 

/ W / = 0, an<* fcoPj=l3jOl3i. 

In general a product formula for Bockstein operators acting on a bordism theory with 
singularities is too complicated to write down. However in our case this formula has the 
following simple form. 

THEOREM 2.3 ([2, THEOREM 4.2.4]). The product structure and the elements wt in 
Theorem 2.1 may be chosen in such a way that the Bockstein operators fit, i > 1, satisfy 
the product formula: 

(2) /?/(* • y) = (J3ix) -y + x- (fty) - wt • (/?,*) • (0iy) 

where x, y G MSp*. 

To describe the action of the Bockstein operators on the polynomial generators of 
MSp* we introduce the following notation. Let m + 1 = 2l]~l + • • • + 2h~l be a binary 
decomposition of the integer m + 1 where 1 < i\ < ii < • • < is. If m is odd, the 
generator xm is denoted by x/,,...,/,. If m = 2l~l with 1 < / then the generator^ is denoted 
by*i,,-. 

THEOREM 2.4 ([2, THEOREM 4.5.1]). There are generators xm of the ring MSpJ such 
that the formulas below describe the action of Bockstein operators (5k on xm for k > 2. 

1. If m = 21"-1 + 2>~] - 1, 1 < / <j then 

(3) fyxij = wj, PjXij = wh andf3kXij = 0 ifk^ ij. 

2. If m = 2,',_1 + • • • + 2 ' w - 1, 2 < ii < i2 < • • • < /, Û/M/ s > 3, r/zerc 

( 4 ) &*«.,...*- | 0 ifklh,-.;is 

3. If m is even and not a power of two then 

(5) pkxm = 0. . 

Formulas (2)-(5) are the ones we will use in Sections 4,5 and 6 to make computations 
in the ANSS for the spectra MSp2". Note that (2) and (3) are invariant under permutations 
ix of the subscripts where 7r is a permutation of the set of integers greater than one. 
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3. Toda brackets. In this section we extend the construction of Alexander [1] to 
define triple Toda brackets in the ring MSp*n. Note that we do not claim that all of the 
usual properties of Massey products [10] and Toda brackets [15] generalize to cobordism 
with singularities. These Toda brackets will be used in the constructions of Sections 5 
and 6. 

Let Pn be closed Sp-manifolds, [P\hP = r\ and [Pnhp = <t>2n~2 f° r n>2. Consider the 
manifold P'n = Pj/} x f*2) x I. Here P^\ P^] are two copies of the X„-manifold Pn such 
that: dPf

n = (3nP'n x Pn and/3,,/* = P(
n

l) x {0}U/*2) x {1}. The cobordism class [P'n]Ln is 
the obstruction to the existence of a product structure on MSp1". In our case, [/* k„ = 0, 
and we let Qn denote a In-manifold such that 6Qn = P'n as in [2, Theorem 4.2.4]. Thus, 
we have the following product construction of [2, Theorem 2.2.2]. 

A product mn(A
a, Bb) of two Z^-manifolds is defined by induction on n as follows: 

m{(A
a,Bb)=Aa xBbU(-l)bpxA

a x (3xB
b x Qx 

and for n > 2 

m„(A", Bb) = m„-i(Afl, Bb) U (-l)*mn-i (m„_iC8nA
fl, (5nB

b), Qn). 

In particular, if C is an Sp-manifold without singularities then m„(X, C) = X x C and 
mn(C,X) = C x X and we have the following diffeomorphism of Zn-manifolds: 

(6) 6mn(A
a,Bb) = mn(eA,B)U(-l)amn(A,6B). 

By [2, Theorem 3.3.3], this product ofZn-manifolds mn determines an admissible prod­
uct structure [in in the theory MSp^(-) which is commutative and associative. At the 
level of E„-manifolds commutativity of \in means (see [2, Definition 2.1.3]) that for all 
Zn-manifolds Aa, Bb there exists a Zn-manifold ft n(A

a, Bb) called the canonical commu­
tativity construction which is functorial in the category of Zn- manifold s and satisfies the 
formula 

(7) <5ft„(A, B) = m„(A, B) U (-l)abmn(B, A) U - f t „(6A, B) U (-l)a + 1 ft „(A, 6B). 

Associativity of \in at the level of £n-manifolds means (see [2, Definition 2.1.3]) that 
for all I„-manifolds Aa, Bb, Cc there exists a Zn-manifold yin(A

a,Bb,Cc) called the 
canonical associativity construction which is functorial in the category of Zn-manifolds 
and satisfies the formula 

6Hn(A
a, Bb, Cc) = m„(A, m„(fl, C)) U -mn(mn(A, B), C) U 

(8) -llniM.B.QUi-ir^niA^B.QUi-lT^^niA.B^C). 

Let Aa and Bb be Sp-manifolds without singularities. Then ft n(A, B) can be taken to be 
the cylinder ft „(A, 5) = 7 x A x 7? with an Sp-structure such that there is a diffeomorphism 
preserving Sp-structures: 

5(7 x A xB)=A x B U -(-l)abB x AU -I x dA x BU(-l)a+]I x A xdB. 
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In this case kn(A,B) has been described [7, Section 10] in the special category of 
manifolds as a "cup-one product of manifolds". It projects in Ei of the ASS to an 
algebraic cup-one product. Moreover, the Sp-structure on $tn(A, B) can be chosen so 
that kn satisfies the Hirsch formula [9]. Using the definition of &„(A, B), this property 
generalizes to the two cases of Xn-manifolds given in the following lemma which suffice 
for the constructions of this paper. Statement (b) is nontrivial; it is essential that the 
Z„-manifolds Aa and Cc have only one common singularity, i.e. there is only one / < n, 
such that both fcA ^ 0 and fcC / 0. 

LEMMA 3.1. (a) (Hirsch Formula) If Cc is an Hn-manifold and one of the lLn-
manifoldsAa, Bb is an Sp-manifold without singularities then we have a diffeomorphism 
of lLn-manifoldspreserving Sp-structures: 

(9) Sin(A xB,C) = (- iym„(A, «„(£, C)) U(-l)*cm„(ft„(A, C),B). 

(b) (Generalized Hirsch Formula) If'Aa and Cc are closed T,n-manifolds that have 
only one nonempty common singularity and c is even then there is a Hn-cobordism 
between the manifolds 

(10)ftn(m„(C,A), C) U ÎIn(C,A, Q and m„(C, ft„(A, C))Um„(Sn(C, C),A). 

COMMENTS ON THE PROOF. Part (a) is proved by comparison of the constructions 
on the left and right sides of equation (9). In part (b), the obstruction to the associativity 
of the product structure \in has order three in the group MSp^n; see [2, Lemma 2.4.2]. 
Since the group MSpJ" does not have any odd torsion, the associativity construction îï„ 
may be taken to be a cylinder. This gives a way to construct a cobordism between the 
Xn-manifolds in (10). The construction of this cobordism is straightforward when the 
manifolds A, C have only one common singularity. • 

Now we are ready to define the Toda bracket (A, /?, c), where a,b,c£ MSpJ". Since the 
product of Zn-manifolds is not associative, we need to use an associativity construction 
(8) to glue together the two usual pieces which define such a bracket in an associative 
context. We use the standard sign conventions of [10]. 

DEFINITION 3.2. Let a, b, c e MSpJn such that ab = 0 and be = 0. Let A, B, C be a 
Hn-manifold which represents a, b, c, respectively. Let X, Y be 2,n-manifolds such that 
8X = m„(A, B) andbY = xnn(B, Q. Then 

5mn(X, C) = mn(mn(A,B), C), and <5m„(A, Y) = (-l)degAm„(A, m„(£, Q) . 

Let the Toda bracket (a, b, c) be the set of all cobordism classes of"Ln-manifolds 

Z = ( - l ) 1 + d e g f i m „ ( X , C ) U ( - l ^ 
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NOTE 3.1. Let the Toda bracket (a, /?, c) be defined where the element a is represented 
by a closed Sp-manifold A. In this case the Zn-manifold 5ln(A, £, C) is just the cylinder 

5l„(A, fi,C) = / x A x m„(fl, C); 

see [2, Theorem 2.5.1]. Thus, the following Zw-manifold Z represents an element of 
(a,b,c): 

Z = ( - l ) 1 + d e g V l , Q U ( - l ) 1 + d e g ô / x A x m,(^C)U(-l)d e g A + d e g f îmn(A,F). 

By properties of mw, 91 n (see [2, Section 2.2]), the Z„-manifold Z depends only 
on the cobordism classes a, b,c and on the choice of the Z„-manifolds X and Y 
with 6X - mn(A,B) and <57 = mw(#, C). Therefore we have the usual indeterminacy: 
in (a, b, c) = {ay + xc | JC, y G MSpJ"}. 

We define a generalized quadratic construction which we use in the next lemma to 
identify Toda brackets of the form (#, b, a). Suppose M is a Zn-manifold of dimension 
2k. Define a closed Zrt-manifold A(M) as follows: 

(11) A(M) = mn(M
(l\M(2)) x /U -ftn(M(2)

7M(1)) 

where we identify the following manifolds: 

mn(M(1),M(2)) x {0} D m„(M(1),M(2)) C -6ftn(M(2),M(1)), 

m„(M(1),M{2)) x {1} D -m„(M(2),M( l )) c -6S\n(M
(2\M{l)). 

