Corrigenda Volume 89 (1981), 285–292

'Lattice isomorphisms of Lie algebras'

By D. A. TOWERS University of Lancaster

(Received 20 October 1983)

Lemma 4.1, which appears on p. 289 of [2], is false. Nevertheless, Theorem 4.2, the only result dependent upon it, is true. The following supplies the necessary modification to the proof.

Replace Lemma 4.1 by

LEMMA 4.1. Let S be a three-dimensional non-split simple Lie algebra, and let R be an irreducible S-module. Then, for any $s \in S$, R has an ad s-invariant subspace of dimension less than or equal to two.

Proof. See [1], p. 23.

Now replace the second paragraph of the proof of Theorem $4 \cdot 2$ by the following.

Suppose that S^* is three-dimensional non-split simple. Let A^* be a minimal ideal of L^* , and put $U^* = S^* \dotplus A^*$. Then $U = S \dotplus A$ where A is a minimal abelian ideal of U, and S is a two-dimensional abelian subalgebra of U. Let $0 \ddagger s \in S$, $0 \ddagger a \in A$ and let $f(\theta)$ be the polynomial of smallest degree for which af(ads) = 0. It follows from the fact that S is abelian that $\{x \in A : xf(ads) = 0\}$ is an S-submodule of A, and hence that it coincides with A. Clearly then $f(\theta)$ is the minimum polynomial of $ads|_A$.

Suppose first that there is an $s_1 \in S$ for which the minimum polynomial for ads_1 has degree two, and let this polynomial be $f(\theta) = \theta^2 - \lambda_2 \theta - \lambda_1$. Pick $s_2 \in S$ such that $S = ((s_1, s_2))$. Then $((s_1, s_2, a, as_1, as_2))$ is a subalgebra of L (for any $a \in A$), since

$$(as_1) s_1 = \lambda_1 a + \lambda_2 a s_1, (as_1) s_2 = (as_2) s_1 = \alpha_1 a + \alpha_2 a s_1 + \alpha_3 a s_2.$$

since $a(ad(s_1 + s_2))^2 \in ((a, a(s_1 + s_2)))$, and

$$(as_2)s_2 = \beta_1 a + \beta_2 as_2.$$

Now, $((as_2)s_1)s_1 = \lambda_1 as_2 + \lambda_2 (as_2)s_1$, so

$$\alpha_2\lambda_1+\alpha_3\alpha_1)a+(\alpha_1+\alpha_2\lambda_2)as_1+\alpha_3^2as_2=\lambda_2\alpha_1a+\lambda_2\alpha_2as_1+(\lambda_1+\lambda_2\alpha_3)as_2.$$

Since $f(\theta)$ is irreducible, $\alpha_3^2 \neq \lambda_1 + \lambda_2 \alpha_3$, and so $as_2 = \gamma_1 a + \gamma_2 as_1$. Hence A has dimension at most two, and $U = S + S_1$ where $S_1 = \{s + sa : s \in s\}$, and $S \cap S_1 = \{0\}$. But this means that $U^* = S^* \cup S_1^*$ where $S^* \cap S_1^* = \{0\}$, so U^* is at least six-dimensional, and A^* is at least 3-dimensional, which is impossible.

Hence we may assume that, for every $s \in S$, ad s has an eigenvector. But this implies that A + ((s)) is semiabelian for each $s \in S$ and hence that A is one-dimensional. This means that $U^* = S^* \oplus A^*$, contradicting Lemma 3.3.

D. A. Towers

REFERENCES

- GEIN, A. G. Projections of a Lie algebra of characteristic zero. Izvestija vysš. ucebn. Zaved. Mat., no. 4, 191 (1978), 26-31.
- [2] TOWERS, D. A. Lattice isomorphisms of Lie algebras. Math. Proc. Cambridge Philos. Soc. 89 (1981), 285-292.