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Comments on bases in dependence structures

Richard A. Brualdi

Dependence structures (in the finite case, matroids) arise when

one tries to abstract the properties of linear dependence of

vectors in a vector space. With the help of a theorem due to

P. Hall and M. Hall, Jr concerning systems of distinct

representatives of families of finite sets, it is proved that if

Bj and B2 are bases of a dependence structure, then there is an

injection a : Bi ->• B2 such that (B2 \ io(e)}) U {e} is a basis

for all e in Bj . A corollary is the theorem of R. Rado that

all bases have the same cardinal number. In particular, it applies

to bases of a vector space. Also proved is the fact that if Bj

and B2 are bases of a dependence structure then given e in B\

there is an / in B2 such that both (Bi \ {e)) U {/} and

(B2 \ {f}) U {e} are bases. This is a symmetrical kind of

replacement theorem.

One of the most fundamental theorems in combinatorial theory is a

theorem about systems of distinct representatives. If (A• : i 6 I) is a

family, indexed by J , of (not necessarily distinct) subsets of a set E ,

then the family (e • : i € I) of distinct elements of E is. a system of

distinct representatives for (A• : i £ I) provided e• ^ A • for each

i 6 I . The theorem referred to above is the following.

If (A • : i e U is a family of finite subsets of E , then (A. : i e I)

has a system of distinct representatives if and only if for all finite

subsets J of I
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We are using the symbol \x\ to denote the cardinal number of the set

X . For a finite index set I , this theorem is due to P. Hall [/]; for

an infinite index set I it is due to M. Hall, Jr [2]. In [2] M. Hall, Jr

used his theorem to give an interesting proof that in an infinite

dimensional vector space any two bases have the same cardinal number. Our

purpose here is to use the idea in Hall's proof to obtain some interesting

properties of bases. Moreover we shall do this in a more abstract setting.

The study of the theory of abstract linear dependence and independence

has received considerable attention recently. One reason for this is its

wide applicability to many kinds of combinatorial problems. The initiative

for this study seems to have been taken by H. Whitney [3]. In his

pioneering paper Whitney set forth various sets of axioms for an abstract

dependence structure on a finite set and proved their equivalence. We

shall use here a set of axioms in terms of the minimal dependent sets. The

axioms are actually suggested by graph theory. They have been used by

Whitney and W. Tutte [4] in the finite situation and also by D. Asche [5]

in the general situation.

Let E be a nonempty set. Let a collection of nonempty finite subsets

of E , called circuits, be specified which satisfy the following two

conditions.

(1) No circuit is a proper subset of another circuit.

(2) If C\ and C2 are distinct circuits and. a € C\ n C2 , then

there is a circuit C3 with

C3 c (d u c2) \ ia) .

It is known (see e.g. [5]) that (2) in the presence of (l) is equivalent to

(2') If C\ and C2 are circuits with a e C\ n C2 and

b e Cj \ C2 3 then there exists a circuit C3 with

b e C3 c (Ci o c2) \ ia} .

We shall ca l l the set E along with a collection of c i rcu i t s

satisfying ( l ) and (2) a dependence structure. If E i s f i n i t e , then we

refer to a finite dependence structure, often called a matroid.

Conditions (1) and (2) are easily verified i f E i s a set of vectors
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from a vector space and the circuits are the nonempty linearly dependent

subsets of E for which every proper subset is linearly independent.

In a dependence structure an independent set is a subset of E which

contains no circuit. Since circuits are finite sets, a subset A of E

is independent if and only if every finite subset of A is independent.

Thus independence is a property of finite character. Using Zorn's Lemma in

conjunction with the finite character of independence, we immediately deduce

that maximal independent sets exist, in fact that every independent set is

contained in a maximal independent set. A maximal independent subset of E

is called a basis.

We require two lemmas.

LEMMA 1 Let B be a basis and e ? B . Then B U ie) contains a

unique aivouit C . This circuit contains e , and moreover for f e B .,

(B \ {/}; U {e} is a basis if and only if f e C .

Proof Since 5 is a basis, B U {e} contains a circuit C\ . This

circuit must contain e , for B is independent. If B U {e} contained

two distinct circuits, then (2) would imply that there is a circuit

contained in B , which is impossible. Thus C\ is unique. Let f E B .

!f / £• cl > "tnen (B ̂  {/}J u (e} contains C\ and thus cannot be a

basis. If f e C\ , then surely A = (B \ {f}) U {e} contains no circuit

and hence is independent. If A were not a basis there would be an x fc A

such that A U {x} is independent. Now x ^ f , so that x fi B . By what

we have already proved B U {x} contains a unique circuit Ci , which

contains x . If / j£ C2 > then C2 C A , a contradiction. Hence f € C% .

Also there is a circuit C3 £ (d U C2) \ {/} £ A U {x} since f G C\ , by

(2), a contradiction. Therefore A is a basis and we are done.

LEMMA 2 Let C\ , C 2., , C be distinct circuits with

C, a U.|k C , k = 1 , 2 3 ... , n . If D CE with \ D\ < n , then

there exists a circuit C with

C £ &Pi=1 Ct) \ D .

Lemma 2 is a special case of Theorem 3 of Asche [5].