Note that in the case where M is a manifold without singularities, the manifold A(M) is 
just the quadratic construction. 

LEMMA 3.3. Let the Toda bracket (a, /?, a) &£ defined in MSpJ", where a = [M] an<i 
£> = [/?] for M a Tn-manifold of dimension 2k and R a Sp-manifold. Then 

(12) (a,b,a) = {(-l)1+deg^[A(M)] + ax | x G MSpJ"}. 

PROOF. Throughout this proof we ignore trivial associativity constructions in which 
one of the three entries has empty singularities. Let F be a Zn-manifold such that 
6Y = R x M. Then 

6(Y U (R x M x /) U -&„(/?, Af)) = M x /?, 

and the Zn-manifold 

C = % ( F , M ) U ^ x M , M ) x / U - t n „ ( ^ i ? , M ) , M ) U - n i „ ( M , F) 

is a representative of the Toda bracket (— l)1+degZ?(M, /?, M). Glue the Z„-manifold 
ftn(y, M) to the cylinder C x / by identifying the following manifolds: 

C x {l}Dm„(7,M)x {l} = m n ( y , A 0 c £ M y , M ) , 

C x {1} D-mn(M, Y)x {l} = -mn(M,Y)c8kn(Y,M), 

C x {l}D/ww(ft(/?,Af),M) x {l} = /wn(Jt(/?,M),M) C«ft„(y,Af). 
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-R x A(M) 

K(X,M) 

m„(F,M)x{l} Rx mn(M,M)xIx {1} -mn(&n{R,M),M)x{\} -m„(M,F)x {1} 

mn(Y,M) mn(R xM,M)xI -m„(&„(/?,M),M) -mn(M, Y) 

FIGURE 1 : The S„ -manifold Z. 

The boundary of the resulting Z„-manifold Z is given by 

6Z=-Rx A(M) U C x {0} 

since, using the Hirsch formula, 

mn(Y,M)H6Z= -SïniëY,M)DèZ= -Sin(R xM,M)H5Z=-Rx S„(M,M). 

See Figure 1. Thus, ( - l ) 1 + d e g*(a,M) contains [A(M)]b and in(a,b,a) = aMSpJ\ 
Therefore, (12) holds. • 

The next property is well known for manifolds without singularities. See [1, Defini­
tion 2.1(5)]. 

LEMMA 3.4. Let (a,b,c) be a Toda bracket which is defined in the ring MSpJ\ 
Assume that a = [A] is represented by a closed Sp-manifold, and b = [B], c = [C] are 
represented by lLn-manifolds. Then the following inclusion holds in the ring MSp/ : 

b{a,b,c) t(-\f**a(b,a,b)c. 

PROOF. Let X, Y be I„-manifolds such that 6X = A x B and bY = m„(J3, C). Then the 
following Z„-manifold Z represents an element of (—l)1+degZ?(a, b, c): 

Z = mn(X, C)U-IxAx mn(B, C) U (-l)1+degaA x Y. 
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mn(mn(B<X),c) 

-abxnn(mn 

-ahl x m„(mn(# x A, 5), c) 

-yLn(B,x,Q -CTfc/x ïï„(£xA,£,C) 

a,m„(x,mn(£,C)) 

/ aamn{X,Y) 

/ 

m „(#, m,z(X, Q ) - ^ / x m„(fl x A, m„(fl, C)) -^m„(# x A, F) 

FIGURE2: Z„-manifold V2, where <rfl = (-l)degfl, oh = (-l)d e^. 

Thus, the Xn-manifold mn(#, Z) represents an element of (— l)l+dQgbb(a1 b, c), and using 

(6): 

mn(B, Z) = mn(#, m„(X, C)) U 

- m n ( # , / x A x m n(£,C))u(- l ) 1 + d e g am n(£,A x F) 

= mn(fl, m„(X, Q ) U (~l) 1 + d e^/ x m„(£ x A, m„(5, C)) 

U(-l)1 + d e g am„(fixA,F). 

Let X be a 1,,-manifold such that 6X = B x A. Glue (-l)d e^m„(X, Y) to the cylinder 
mn(5, Z) x / along their common boundary: 

<5mn(£,Z) x {1} D mn(£ x A, Y) c <5mn(X, y). 

Denote the resulting Zn-manifold as Vi ; see Figure 2. Now consider the Zn-manifolds 

îl„(fl, X, C), / x 2In(B x A, 5, C), ÎIn(X, 5, C) 

with boundaries: 

««„(£, X ,Q = xnn(B,mn(X1C))u-mn(mn(B,X),C)u(-\)dQëh+]1ln(B,6X,Q 
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= rn„(#, m„(X, C)) U -m n(m„(5, X), C) U ( - l ) d e ^ + 1 ?!„(£, A x f i , Q 

= mn(B1 m„(X, O) U -mw(m„(B7X), C) U (-l)deg^+1 %n(B x A, B, C); 

S(lx UniBxA.B.Q) 

= Ix {-xnn(B x A, m„(fl, C)) U m„(m«(5 x A, 5), C ) } u â / x îl„(# x A, 5, C); 

<S9I„(X, S, C) = m„(X, mn(£? C)) U -mfl(m„(X, 5), C) U -ÎI„(£X, 5, C) 

= m„(x, m„(£, C)) U -m„(m„(X, B), c) U -2I„(£ x A, 5, C). 

Now we glue together the Sn-manifolds 

Vu -«n(5,X, C), (-l)1+deg^/ x ?!„(£ x A,£, C), (-l)d e g^In(X,£, C). 

The resulting Z„-manifold V2 gives a X„-bordism between m„(B, Z) x {0} and 

mn(-mn(B,X)U(-l)degbI x mn(B x A1B)U(-l)d^bmn(X,B\C). 

The latter Z„-manifold represents an element of (—l)1+dega+deg^£? ^, fr)c. Thus, 

(-\)**sMb{a,b,c) C (-l)degf l+deg*+1(M,£)c 

and /?(«, b, c) C (—l)dega(fr, a, b)c, as required. • 

NOTE 3.2. Let #be any (#,/)-structureas in [11], and letM#J be the cobordismring 
of ^-manifolds with singularities X. Assume that the theory M#J(-) has an admissible 
commutative and associative product structure. Then, as in Definition 3.2, Toda brackets 
can be defined in M*3f. Moreover, if M1% does not have 3-torsion then all the results of 
this section are valid for these Toda brackets. In particular, all the results of this section 
are true for the theories MSpJ"(-) where Èn = (P2? ^37 • • • 7 Pn) for n>2. 

4. Adams-Novikov spectral sequence for MSp2". Recall that our plan for deter­
mining elements of higher order in the ring MSp* is to construct E„-manifolds which 
project to infinite cycles in the £2-terms of the ANSS and ASS of MSpz" for n > 3. 
Then we determine the order of these projections in £2 of the ANSS and bring back 
these X„-manifolds to MSp*. In this section, we accomplish the first part of our program 
by describing particular torsion elements t ( / j , . . . , ijs) of higher order in the first line 

^'4*+1(MSpz") = E x t ^ ^ B P ^ M S p ^ ) , BP*) 

of the ANSS which are the projections of the Zn-manifolds which we will construct in 
Section 5. 

Throughout this section, let n > 0 be a fixed integer, and let MSp10 denote MSp. In [2, 
Section 1.6], the ANSS for each of the spectra MSp1" is described in terms of geometrical 
constructions on manifolds with singularities. In particular, the ANSS for the spectrum 
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MSpIn is identified with the I,-singularities spectral sequence (Z-SSS) associated with 
the exact couple: 

MSpf- ^ MSpJ™ ^ MSpf<2>« ^ - . 

(13) TT(0)„ \ aCDn/1 7T(i)„\ a(2) n , / H2)n\ 

MSp?'>" ^ MSpP» ^ ..-

Here MSpf™", MSP?**" are the coefficient groups of particular bordism theories closely 
related to the theories MSp*n(-), MSp^(-); see [2, Section 1.4]. The £^*-term of the 
I-SSS (or the ANSS) is described as follows. Consider the bigraded commutative 
algebra M(n) = MSp*[wn+i, un+2l.. .un+kl...], where \un+k\ = (l,2(2n+/c — 1)), and 
\x\ - (0,degjc) for* G MSp*. Let M(n)s = {zG M{n) | |z| = (s, *)}. As we shall see, 
(M{n)s is isomorphic to the s-th line Eff of the ANSS for MSpIn. We have the following 
complex: 

(14) M(n)0 —4 f^(n) l —4 f^(n)2 —4 • • • —4 M{n)k —4 • • • . 

The differential <D(n) is defined as 

©(n)(x<' • • • up = £(-i)e'(a)((&*)<' • • • <<+1 • • • up) 

where n < i\ < • • • < ij, a = (# i , . . . , a7) is a sequence of nonnegative integers and 
er(or) = Ej=i #/• It follows from the product formula (2) for Bockstein operators, that the 
subalgebra of cycles of the algebra M(n) is a DGA. Therefore, the homology H*(9rf(n)) 
of the complex M{n) has an induced algebra structure from fAf(n). The elements w,-, 
/ = n + 1, n + 2 , . . . are the projections of the "basic Ray elements" u\ = 77, w; = </>2<-2 for 
/ > 2. We use the same notation for these elements and their projections to the ANSS. 

