Corrigenda

Volume 89 (1981), 285-292
'Lattice isomorphisms of Lie algebras'

By D. A. TOWERS
University of Lancaster

(Received 20 October 1983)
Lemma $4 \cdot 1$, which appears on p. 289 of [2], is false. Nevertheless, Theorem 4•2, the only result dependent upon it, is true. The following supplies the necessary modification to the proof.

Replace Lemma $4 \cdot 1$ by
Lemma 4.1. Let S be a three-dimensional non-split simple Lie algebra, and let R be an irreducible S-module. Then, for any $s \in S, R$ has an ad s-invariant subspace of dimension less than or equal to two.

Proof. See [1], p. 23.
Now replace the second paragraph of the proof of Theorem $4 \cdot 2$ by the following.
Suppose that S^{*} is three-dimensional non-split simple. Let A^{*} be a minimal ideal of L^{*}, and put $U^{*}=S^{*} \dot{+} A^{*}$. Then $U=S \dot{+} A$ where A is a minimal abelian ideal of U, and S is a two-dimensional abelian subalgebra of U. Let $0 \neq s \in S, 0 \neq a \in A$ and let $f(\theta)$ be the polynomial of smallest degree for which $a f(\operatorname{ad} s)=0$. It follows from the fact that S is abelian that $\{x \in A: x f(\operatorname{ad} s)=0\}$ is an S-submodule of A, and hence that it coincides with A. Clearly then $f(\theta)$ is the minimum polynomial of ad $\left.s\right|_{A}$.

Suppose first that there is an $s_{1} \in S$ for which the minimum polynomial for ad s_{1} has degree two, and let this polynomial be $f(\theta)=\theta^{2}-\lambda_{2} \theta-\lambda_{1}$. Pick $s_{2} \in S$ such that $S=\left(\left(s_{1}, s_{2}\right)\right)$. Then $\left(\left(s_{1}, s_{2}, a, a s_{1}, a s_{2}\right)\right)$ is a subalgebra of L (for any $a \in A$), since

$$
\begin{aligned}
& \left(a s_{1}\right) s_{1}=\lambda_{1} a+\lambda_{2} a s_{1}, \\
& \left(a s_{1}\right) s_{2}=\left(a s_{2}\right) s_{1}=\alpha_{1} a+\alpha_{2} a s_{1}+\alpha_{3} a s_{2},
\end{aligned}
$$

since $a\left(\operatorname{ad}\left(s_{1}+s_{2}\right)\right)^{2} \in\left(\left(a, a\left(s_{1}+s_{2}\right)\right)\right)$, and

$$
\left(a s_{2}\right) s_{2}=\beta_{1} a+\beta_{2} a s_{2}
$$

Now, $\left(\left(a s_{2}\right) s_{1}\right) s_{1}=\lambda_{1} a s_{2}+\lambda_{2}\left(a s_{2}\right) s_{1}$, so

$$
\left(\alpha_{2} \lambda_{1}+\alpha_{3} \alpha_{1}\right) a+\left(\alpha_{1}+\alpha_{2} \lambda_{2}\right) a s_{1}+\alpha_{3}^{2} a s_{2}=\lambda_{2} \alpha_{1} a+\lambda_{2} \alpha_{2} a s_{1}+\left(\lambda_{1}+\lambda_{2} \alpha_{3}\right) a s_{2} .
$$

Since $f(\theta)$ is irreducible, $\alpha_{3}^{2} \neq \lambda_{1}+\lambda_{2} \alpha_{3}$, and so $a s_{2}=\gamma_{1} a+\gamma_{2} a s_{1}$. Hence A has dimension at most two, and $U=S+S_{1}$ where $S_{1}=\{s+s a: s \in s\}$, and $S \cap S_{1}=\{0\}$. But this means that $U^{*}=S^{*} U S_{1}^{*}$ where $S^{*} \cap S_{1}^{*}=\{0\}$, so U^{*} is at least six-dimensional, and A^{*} is at least 3 -dimensional, which is impossible.

Hence we may assume that, for every $s \in S$, ad s has an eigenvector. But this implies that $A+((s))$ is semiabelian for each $s \in S$ and hence that A is one-dimensional. This means that $U^{*}=S^{*} \oplus A^{*}$, contradicting Lemma 3•3.

D. A. Towers

REFERENCES

[1] Gein, A. G. Projections of a Lie algebra of characteristic zero. Izvestija vysy. ucebn. Zaved. Mat., no. 4, 191 (1978), 26-31.
[2] Towers, D. A. Lattice isomorphisms of Lie algebras. Math. Proc. Cambridge Philos. Soc. 89 (1981), 285-292.