We are now prepared to state and prove our main result.
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THEOREM 1 If B\ and B2 are two bases of a dependence structure,

then there exists a •infection 0 .• B\ •*• B2 such that

(B2 \ io(e)}) u {e}

•is a basis for all e e Bj .

Proof It is enough to find an injection Q : B\ \ B2 "*" ^2 ^ ^1

having the above property, for we may then extend a to Bx by defining

a(e) = e for all e G B1 n B 2 .

For each e E B j \ B 2 let C be the unique circuit contained in

B 2 U {e} . Let C' = C n (B2 \ B ^ . It follows that C'e + <t> , for

otherwise C C Bi , which is impossible since B\ is independent. By

Lemma 1 we also know that for each fee' , (B2 \ {f}) U {e} is a basis.
6

Consider the family (C' : e € B] \ B2) of finite sets. If this family has
&

a system of distinct representatives then this means that there is an

injection a ; B\ \ B 2 "*"
 B2 ^ Bl such that a(e) G C' for all e e B\ \ B 2

and thus CB2 \ {a(e)}) U {e} is a basis for all e e B] \ J2 • Therefore

to complete the proof we need only verify that Hal I's condition for the

existence of a system of distinct representatives for (C' : e G B\ \ B2-*

is fulfilled.

Suppose {e\ , ... j e } is a subset of finite cardinality w of

Bi \ Bz . If

then by taking D = C' U . .. U C' in Lemma 2, there is a circuit C with

^- e^

This contradicts the independence of Bi and completes the proof of the

theorem.

COROLLARY 1 (Rado [6]) All bases have the same cardinal number.

Proof If Bi and B 2 are bases, then by Theorem 1 there are

injections a : B\ -*• B 2 and T : B 2 •*• Bi .
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COROLLARY 2 If one basis is finite, then all bases are finite, and

given two bases B\ and B2 there is a bisection o : B\ -*• B2 such that

(B2 \ {a(e)}) u {e} is a basis for all e e Bx .

COROLLARY 3 If Bj and B2 are finite bases, then there exists a

bisection x : Bj •+ B2 such that (B± \ {e}) u {i(e)} is a basis for all

e e Bj .

Proof Reversing the roles of Bj and £3 in Corollary 2, we know

there exists a bisection p : B2 "*• Bj such that (B\ \ {p(e)}) U {e} is

a basis for all e £ B2 . The corollary follows "by taking x to "be

Corollary 3 remains valid if B\ and B2 are allowed to be infinite

"but Bi \ B2 (and thus B 2 ^
 Bl) is finite.

Suppose we have a dependence structure with finite bases B\ and B2 .

We now know there exist two bijections a : Bi -* B2 and T : B\ •*• B2 such

that (B2 \ {a(e)}) U {e} and fBx \ {e}j U {xCe;} are bases for all

e € B ] . The question arises as to whether we can choose a = T . That

is, does there exist a bijection IT : B\ -*• B2 such that both

(B2 \ {ir(e)}) u {e}

and

CBi \ {e}) u

are bases for all e €. B\ 1 Before this question should be answered the

following simpler question should be answered. Given e € Bj , does there

exist a f 6 B 2 such that both l ^ \ {e}J U {/} and (B2 \ if}) U {e}

are bases? The following theorem resolves this affirmatively with no

finiteness restrictions.

THEOREM 2 Let B\ and B2 be tioo bases of a dependence structure.

Given e E B j there exists a f € B2 such that

(Bi \ {e}) U {/} , (B2 \ {f}) U {e}

are both bases.

Proof If e e Bx n B 2 , we may choose f = e . Let e e B\ \ B2

and let C be the unique circuit contained in B2 U {e} . Surely

C n (B2 \ B1) ^ <j> . For each x e C n (B2 \ B1) , B1 u {x} contains a
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unique circuit. If none of these circuits contain e , then after a number

of applications of property (2') we obtain a circuit containing e but

contained within B\ . This is a contradiction. Hence there exists a

/ € C n (B2 \ BjJ such that the unique circuit contained in B\ U {f}

contains e . Hence by Lemma 1, both (B2 ^ if})
 u Is) and

(Bi \ {e}) U {/} are bases.

In spite of Theorem 2 the answer to the first question we raised is no.

To obtain a counterexample, let E be the set of vectors of the vector

space of 3-tuples over a finite field of two elements. Let 'dependence1

and 'independence' mean 'linear dependence' and 'linear independence'

respectively. Consider the two bases

Bx = {(1 , 0 , 0) , (1,0.1), (0,1,1)}

B2 = {(0 , 1 , 0) , (0,0,1), (1,1,0)}.

Then (B^ \ {(1,0,0)}) u ix} is a basis for x = (0,1,0) or (0,0,1) but

not for x = (1,1,0) . Also (Bz \ ix}) U {(1,0,0)} is a basis for

x = (0,1,0) or (1,1,0) but not for x = (0,0,1) . Therefore

C5i \ {(1 , 0 , 0)}) U {x} , (B2 \ {x}) U {(1 , 0 , 0)}

are both bases only for x = (0 , 1 , 0) of B 2 • In a similar way, one

concludes that

(B1 \ {(0 , 1 , 1)}) U {x} , (B2 \ {x}) U {(0 , 1 , 1)}

are both bases only for x = (0 , 1 , 0) of B2 • Thus the bijection

whose existence was questioned cannot exist in this case.
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