THEOREM 4.1 ([2, THEOREMS 3.4.1,4.4.5]). (i) The exact couple (13) is an Adams 
resolution of the spectrum MSp1" in the theory BP*(). 

(ii) There is an isomorphism of algebras 

£2(MSpx") = Ext*'B*P(BP*(MSpE"), BP*) £f H*(M(n}). 

In particular, there is a ring isomorphism 

T?/ = Hom*Bp(BP*(MSpI"), BP*) * H^{M{n)). m 

NOTE 4.1. The complex M{n) in (14) is the bottom line of the diagram (13). In 
particular the first Adams-Novikov differential £>(n): M(n)0 —> M(n)x is given by 
©<n>=/3(l)» = ©&,+ ,ft . 

Now we are ready to use the above results to set up the environment in which we will 
do our chromatic calculations of £2(MSpJn). Since the ring MSp* is polynomial and wm 

is one of its generators, we have the following exact sequence: 

(15) 0 — MSp* - ^ MSp* —> MSpl/(wk
m) —+ 0 
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where (wk
m) is the principal ideal generated by w^ and ir(k) is the natural projection. Since 

^{n)(wm) = 0, the exact sequence (15) induces the exact sequence of complexes: 

(16) 0 > M(n) - ^ M{n) -^-> M(n)/(wk
m) > 0. 

We paste the sequences (16) together to obtain the following commutative diagram: 

0 —> M{n) - A M(n) ^-* M(n)l(wm) —> 0 

Id 

•W2 TT^2) 

M(n) —^ M{n) —• M{n)j{w2
m) 

(17) 

Id 

Id 

Id 

(«>/ 

1 -w« 1 •*•* 1 

1 w" 1 •w» 1 
f^(/i) -^> <*f(/i) - ^ M{n)/{wk

m) 

Taking the direct limit of the rows of (17), we obtain the following short exact sequence 
of complexes: 

(18) 0 — M{n) —+ wm
lM(n) - ^ M{n)/(W£) - ^ 0 

where 

w~lM(n) = lim(!M(n) - ^ M{n) -^% • • •) and 

M(n)/(w%) = lm(ftf (/i)/(ww) ^ ftf </I) / (H£) ^ • • •). 

The short exact sequence of complexes (18) induces the following long exact sequence 
in homology: 

0 —+Ho(M(n)) —>H0(wm
lM{n)) -^ H0(M(n)/w%) ^Hx{M{n)) 

(19) -^Hl(wm
l^(n))-^Hl(^(n)/w^)^H2(^(n)) — • • • 

The key point about (19) is that the complex w~lM(n) is acyclic. 

LEMMA 4.2. For n>\,n>m>0 and s > 1: 

(20) Hs(wm
lM(n)) = 0. 

It follows that we have the exact sequence 

(21) 0 —+ Ho(fW(/i)) — Hv(w-lM(n)) —* H0(M(n)/w%) - ^ Hx(M(n)) —* 0, 

and for s > I we have group isomorphisms 
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PROOF. Consider the following subalgebra of wm
 {M(n) : 

L(i\,..., ik) = wm
x MSpJw;,,..., M/J, 

where n < i\ < • • • < *V This subalgebra is closed under the differential (D(n), so it is 
also a subcomplex of wm

X(M(n). To prove (20) it is enough to show that 

(22) Hs(L(ix,..., ik)) = 0 for all k and s > 1. 

We prove (22) by induction on k. 

THE CASE k = 1. //5(x(/)) ^ 0 for s > 1. By Theorem 2.4, /?,•*„,,,- = wm. In terms 
of the algebra L(i) this means that Tf{n)(yv'm

{xm^) = U[. Let xŵ  G £(/), # > 1» be any 
element such that îD(n)(jcwf ) = (Pix)uf+l = 0. Then ftjc = 0 and îD(n)(w~1jcm.I-jcM^~1) = 

THE INDUCTION STEP. HS(L(IU . . . , ik_xj) = 0 ==> HS(L(IU . . . , /*)) ^ 0. We have 
the following exact sequences of complexes: 

(23) 0 > !#i,...,*V_i) • jC(/i,...,/ik) —> L(ik) > 0. 

The long exact sequence determined by (23) implies that Hs(L(i\,..., /*)) ^ 0 
for s > 1. • 

Now let n > 3. We describe the structure of the subring 

Let w,, X(j, */,,...,/, be the polynomial generators of the ring MSp* described in Theo­
rem 2.4. Define the following polynomial generators of w~l{ MSp* : 

(24) Z; =*,•,„_!, j= 1,2,.. . , n - 2 , Z n=x n_ h n ; 

(25) X/ = - H>|, 7/ = ~ 2 (*n-l,i - WiWn-\), l>n+\. 

Note that X? = 4F/ + wj. Let 1 < i < j ; ij •£ n - 1. Then define 

WiXn-1 j — WjXn-1,/ 2 x n _ i jxn-1 j 
(26) Xu=XiJ--

W / i - l VV^__j 

Note that if 1 < / < n— I, j ^ n— 1, then we could have chosen the polynomial 
generators 

(27) x ; , = ^ - ^ ^ . 

We can also choose polynomial generators Xiu„js of vv îj MSp* for s > 3 as */, ,-y + 
• • •. We only need their existence. Their exact definition, is not necessary for our 
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computations. However, for completeness, we define them as follows. If 1 < i\ < • • • < 
is,i\,.. .,isj£n— 1 then define 

k=\ V Wn-\ \<h<-<tk<s J 

/ 1 \J— l (*-^t=\ ^itxn—\.i\ ' ' 'Xn—l,it ' ' ' xn—\,is £Xn—\,i\ ' ' ' xn— \,is \ 
+('l) w,[ ^ ^ *r.—)• vn-\ 

If /i < • • • < is and im = n — 1 then define 

s—m—2 

^',,...,/, = •*/,,...,!, + 2_^ \ ( _ 1) ~T Z^ */ l- l , / / , ' ' 'X«-l , / , *I, ,...,l, ,...,î, ,...,/, ) 

"• V ^/ \ ^~T]~ / _ , -^rt—l,/'i * ' *-*Vz—1,/, ' * ' %n— 1,/^/] ,...,/m,/, ) 

+ ( _ i r l f e 

' V x / „ i -*n— \,im+] •xn—l,it-Ai\,...,i„ 
\A1à l 

where Sl
m is the Kronecker delta. 

We have the following two polynomial subrings of the polynomial ring MSpJ: 

% = Z(2)[*m | m even and m ^ 2'], W{n}* = Z (2)[wi,..., w„_2]. 

We will also need the following polynomial subrings of w~l{ MSpJ: 

R(n)i = Za)[Zj,XhYi\j=l,...,n-2, I I , / > / I + 1 ] , 

R(n}2 = Z(2)[XlV | 1 < i <y, i,y ̂  /i - 1], 

*(*>3 = Z^K,,...,/, | J > 3, 1 < i, < • • • < i,], 

R(n) = R(n)i ® R(n}2® R(n)3. 

LEMMA 4.3. There is a ring isomorphism: 

Hv{w-{_xM{n)) * Z(2)[wrt-1? w~lx] ® *W(/i)* ® V*®R(n). 

PROOF. There is a ring isomorphism: 

vtvii MSpJ = Z(2)[ww_i, w - i j (g) ^(/i)* (8) fP* (g) T 0 /?(n)2 0 /?(/i)3, 

where 

T= Z(2)[w 

Since the subring T of MSp* is closed under the action of the Bockstein operators fy for 
J >n+\,Tgenerates the subcomplex 

(28) T = T[un+\,...,un+k,...] 
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of M(n). To prove this lemma, it suffices to establish the isomorphism: 

(29) H 0 ( T ) ^ w - V ( n ) i . 

For k>\, define the following subrings of w~}_x MSpJ: 

7^ = Z(2)[W„_1, . . . , Wn+klX\^-\, . . . ,JC„_2,n-l,^/i-l,n? • • • ? *n-l.n+fcL 

7Q = Z(2)[wn_i,Wn+fc,*n_i?„+fc], 

fl(/c) = Z(2)[wn_i,ZJ-,XI-,y/ | y= l , . . . , n - 2 , n , î = n + 1 , . . . , n + fc], 

Since the rings T^k\ 1^ are also closed under the action of the Bockstein operators fy 
for y > n + 1, we can define the subcomplexes T(/c) and ^ ^ of M(n) as in (28). Direct 
computation shows that 
(30) H0(w-l1<k)) = w-i^K 

In particular, we have the isomorphisms: 

//0(Hvl1<r(1)) ^ H0(w~ll^
{))^Za)[xl^h...,Xn^n-UXn^^ 

* W'l^ <g> Z(2)[j:i,„-1, • . .,*n-2,n-l,*n-l,,.] = ^ V ^ ' 

By induction on k > 1, we have the a homomorphism of short exact sequences of 
complexes 

î î Î 

where the complexes on the bottom line have zero differential. The left and right vertical 
maps induce isomorphisms in homology. Thus, the Five Lemma completes the induction 
proof of the isomorphisms (30). Taking the direct limit over k of the isomorphisms (30) 
establishes the isomorphism (29). • 

Define 
(31) tn(iu...,i2s) = 6n(

Xn-l'ir''Xn-l'i*) eHxWin)) 

where 3 < n < i\ < • • • is, 6n is the boundary homomorphism of (21) and 

Hx(M(n)) * Ext^B*p(BP*(MSp^),BP*). 

These are the required elements of higher torsion in the first line of the ANSS. 

PROPOSITION 4.4. The element 

tn(iu . . . , is) e Ext '̂B
4
P*

+1(BP*(MSpx"), BP*) 

has order 2[(s+l)/2] for any sequence (i ' i , . . . , is\ s > 1, 3 < n < i\ < • • • < is. 
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For convenience we prove Proposition 4.4 assuming that s is even. The proof for the 
case when s odd is a slight modification of the even case. The following technical lemma 
will be used to show that 2s~l tn(i[,..., ^ ) ^ 0. 

LEMMA 4.5. There does not exist an element Y G MSp*, such that the element 

(32) Z = 25-lxn-\,ix • • -X/z-i,^ - w„_iF 

belongs to the ring Ho(M(n)). 

PROOF. By the definition of XtJ in (26), £(ij) = wj^X^- G MSpJ. Thus, Ç(iJ) G 
Ho(M{n)), and there is an element a G MSp* such that 

t(h,h) • ' 'tihs-u ils) = 2sxn-\,ix • • -J/I-M* - w„_i<2 G H0(M{n)). 

Suppose that F exists such that Z G Ho(M{n)). Then 2Z = 2^-1 , / , • • -xn-\j2s —2wn-\Y 
or £(/j, «2) ' * • £ fo -b *2J) — 2Z = wn-\(2Y — «). In particular, in the polynomial ring 
#o(w~_l, fW(fl)) (8) Z/2 we have the identity 

£(M2) ' • ' tihs-uhs) = ^ - i ^ , , / 2 * * '^i*-!,/* = w/i-i(2yr ~ a)-

Thus, 27 — a = wj^f/X;,^ • • -X/^,^ . It remains to observe that the element 
wJ^r/X/,,^ • • -X^_,,/2j does not belong to the ring Ho{M(n)) (g) Z/2, while the element 
2Y — a does. • 

Now we can prove Proposition 4.4 from Lemma 4.5 and the exact sequence (21). 

PROOF OF PROPOSITION 4.4. The element 

H V V H - U , • • -*/2-i,/2, € Ho(M{n)lW£_x) 

is a £>(rc)-cycle. Suppose that 2J_1 t n ( / i , . . . , ^ ) = 0 in H\(9tf(n)). By the exact sequence 
(21), there is an element Y G MSpJ such that 

is a cycle in Hoiw'^Mfa}). Then the element wn_iF+ 2,y~1jcn_i,/1 • • -xn-\j2s G MSpJ is 
a cycle in f7^(n), which contradicts Lemma 4.5. • 

5. Existence of higher torsion elements. This section is devoted to the proof of 
Theorem A. In particular, we construct elements r„(/i , . . . , / ,) G MSpJ" which project 
to the elements tni}\1 • • -,is) of higher torsion in the one line of the ANSS which 
we studied in Section 4. The idea is to reproduce geometrically the inductive alge­
braic construction of the elements t„( / i , . . . , is) as tn(ii) = U[x and tn(i ' i , . . . , is) G 
(uis, ww_i, tn(iu • • • > *s-i))- Recall the following result where MSpJ0 denotes MSp and 
<j>-\ d e n o t e s <$>$ = rj. 
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THEOREM 5.1. (V.Gorbunov, [2, Theorem 4.3.5]) Forj > T'1 andn>\ the Toda 
bracket (</>2«-2, 2, </>7) contains zero in the ring MSp^""1. 

Recall from Section 2 that MSpJ1 is a polynomial ring in degrees less than or equal to 
2n+2—4 with w i , . . . , wn as polynomial generators. Pi is an Sp-manifold which represents 
u\ = r/ and Pk is an Sp-manifold which represents the basic Ray element uk = </>2*-2 for 
k > 2. We also chose Sp-manifolds Wt such that dWt = 2P,-. Let j > n > 2. By 
Theorem 5.1, the Toda bracket (02«-3,2, </>2/-2 ) contains zero in the ring MSp^"~2. In other 
words, there exist Zn_2-manifoldsXn_lj, Wf~X) and W®_x such that tfW^ = P„_i x 2, 
Sw^n~l) = 2xPj and «X^ij = wf_x x P, U Pn_i x WJn_1). As I„-manifolds we have 

(33) 6Xn-u = Wf_x x Pj. 

Note that cobordism classes of the manifolds W^lj depend, in general, on 7. 

LEMMA 5.2. Forj >n>2, there exist En- manifolds Wn-\ andXn^\j, such that 

(34) <$X„_W = Wn_! x Pj 

where Wn-\ does not depend onj. 

PROOF. We prove this lemma by induction on n > 2. Let n = 2. For each 7 > 2 
we have that /îiWJ7* = 2 by construction. For j > 2, all the Ii-bordism classes [W^]] 
equal the same element w\ G MSp2' since w\ is the unique cobordism class such that 
(3\W\ = 2. Now assume that this lemma is true for n — 1. Let Wn-\ be any Sp-manifold 
such that dWn_i = 2Pn-\. Let j > n with Xn-\j and W^_x Z„_2-manifolds as above. 
We will define an Zn-manifold Xn-\j that satisfies (34). Since MSp*" is a polynomial 
ring in degrees less than or equal to 2n+2 — 4, we have that 7 = [W^lj — [Wn_i], is 
a polynomial in the generators w i , . . . , wn-\, xr, r < 2n _ 3 , r ^ 2l — 1, degxr = 4r, as 
in the statement of Theorem 2.1. Let 7 be the sum of k monomials: 7 = Ef=i 7,-. Since 
dim Wn-\ = 2(2n_1 — 1), each monomial 7/ contains at least one factor wm/, nit <n — 2\ 
write 7/ = 7/wm.. By induction, there is a Zm.-manifold Xm.j, m,- < n — 1, such that 
<5Xm(J = Wmi. x P7. Let f/ be a Zn-manifold which represents 7/. Define a E„-manifold 
Xn_ij as the disjoint union of the following Zn-manifolds: 

k 

Xn-\j = Xn-lJ U (J - m „ ( f /, Xm/J X Pj) 
i=\ 

where the Zn-manifolds Xn-\j are as in (33). Clearly 8Xn-\j = Wn_i x Pj. m 

LEMMA 5.3. There exist elements rn(i ' i , . . . , i5) in the ring MSp^+1 for s > 1 and 
n < I'I < • • - < is such that: 

(i) rn(i) = w,; 
(7/) rn(ii, . . . , i , ) e (uis,wn-\,Tn(ii,. ..,is-\))fors > 2; 

(7n) Wn-iTnO'i,. . .,ï5) = 0. 
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PROOF. We construct the elements Tn(i\,..., is) by induction on s > 1. For s = 1, 
Theorem 5.1 gives that wn-\Uj = 0. Assume that this lemma is true for s — 1. Se­
lect any element Tn(i\,..., is) of the Toda bracket (w ,̂ ww_i,rw(/i,..., is~\))- We must 
show that wn-\Tn(i\,..., is) = 0. Let W„_i be a En-manifold as in Lemma 5.2 which 
represents ww_i so that there exists a L^-manifold Xn-\js with 8Xn-.\^s = Wn-\ x / ^ . 
By Lemma 3.4 we have that wn-iTn(i\,..., /*) G wn_i(«/,, w n_ b r„( / i , . . . , jj_i)) C 
(wn_i, «/,, wn_i)rn(z'i,..., 4_i). Note that the I„-manifold A(Wn-\) of (11) has dimen­
sion 2(2/I~1 — 1) — 1 = dimw„. The element un is the unique nontrivial element of this 
degree in MSp^nl. Thus, 

(35) [A(Ww_i )]!„_, = nun, where K = 0 or 1. 

Therefore, in MSpJ\ [A(Ww_i)] = 0. Thus in MSp*\ Lemma 3.3 and the induction 
hypothesis give 

(w„-i,uir w„_i)rw(zi,..., /,_i) = (Kunuis + wn-\ayrn(i\,..., is-\) = 0. • 

Next we determine the projection of rn(i\,..., is) into the £"2-term of the ANSS for 
MSpZn to be tn(i\,..., is) which we defined in (31) and studied in Proposition 4.4. We 
do this by constructing a X„-manifold which represents rw(i'i,..., is) and a £rt-manifold 
whose boundary equals wn-\Tn(i\,..., is) modulo the Adams-Novikov filtration. These 
manifolds will be used in the constructions of the next section. We denote as m, $t, ÎÏ 
the constructions m„, &„, ?IW from Section 3. 

LEMMA 5.4. There exists an element r n ( / i , . . . , is) of the Toda bracket 

(uis,wn-\,Tn{i\,...,is-\)) 

such that the projection ofrn(i\,..., is) into E2' *+ (MSpIn) of the ANSS equals 

s 

I « v ' l 1 ' ' • i h) ~ / j Mir-Xfi—Ui] ' ' 'Xn—\,ir ' ' '•*•«—1,4* 

PROOF. Lemma 5.3 gives us a S„-manifold T{i\,..., is) which represents the element 
rn(i\,..., is) and a ^-manifold H(i\,..., is) with 

6H(iu ...,**) = m(Wn-h T(ih . . . , /,)). 

We use induction on s > 1 to define specific £„-manifolds Ts and //? such that: 

(i) 6Hs = m(Wn-UTsy, 
(ii) Ts projects in the one line of the ANSS to t„( / i , . . . , is) G H\(WC{n))\ 

(iii) //y projects in the zero line of the ANSS to xn-\^ • • -xn-\js E Ho(M(n)); 
(iv) 7̂  represents an element of (w;, wn_i, r„(/ i , . . . , *V_i )). 
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If s = 1 let T\ = P,, and H\ - X„—i.,-,. By induction suppose that we have £„-manifolds 
Ts-\ and Hs~\ which satisfy the above four conditions. Consider the L„-manifold Hi0) = 
m(X„-U , / / ,_,) with 

£(//<0>) = m(X B _ u , m(W„-U Ts-ij) U m(W„_i x P,-., / / , - , ) . 

Glue the £„-manifolds //(0) and — 9I(X„_i,;s, W„_i,7s_i) together along their com­
mon boundary m(X„_i,,s, m(W„_i,r5_i)) to obtain the I„-manifold H{1) = //(0> U 
- « ( X , , ^ , , , , ^ - , , 7^ , ) with 

5(//(l)) = m(W„-i x P l „ H ! . 1 ) U m ( m ( X „ . u , W„_,), Ts-i) 

UnWn-X X Pi„W„-UTs-l). 

Next glue the Z„-manifolds H{X) and —m(ft(X„_i,,-5, W„_i)i Ts-\) together along their 

common boundary m(m(X„_i,,v, Wn-\), T^-i) to obtain the E„-manifold Ha> = // ( l ) U 

-m^X^-u^-O^jwith 

£(//(2)) = m(W„-i xPi J , / / I_,)Um(m(W„-,,X„-iA) ,r J_,) 

U m(ft(WB_, x P,s, WB_,), r s_,) U 5l(W„_i x P,-, Wn.u T,_,) 

= m(WB-,, P,v x #,_,) U m(m(W„_i,X„^iis), ^ -1) 

U m (m(WB_,, ft(P«,, W„_,)), r ,_,) U m ( W B _ , , W„_,) x P,-., r,_,) 

U«(W„_, x P ^ W , , - , , ^ , ) 

by the Hirsch formula of Lemma 3.1(a). Observe that &(W„_i, W„_i) must be the 
boundary of a EB-manifold V since MSp^.,_3 = 0. Thus, glue the E„-manifolds H{2) 

and m(V x P,s, Ts_\) along m(ft(W„_1, W„_i) x P,,, TV,) to obtain the S„-manifold 
H0) = H(2) y m ( V x p. Ts_{) w i t h 

S(Hti)) = m(Wn-UPi, x H 1 - i ) U m ( m ( ^ a , - U ) , r , - i ) 

U m(m(W„_i, St(P,„ W„_,)), 7,.,) U ÎI(W„_, x P,„ Wn.u r,_,) 

Finally glue the L„-manifolds //<3) andîI(Wn_i,X„_uL)ft(P;A, *¥„_!), T^-i) along their 
common boundary 

m(m{Wn-i,X„-Ul), 7^ , ) U m(m(w„_1, ft(P,s, WB_,)), 7^ , ) 

Uîl(W„_, x P ^ W ^ , , ^ - , ) 

to obtain the £„-manifold //s = # (3 ) U îl(w„_i,X„_-M, U ft(P,-,, W„_,), rç_,) with 

«(«,) = m(WB_i, Pj, x H,_i) U m(W„_,, m(XB_Uj, r,_,)) 

U m(wB_i, m(ft(P,s, W„_,), Ps_,)) 

= m(wB_i,P,, x Hs-i Um(XB_Mj U,^(P,-, W„_,),7",-,)) - m(W„-UTs) 
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where Ts = Pis xHs^Um(Xn^UsU!h(Pis1 Wn-i),Ts-i).Clearly (i)issatisfied, and(iv)is 
satisfied because 8(Xn-ijsU$i(Pis, Wn_i)) = m( / \ , Wn-\). By the induction hypothesis, 
the projection of Ts to the one line of the ANSS equals 

UisXn-\^ ' • -Xn-ij^ +Xn-]jstn(i\1 . . . , /y- l) = t w ( / j , . . . , ls). 

Since Ts-\ and Pts have Adams-Novikov filtration degree one, the projec­
tions of K(X„-U„Wn-UTs-i), mfôiXn-i^Wn-ÙTs-i), m(V x Pit,Ts.x) and 
yL(Wn-UXn-ijs U ft(i\, Wn_i), r5_i) to the zero line of the ANSS are trivial. Thus, 
the projection of Hs to the zero line of the ANSS equals the projection of //(0) which by 
the induction hypothesis is xn^ijs • xn-\j] • • -xn-\js_x. m 

PROOF OF THEOREM A. By the previous lemma, the element rn(i\,..., is) G MSp^ 
can be defined as required so that it projects to 

tn(iu . . . , / , ) e Ext^P(BP*(MSpH BP*) 

which has order 2[(*+1)/2] by Lemma 4.4. Therefore, rn(i\,..., is) has order greater than 
orequal to 2[(5+1)/21 in MSp^". Finally, note thatr„0'i,..., is) is indecomposable inMSpJ" 
because its projection tn(iu • • • ? h) into the algebra E^* (MSpln) is indecomposable. 

PROOF OF THEOREM B. By Theorem A, there are torsion elements of order greater 
than or equal to t for all ^ > 1 in the ring MSpZ3. Consider the Bockstein-Sullivan 
exact sequences: 

> MSp? - ^ MSp? - ^ MSp? A> MSp? — • • • 

> MSpJ1 A> MSp*> - ^ MSp*2 A , MSp*' — • • • 

>MSp, - ^ M S p , -^->MSp*' - ^ M S p , — , .-. 

We show that exponents of the groups Tors MSpJ2, Tors MSpJ1 and Tors MSp^ must be 
infinite since the exponent of Tors MSp^3 is infinite. Assume, to the contrary, that all 
torsion of MSpJ2 has exponent 2k. We take an element a G MSp*3 of order 22k+l. Then 
the element a\ = (32(a) has order no more than 2k. From the above Bockstein-Sullivan 
exact sequence, 

ta e Im{MSp*2 - ^ MSpJ3} C MSp*3 . 

Let 7T2(a2) = 2ka. Then 2k+la2 G Ker7r2 = Im(-</>2), so 2k+la2 = fax. Consequently 
2k+2a2 = 0, and a2 has finite order. Since 7T2(2ka2) = 22ka ^ 0, the element a2 G MSpJ2 

has order greater than or equal to 2k+l, contradicting the assumption that Tors MSp*2 has 
exponent t . Thus, the exponent of Tors MSpJ2 is infinité. • 
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6. Construction of elements in MSpJ2 and MSp^1. In Lemma 5.3 we constructed 
elements of higher torsion 

r(iu . . . , / , ) = r 3 ( / i , . . . , is) e MSp^+ 1 . 

In this section we study the elements: 

7(ii, . . . ,«,) = ftr(/i, . . . , i s )G MSp^+3, 

a'(iu . . . , / , ) = /3270i, . . . , / ,) G MSp^+ 1 . 

In particular we compute their projection to the three line of the ANSS. Throughout this 
section, let m and Si denote the canonical constructions m 2 and £t2 of Section 3. 

We begin by interpreting ft^O'i,..., is)) in terms of manifolds with singulari­
ties. Recall that by Lemma 5.3 there is a representative X3-manifold 70 '1 , . . . , is) of 
T3O1, • • •, is) and a ^-manifold H(i\,..., is) such that 

«H(ï1 , . . . , î ,) = m(W 2 , r ( î 1 , . . . , ï 5)) . 

We can consider the manifold 7 0 1 , . . . , **), # 0 b • . . , is) as a X2-manifold 7 0 i , . . . , is)> 
H(i\,.. .,is), respectively, with 

6H{iu . . . , « = m(W2, 7 0 i , . . . , isj)UP3 x £0i , • •., *.), 
( 3 6 ) 6T(iu...,is) = P3 x G 0 i , . . . , « 

where GOi, • • • ? 4) = ft^Ob • • • ? ^) represents the E2-cobordism class 7(M , . . . , ^). Note 
that 8E(i\,..., is) = m (W2, GOi, • • •, **))• To determine the projection of E(i\,..., /5) to 
the ANSS we need to identify the quadratic construction A(W2) which was defined in 
Section 3. The following lemma is an easy computation in the ASS for MSp*2. We defer 
its proof to [3, Corollary 4.6]. 

LEMMA 6.1. The cobordism class [A(W2)] equals [P3] = 02 in MSp^2. • 

We are now ready to compute the projection of £ ( / i , . . . , is) into the two line of the 
ANSS for MSp12. This will lead directly to the identification of the projection of the 
7 ( / i , . . . , is) into the three line of the ANSS for MSp12. 

LEMMA 6.2. (a)E(i\) = Q. 

(b) For s > 2, E(iu..., is) projects in E2{4*+2 of the ANSS for MSp12 to 

eOl, • • •, h) = Y; uhx Wi,2*2,i, ' • • *2,i„ * * • hi,2 ' ' ' X2JS • 
l<'l<>2<* 
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m(w2,m(Ts-,,X2,,l)uSt(fJ_„W2)xP,sx{0}l j f i_ , x ^ , ) 

ÎKW2 , '7: , t,x2.h) 

m(w2,§\(fs-l,W2))xPisxI 

-M(«, ,,W2)XAJ,V ÎKW2 , '7: , t,x2.h) 

(yum(z,f,_,)) x/>„ 

O 
p3 x ?;_, x p,s 

-M(«, ,,W2)XAJ,V 

m(fl,_„XWj) 

FIGURE 3: The E„-manifold Hs. 

PROOF, (a) Since T(i) = Pi, H(i) can be taken to be the Z2-manifold X2,; of Lemma 5.2 
with boundary 8X24 = VK2 x JP/ where W2 does not depend on i. Thus, £(/) = 0. 

(b) By induction on s, we construct E2-manifolds TS,HS, Es and Ls such that: 
(i) fs represents r{i\,..., z's); 

(ii) <S/75 = m(W2, ?;) UP3 x ESULS; 
(iii) 7y projects to t ( / j , . . . , 4) in the one line of the ANSS; 
(iv) Hs projects to x2,;, • • -X2js in the zero line of the ANSS; 
(v) Es projects to e(i\,..., is) in the two line of the ANSS; 

(vi) Ls has Adams-Novikov filtration degree four. 
The case s = 2 will be proved as a special case of the induction step with t\ = Pix, 

H\ = X2,/,, £1 = 0 and Li = 0. Clearly statements (i)—(vi) are valid for s - 1. Thus, 
assume that s > 2 and that our six assertions are true in the case s — 1. Define the 
£2- manifold 

H's = m(ft_i, X2,if) U «(W2, TV-i, X2,f,) U 

- ft(ft-i, W2) x / \ Um(w2 , &(?,_!, W2)) x P<, x /. 

See Figure 3. Let F7 denote the set of Z2-manifolds of Adams-Novikov filtration degree 
p. Then, as in the proof of Lemma 5.4, we have modulo F4 that 

6H,
5 = m(W2,xn(Ts-uX2lOUHs-i x Pis Uft'(f5_i, W2) x Pis x {0}) 

UP3 x i n ( Ê H , % ) U f i ( n i ( ^ t i ) ^ 2 ) x P / s 
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U 5I(W2, r5_h W2) x Pis U -m(W 2 , k(Ts-UW2j) x P , x {1}. 

Observe that <5JT5_ I = 6W2 = 0 module F3. Thus by the generalized Hirsch formula (10), 
we have modulo F3 that there is a E2-manifold Y such that 

8Y = -<a(m(W2, Tj-i), W2) U -5I(W2, 7V-i, W2) 

U m(w2, ft^-i, W2)) Um(fi(ff2, W2), 7^ i ) . 

By Lemma 6.1 there is a I2-manifold Z such that 5Z = -M(W2, VV2) U P3. Let //v = 
^ U F x P,S U m(Z, 7,_i) x P,v. Then 

<$//, = m(W2, P,) U P3 x £5 U L, where 

ts = m ( t i , X 2 , ) U H s _ , x P,- U ^(f ,_i , W2) x Pfj, 

£s = m(£ s _i ,X u )Uf ,_ , xP / ç 

and L5 has Adams-Novikov filtration degree four. By the induction hypothesis, fs projects 
in the one line of the ANSS to 

t ( / b . . . , is-\)x2Js +xUl • • -x2js_i • uis = t ( / i , . . . , is), 

Hs projects in the zero line of the ANSS to x2jx • • • *2,is_, • x2js, and Es projects in the two 
line of the ANSS to 

7(M, . . . , is-\)x2,is + t ( / i , . . . , /s_i)wis = 7(ii, • • •, is)-

This completes the induction step. Observe that Es and £ ( / i , . . . , is) differ by a Z2-
manifold of Adams-Novikov filtration degree five. Therefore, they have the same pro­
jection to the three line of the ANSS. • 

We can now determine the basic properties of the 7(/ i , . . •, is). 

PROPOSITION 6.3. The elements 7 ( / i , . . . , is) = ft^O'i, ...,is)€ MSp^+3 satisfy the 
following conditions: 

(a) 7 ( Ï I ) = 7 ( Ï I , Î 2 ) = 0 ; 

(h) 7(/i,/2,/3) = uixuhuh; 
(c) For s > 4, 7( / i , . . . , / , ) G (uis, w2,7(i'i,..., iV-i)); 
(J) For s > 3, 7(/i, • • •, is) projects in E^*(MSpl2) of the ANSS to 

g(i i , . . . , is) = 52 M*'r, % Mir3̂ 2,i, • ' • *2,/„ ' • • x2,ih • ' ' *2,i,3 • • • *2./, • 

PROOF, (a) Since r(i\) = w,-, and r(/i, i2) is represented by 

Ph x X2,/2 U «(/>,-,, W2) x P/2 U X2M x P/2 

it follows that G{i\) = G(i\,i2) = 0. 

https://doi.org/10.4153/CJM-1994-026-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-026-7


SYMPLECTIC COBORDISM 509 

(b), (c) Let s > 3. By Lemma 5.3(ii) and (36), we have the boundary of Z2-manifolds 

6T(ih . . . , / , ) = m(Xit^P3 x G(/ l7. ..,is-iJ)UPit x F 3 x E(iu . . .,/,_-i). 

Therefore, 7(/i ,...,is) = for{i\,..., is) is represented by the ^-manifold 

(37) G(iu . . . , / , ) = m(Xis,2, G(iu . . . , is-i))UPia x P( / l 7 . . . 7 i,_i). 

If s = 3 then the first unionand is vacuous. Observe that the constructions in the proof 
of Lemma 6.2 give E2 = P,, x P,, and L2 = 0. Thus, l(i\1i2,i\) is represented by 
P/, x P/2 x P/3. If 51 > 4 then the element in (37) is an element of the Toda bracket 

( M / , , W 2 , 7 ( I I , . . . , / 5 - I ) ) . 

(d) We use induction on s > 3. The case s = 3 follows from (b). Assume the case 
s — 1. By the description of the I^-manifold G(i\,..., is) in the proof of (c), 7(i i , . . •, is) 
projects in the three line of the ANSS to 

g( / i , . . . , ! , ) = ^ , 2 â 0 ' i , • • • 7 ^ - i ) U u i s x e ( ï ' i , . . . , i ,_ i ) . 

By the induction hypothesis and the previous lemma, 

g(l'l, . . . , is) = Xis2 YJ UUX
 Uh2 "1,3*2,/, ' ' ' *2,i,, ' ' ' *2,i,2 ' ' ' *2,i,3 ' * * ^2,i,_, 

1 < f I <C^2 </^3 < ^ — 1 

+ Uh YJ % Uh2
X2M ' ' 'X2,itl ' ' *%, 2 * * •*2,i,_I • 

l<t\<t2<s-l 

This is the asserted value of q(i\,..., is) in (d). • 

We complete this section by computing the projection of the element 

a /( i i , . . . , i J) = j927(ii , . . . , i J)€MSPJ I 

to the ANSS £^'*(MSpZl) where /32:MSpJ2 -* MSpJ1 is the Bockstein operator. To 
describe this projection we introduce the notation 

PUh • • • Jq) = E Uhx
 Uh2

UU™h • ' • *% • • • Wj,2 • • • Wjt3 • . • Wjq 
l<t]<t2<t3<q 

in^ '*(MSp I ])for(?>3. 

PROPOSITION 6.4. The elements <x'(ii,..., i5) = ft7(/i,..., is) G MSp^+1 safw/y tfi<? 
following conditions. 

(a) a'(i'i) = «'(«b '2) = a'ttuh, h) = 0. 
(6) Por j > 4, a ' ( / i , . . . , / , ) pro/ecta in E?{* (MSP1" ) o/f/n? ANSS to 

s 

a'(iu . . . , is) = £ X - 1 ) * M 4 ~ 4 E POV,, • • •, itk)
x2A ' ' 'h,itl ' ' 'x2,itk ' ' '

x2,is. 
k=4 l<t\<-<tk<s 

(c) For s > 4, there are elements a(i\,.. .,is) G MSp^ swe/z ^a^ £/i£ element 
7T*(a(i'i,..., /,)) G MSp^1 projects to 2a'(iu ...,is) G £^4*+1(MSpZl) w/iere 
7r: MSp —> MSpZl is the natural map. 

(d) The projection a ( / i , . . . , is) G E2' *+ (MSp) of a(i\,..., is) G MSp^ is a nonzero 
infinite cycle. 
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PROOF, (a) This follows from Proposition 6.3(a),(h>). 
(b) The Bockstein operator fi2: MSp^2 —» MSp^1 induces the homomorphism 

b2: ^ ( M S p 1 2 ) -> £*'*(MSpZl). 

Then a'(i\,... i5) = Pi{l(i\, •. •, /*)) projects in £^*(MSpLl ) to b2 of the projection of 
7(/i , . . •, is) to /^'"(MSp12). In Proposition 6.3(d) we determined the latter projection 
q(i\,... is). Direct computations establishes formula (6.4) for a'(i\,..., is). 

(c), (d) Since 2ij = 0, the element 2ar'(i) — wi/3i(ar'(t)) is in the kernel of the 
Bockstein operator ji\ : MSp^1 —> MSp^ which equals the image of 7r*: MSp^ —> MSp^1. 
Let 7r*(a(i)) = 2a'(t) — w\(3\ (a'(t)). Observe that the element /Ji (a'(i)) has Adams-
Novikov filtration at least four since (3{ ct'(i) = 0 in ^"(MSp1» ) from (b). Therefore, the 
element 2a'(t) - w\f}\ (a'(i)) projects to 2a'(i\,...,/,) G E^^^MSp 1 ' ) - • 

7. Proof of Theorem C. In this section, we prove Theorem C. Let i = (i ' i , . . . , is). 
In Sections 5 and 6, we constructed the elements r(i) G MSp^3,7(t) = ftcr(i) G MSp^2, 
a'({) = /?27(t) G MSp*1 and a(i) G MSp* such that the element 7r*(a(t)) = 2a'(i) -
wi(3i(af(xj) projects to a'(i) in E3

2
M+l of the ANSS for MSpZl. Note that the lowest 

degree element of order at least eight which we have identified in MSp^ is a(i0) in degree 
32,769, where i0 = (3,4,5,6,7,8,9,10,11,12,13). 

Let t(t), g(t), af(i) denote the projection of r(t), 7(t), a'(i) to E\ *(MSpl3), 
£^*(MSpl2), / ^ (MSp 1 ' ), respectively. The chromatic technique was developed to make 
computations in the E2-term of the ANSS for spheres. See [12]. In this section, we use a 
chromatic argument to prove the following proposition. 

PROPOSITION 7.1. Let t = (M, . . . , is) with 3 < i\ < • • • < is and s>6. 
(i) The element g(i) G ^ ( M S p 1 2 ) /raw orater af least 2«v+1)/2^1. 

(//) 77ie e/emercr a'(t) G £^ *(MSpZl ) /*as order at least 2^+ 1 V2!-2 

PROOF OF THEOREM C USING PROPOSITION 7.1. Recall from Proposition 6.4(d) that 
the infinite cycle a(i) G Z^^OVlSp) is the projection of a(i) G MSp^. By Proposi­
tion 6.4(c), 7T*(a(t)) = 2a(i)' where TT*: j^'*(MSp) —> ^ ( M S p 1 ' ) . By Proposition 7.1, 
the element 2a'(i) = 7r*(a(i)) has order at least 2[{s+l)/2]-3 in ^ ^ ( M S p 1 ' ) . Thus a(i) 
has order at least 2[(5+1)/2]~3 in £^4*+1(MSp). Since El

2
M+2(MSp) = E?2

M+2(MSp) = 0, 
the element 2'a(i) cannot be killed by differentials for / = 1 , . . . , [(s + l)/2] — 4. Thus, 
2[(s+1)//2]-4a(i) projects to a nonzero element of £^*(MSp) and must be nonzero. • 

NOTE 7.1. This argument can not be used to prove directly that 2[(5+1)/21~3a/(i) is 
nonzero in EootMSp1') because £^4*+2(MSpXl ) is nonzero which raises the possibility 
of hitting 2[(5+1)/2]-V(i) by a ^-differential. 

The following lemma shows that we can assume that i\ > 4 in proving Proposi­
tion 7.1 (i). 

LEMMA 7.2. Let s > 6. If Qf(iu i2,.. •, /,) G ^'"(MSp11) has order 2[(5+l)/2l~1 far 
all 4 < ii < • • • < is then Q'(3, i2,..., is) G £^*(MSpZl) has order 2[(v+1)/2]"1 for all 
3<i2<--<is. 
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PROOF. Let t = [(s + l)/2] - 2. Suppose there is i E ^ ( M S p 1 ' ) such that d\ (£) = 
2rg(3, Î2,..., is). Choose n > is. The element £ depends on the generators XJX ,...jk, Wj and 
«/. In particular, the formula for the first differential is invariant under the transposition 
(3, n) in all entries of the elements £ and g(3,*2,..., is). Applying this permutation we 
obtain an element r/, such that d\ (r/) = 2'g(/2,..., is, n), a contradiction. • 

We give the proof of Proposition 7.1 in the case s even and 4 < i\ < • • • < is. 
The proof for the case s odd is obtained by a slight modification. Thus, i will denote 
i\,..., ^ for the remainder of this section. We prove Proposition 7.1(i) by showing 
that q(i) has order at least 2s~l. Let 7r:MSpl2 —• MSp13 denote the canonical map 
which induces TT*: £^'*(MSpl2) -> ££*(MSp23). Let g(i) = 7r*(g(i)) G £^'*(MSpl3). By 
Proposition 6.3(d), 

g(t) = Yl % "/,2"i,3*2,i, ' ' 'h,itx • • 'x2,ih ' • 'X2,i,3 • ' -X2d2s> 
\<t\<t2<h<2s 

We use chromatic methods to determine the order of §(i). Consider the following exact 
sequences of complexes: 

0 -> <M{3) —> W2XM{3) —• M{3)/(w?) —• 0, 

0 - M{S)/{w?) - w71^(3)/(w2^) -> ftf (3>/(H£>, O — 0, . 

0 -+ af ( 3 ) / (H£° , wj°) - • w^1 fW(3)/(wf, wj°) -> Mty/iwf3, wf, wf>) - • 0. 

Recall that by Theorem 5.1 there exist elements JCI^ G MSp*1, x2^ £ MSpJ2, and 
JC3̂  G MSp^3 such that /?*(*!,*) = wu Pk(*2,k) = w2, Ate,*) = W3. The arguments used 
to prove Lemma 4.2 can be used to prove the following lemma. 

LEMMA 7.3. The complexes w^1fM'(3), wYlwJlM(3), w^{M{?>)/{wf\ 
wJl!M(3)/(w™) and wJltM{3)/(w™, w™) are acyclic, i.e. their n-th homology groups 
are zero for n > 1. • 

Consider the following composition of boundary homomorphisms: 

^H2(»({3)/(*?)) ^H3(M{3)). 

By Lemma 7.3, 8(0) is an epimorphism and 5(1), 8(2) are isomorphisms. 
Define the element 

g2(t) = W2l J2 % uh2
x2,h ' ' 'X24tx ' ' 'x2Jt2 • ' '

x2hsi 
\<t\<t2<2s 

§ l ( t ) = W2lWil Y, xUtx
 Uh2

X2M • ' -*2,/,, ' ' 'X2,i,2 • ' ^2,12,, 
1<^I<^2<2^ 

So(i) = W2lwTlw3l J2 xhit]
x34,2

x2Ji • ' 'x2Jtl ' ' '
x2,it2 ' ' '

 x2,izr 
\<t\<h<2s 
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in the homology group H2(M (3) / (w?j), HX(M(?>) j(wf, <>)), 
//o(^"(3)/(w^°, H^°,w(j)0)), respectively. A direct calculation gives that S(0)(g0(t)) = 
§i(t), 5(l)(Si(t)) = g2(i) a nd #(2)(g2(i)) = g(i). Proposition 7.l(i) is a consequence of 
the following lemma. 

LEMMA 7.4. For s > 3, the element g^t) G / / i (^ (3) / (n^° , w?°)) has order at least 

PROOF. Assume that 2^2g1(t) = O.Then<5(0)(2^2g0(i)) = 2^2g1(i) = 0. Therefore, 
there is an element Z\ G //0(w3:1^'(3}/(wf), w^°)) such that 7ri(Zi) = 25~2g0(i) where 
TT\ is the homomorphism in the diagram below. In the following diagram the row and 
both columns are exact. 

o 

i 
0 ffo(!tf(3}/K>~)) 

Î ^ I 
H0(wîlM(3)/*%>) > H0(W[XW^M{3)/MC>) - ^ H0(w? ^ ( 3 ) /(w~,w°°)) • 0 

Î *«»i 

î I 
0 0 

From the diagram above, we see that there exist Z2 G HQ(W\XW^XM{3) / w™) and 
Z3 G #o(w2

 1wf1w3"1^(3)) such that 7r3(Z3) = Z2 and 7r2(Z2) = Zi. Let 

S = 2s'2 ( £ xij x3j x2A . • . ^ . . -x2,i • • -x2,/2v ). 
yi<h<t2<2s J 

By definition of the elements Z\, Z2, Z3 we have that 

Z\ = wf 1w2^
1w^1

lS + w^pW2 X^ii 

(38) Z2 = w ^ w ^ w ^ S + w ^ ^ F i + wïb2Y2, 

Z3 = w r V ^ w ^ S + w ^ w " ^ +w^ 2 F 2 + y3 

where Y\, Y2, F3 G MSp* and p,b\,b2 > 1. Let g = max{Z?i,£2}. Note that we can 
define Fi and Y2 so that g > 3. It follows from (38) that 

w ^ w 3 Z 3 = W{'xwq
2'

xS + w3(wf feTi) + v^(w^ 2 w 3 r 2 ) + v v ^ v v ^ ) . 

Since H^W2W3Z3 G HQ(M(3)), the following lemma produces the contradiction which 
proves our lemma. 
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LEMMA 7.5. For p > 1 and q, s > 3, there are no elements B\, B2, B3 G MSp^ such 

that the element 

C = W[~l Wq
2~

lS + W ^ + wq
2B2 + W3£3 

belongs to the ring H${M"(3)). 

PROOF. Recall from Lemma 4.3 that //o(w^1!Af(3)) is a polynomial ring and that 

there is a ring monomorphism: TT^:HQ(^M(3)) —> //o(w^1^Vf(3)). Assume that we have 

chosen Y\ and Y2 in (38) to make q so large that the cycle C can be written as a 

polynomial in the polynomial generators o f / / o ( ^ 1 ^ ( 3 ) ) . Also, we can always choose 

integral polynomial generators for H0(w2
l9i{{3)), i.e. from the image 7r*(//o(^"(3))), 

which include 

£1,/ = H>2*1 J ~ W*X2J = W2^î,/, 6 j = 2X2J - W2Wj = W2Zy, 

(39) C3J = W2*3j - W3*2J = W2X3J1 

£ij = 2x2jx2j - w2(wiX2j - WjX2,i) + wlxij = wjXij 

where 1 < / < j , ij ^ {1, 2, 3} and Xj -, X3 -, X^-, X7- are the polynomial generators 

of / / 0 (w 2 - 1 ^(3)) defined in (25), (26), (27). Define X(ju . . . J2t) = X,la/2 • • .XJ2t_lj2t G 

H0(w2
lM{3)) and £(/i, • . . J2,) = ^j2 • • • &,_,,/» = wf X(/i, . . . J2t) G HQ{M{3)). It 

follows from (39) that 

V V ^ U , - ^ = £l,/, ,6,/,2 + Wl*2,i,, 6,i,2 + W'3*2,/,2£l,i,1 +WlW3X2,itlX2,it2 

(40) = £ U ] £3 ,^ + wia i + w3«2 

where a i , a2 G MSp^. Consider the monomial 

I = 2J~1*i,/,i*3,i,2*2,i1 " " '*2,ir, • • -̂ 2,iV2 ' ' ^ 2 , ^ . 

It follows from (39) and (40) that 

w
2

2\ = (wlxUit]X34t2)(2
s~[x2,il • • -x2liH • • -*2,i,2 ' • ^2,12,) 

= (Çl,ir, 6,i,2
 + W ^ l + W3û2)(C0'b . . •, îr,, • • •, îr2, . . ., l2s) + H>2£>) 

= Ci,//, 6,//2 CO'i, • • •, Vj 7 • • •, v2, • • •, ̂ 5) 

+ (wifli(i/ , , i,2) + v t ^ O ' / , 1 it2j)€(i\,. • •, ̂ , • • •, t / 2 , . . •, 1*2*) 

+ H^*i,|f i*3,|,2D(ii, . . . , V,, . . . , lh, . . . , 12s)' 

Assume that B^B2, B3 exist which make C a cycle in fW(3). Then 

2C = H ^ _ 1 W ^ 3 ( 2 W ^ ) + 2(v^fii + w\B2 + w3£3) 

= wf^VVp3 XI Cl,ir, 6,i',2£0'l> . . ., i/,, . . ., V2, • • •, ils) 
l<t]<t2<2s 

+ wÇwf~3Ai + w3w
p~lA3 + wÇ-1 w|D 
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+ wp
i2B{ + wq

22B2 + w32£3 

= w f " ^ " 3 Y, Çi./M6.ir,C(M?..., V,, . . . , îr2 , . . . , 1*25) 

+ v^(w|"3Ai + 2BX) + w3(v^~U3 + 2fl3) + 2wq
2B2 

+ vf-lwq
2D. 

Let 

(41) H = J2 €u , 6,/„€0'b . • ., ir,, - . ., if2, . . -, *2.s). 

Thenin//0(^(3)): 

(42) 2C-wp~l wqf3E = vv^i + w ^ 2 + w3K3 = K. 

Let /?/, /AX denote the composition (3^ (/3/2 (• • • (/^X) • • •) ) for an element X of MSp^. 
Recall that /3/(/3/X) = f3j((3iX). Thus /?/, /jtX does not depend on the order of l\,..., lk. 
The proof of the following lemma is straightforward. 

LEMMA 7.6. LetX e MSp^ with degX < 2(2" - 1). Then 

2nX + ±{~\)k2n-k £ n - . - w / A ,,X 
fc=l 4</ ,<-</A .<n 

belongs to the ring HQ(M{3)) C MSp*. • 

PROOF OF LEMMA 7.5 CONTINUED. Choose n so that 2(2n - 1) > deg K. Then 

Si = 2 % + B - l ) ^ - * £ M V - • w,^ , ^ 
k=\ 4<h<--<lk<n 

are cycles for i = 1, 2, 3. Since K is a cycle, 

/?/, ikK = w\0h / ^ i + wq
2(3lx_lkK2 + waft, /A*3 = 0. 

Therefore, 

2"^ = 2BA: + E(-I)*2"-* E Hvn/?/, /.* 
fc=l 4<lx<-<lk<n 

-±(-l)k2"-k E " V " / A lkK 
k=\ <\<h<-<lk<n 

= 2 "<^ i + 2nw\K2 + 2"w3Ki 

+ ±(-l?2"-k E "V"/. 
ik=l 4< / ,< -< / f t <n 

«ft,,...,/, *i + wX...,/4ff2
 + ^ , . . . . , ^ 3 ) 

= H^5i + W ^ 2 + ^ 3 ^ 3 -
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Multiplying (42) by 2n we get the following equality in the ring //0(f*f (3)): 

(43) 2n+lC- 2nwp~]wqf3E = v^Si + wq
2S2 + w353 . 

Observe that we can choose Y\ and Y2 in (38) to make q is so large that C, S\, S2, 

S3 all belong to //o(w2^1^(3)). Then the equality (43) occurs in the polynomial ring 

/ / 0 ( V ^ ( 3 } ) . By the definition of E in (41), w ^ w f 3H is a linear combination of 

monomials in the canonical polynomial generators with odd coefficients. Moreover, these 

monomials do not use the generators w\, W3 and are not divisible by w2 in Ho(M(3)). 

Thus, (43) is a nontrivial relation in the polynomial ring ^ ( w ^ 1 M{?>)), a contradiction. 

This completes the proof of Lemmas 7.4, 7.5 and Proposition 7.1(i). • 

Let t = ( / 1 , . . . , i2s) for s > 6 and 3 < /j • • • < i2s. We turn our attention to the 

elements a'{\) - f32(l(i)) and prove Proposition 7.1(ii). Recall that we already know 

the projection of a\\) into £^*(MSpz ' ) from Proposition 6.4(b). In £^*(MSp23), for 

4 < k < 2s define 

a(k~4\i) = Wk
2~

4 E POV, ? • • • 7 *V>2,i, • • -^2,1,, * ' 'X2,irk ' ' '*lhs 
l<ti<-<tk<2s 

where 

P(/i ,--Jt)= E ^ , wy,2
 WÂ3 ^ i ' • * *% ' ' ' ™h2 ' • • ™M ' ' ' WJ< • 

Then we can rewrite the projection a'(t) of oc'(\) into E2^(MSp13) as 

s'(i) = E(-i)V-4)(t). 
k=A 

Direct computation shows that the elements û(Â:~4)(t) are d\ -cycles. In the following 

lemma, we obtain a convenient description of a'{\). 

LEMMA 7.7. In the algebra £^*(MSpZ 3)/or4 < k < 2s - 1 and s > 6: 

2a ( ^ 4 ) ( t ) = a (*-3)(i). 

In particular, there is an odd number A such that a'(t) = A a^Xi). 

PROOF. In £^*(MSp l3) for t > 3, define 

*>(/i, • • • Jf) = E «/„ % wy. ' • • *% * • • *% • ' • vvyV and 
1<<?1<<72<' 

C^-4)(t) = u4~4 E 50V,, • • • , 'V>2,/, • ' •%,, • • " % , • • • ̂ 2,12,. 
l < ? i < - < ^ < 2 ^ 

Then JiC (^4 )( t ) = 2a ( ^ 4 ) ( i ) - a (*-3)(i). Thus, af(i) = A a(0)(i) where A = 1 - 2 + 4 + 

• • • + 2(2*~4) is odd. • 

The following lemma indicates the relationship between g(t) and â'(t). 

LEMMA 7.8. In the algebra ^ ( M S p * 3 ) , 2Ag(i) = w2à\ï)for s > 6. 
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PROOF. Define 

c(0 = X) Wtx, it2, it3)X24i ' ' ' *2,/fl • • • X2Jh ' • • *2,i,3 • • • *2./2.v • 

Then d{ (Ac(i)) = 2Ag(i) - w2Aa(0)(i) = 2A§(t) - w25'(t). • 

PROOF OF PROPOSITION 7.1(ii). Suppose that 2s_3a /(i) = 0. By the previous lemma, 
0 = 25~3W2û/(t) = 25~2g(t). This contradicts Proposition 7.1(i). • 

This completes the proof of Proposition 7.1 and consequently of Theorem C. 
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