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Abstract

Hanski’s incidence function model is one of the most widely used metapopulation models
in ecology. It models the presence/absence of a species at spatially distinct habitat patches
as a discrete-time Markov chain whose transition probabilities are determined by the
physical landscape. In this analysis, the limiting behaviour of the model is studied as
the number of patches increases and the size of the patches decreases. Two different
limiting cases are identified depending on whether or not the metapopulation is initially
near extinction. Basic properties of the limiting models are derived.
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1. Introduction

A metapopulation is a collection of local populations occupying spatially distinct habitat
patches that evolves over time due to local extinctions and colonisation events. As noted in
[12], the study of metapopulations by using a stochastic patch occupancy model (SPOM) is well
established in the ecology literature. A SPOM is a discrete-time Markov chain that models the
presence/absence of the focal species in a network of habitat patches. One of the most widely
used SPOMs is Hanski’s incidence function model (IFM); see [10]. The IFM uses structural
assumptions to relate the physical landscape to the transition probabilities of the Markov chain.

One drawback of using the IFM and realistic SPOMs in general is that they are difficult to
analyse. Simulation methods can be employed in specific cases, but they provide no information
on the behaviour of the model in general. To understand the general case, the modeller typically
needs to resort to approximations. Two common classes of approximations for Markov chain
models are the deterministic approximations and branching process approximations.

Ovaskainen and Hanski [24] propose a system of deterministic difference equations as an
approximation to the IFM and provide a detailed analysis of this system. However, it is not
clear in what sense this system of deterministic difference equations approximates the original
stochastic IFM. Our analysis is perhaps closer to Ovaskainen and Cornell’s [23] analysis of a
related continuous-time stochastic metapopulation model on a stochastic landscape. They
showed that the fraction of occupied patches is well approximated by a one-dimensional
ordinary differential equation called Levins’ model [16] when the dispersal range is large.
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If the spatial aspect of the metapopulation is ignored, then the behaviour of the meta-
population model near the extinction state resembles the initial behaviour of an epidemic.
A number of researchers (see, e.g. [1], [2], [3], and [4]) have used branching processes to
approximate the initial spread of an epidemic in a large population. The branching process
approximation is less frequently applied in the context of metapopulation modelling, but [5]
provides one example.

In this paper we study the limiting behaviour of Hanski’s IFM as the number of patches
increases and the size of the patches decreases. The model is briefly described and the main
assumptions stated in Section 2. In Section 3, we derive and study the deterministic limit. Our
analysis differs from that of [23] in three ways: (i) a different scaling is used to study the limiting
process, (ii) we allow the extinction probabilities to vary spatially, and (iii) we work directly
with the discrete-time IFM. In Section 4, Hanski’s IFM is studied when the metapopulation
is initially close to extinction. Extending our earlier work [18], point process theory is used
to study the limit and determine conditions under which the metapopulation has a positive
probability of recovery. We conclude with a brief discussion of the results. All proofs are given
in Appendix A.

2. Model description

The incidence function model of Hanski [10], for a metapopulation comprising n patches, is
a discrete-time Markov chain on {0, 1}n. Denote this Markov chain byXnt = (Xn1,t , . . . , X

n
n,t ),

where Xni,t = 1 if patch i is occupied at time t and Xni,t = 0 otherwise. Patch i is described
by three variables; its location zi , a weight Ai > 0 which may be interpreted as the size of the
patch, and si which is the probability that the population occupying patch i survives one time
step. Let zn, An, and sn denote the collections of patch variables for the entire metapopulation.
We treat zn, An, and sn as random variables which is reasonable if we view the landscape
as the result of some random process. A similar treatment of the landscape was adopted in
the metapopulation model of Ovaskainen and Cornell [23]. The transition probabilities of the
Markov chain are determined by how well the patches are connected to each other and by the
probability of local extinction. The connectivity measure of patch i at time t is defined by

C̃i(t) =
∑
j �=i

Xnj,tD(zi,zj )A
b
j , b > 0,

where D(z, z̃) ≥ 0 is a measure of how easily a patch located at z can be colonised by an
individual from a patch located at z̃. Typically, D(z, z̃) is a bounded decreasing function of
‖z − z̃‖ such as exp(−α‖z − z̃‖), α > 0. Let f : [0,∞) �→ [0, 1] such that f (0) = 0.
Conditional on (Xnt , z

n, An, sn), the Xni,t+1(i = 1, . . . , n) are independent with transitions
given by

P(Xni,t+1 = 1 | Xnt , zn, An, sn) = siX
n
i,t + f (C̃i(t))(1 −Xni,t ).

Since the connectivity measure of patch i is only important when patch i is unoccupied, the
transition probabilities remain unchanged if C̃i(t) is replaced by

Ci(t) =
n∑
j=1

Xnj,tD(zi,zj )A
b
j .

There are a couple of important differences between the IFM and typical interacting particle
systems used in spatial modelling; see, e.g. [9] and [25]. Apart from the discrete time setting,
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interacting particle systems usually evolve on a lattice of sites whereas the patches of an IFM are
not naturally restricted to a lattice structure. More importantly, in interacting particle systems
the instantaneous effect of change at one site is assumed to be limited to a finite neighbourhood
of that site. The IFM does not usually have a finite range neighbourhood. For typical choices
of D, changes at one patch immediately affect the transition probabilities for all other patches
of the metapopulation.

Our analysis of the IFM will be based on the following assumptions:

(a) Ai = ain
−1/b, where ai ∈ (0, A]. The collection of ai will be denoted by an;

(b) zi ∈ �, where � is a compact subset of R
d ;

(c) D(z, z̃) is symmetric in all its arguments and defines a uniformly bounded and equi-
continuous family of functions on �. That is, there exists a finite constant D̄ such that,
for all z1, z2 ∈ �, we have |D(z1, z2)| ≤ D̄, and, for every ε > 0, there exists a δ > 0
such that, for all z1, z2 with ‖z1 − z2‖ < δ,

sup
z∈�

|D(z1, z)−D(z2, z)| < ε;

(d) the function f is Lipschitz continuous.

Assumption (a) implies that all patches are of a comparable size. Furthermore, in applications
to butterfly metapopulations, estimates of b are typically less than one; see [11] and [26].
Therefore, assumption (a) corresponds to a decrease in the total area of the metapopulation
as n → ∞ which is consistent with habitat fragmentation and destruction. Assumption (b)
is made to simplify the analysis. Assumption (c) is satisfied for the examples given in [21,
Section 2.2.1]. In particular, it is satisfied for D(z, z̃) = exp(−α‖z − z̃‖), α ≥ 0. Typical
forms for f include f (x) = x2/(β + x2), β > 0, and f (x) = 1 − exp(−βx), β > 0; see [21,
Section 2.2.3]. Both of these functions have bounded derivatives on [0,∞), so assumption (d)
is satisfied.

Another assumption that is used in the analysis concerns the random variables (zn, an, sn).
Let C+([0, 1] × �) denote the class of continuous functions h : [0, 1] × � �→ [0,∞). Note
that, since� is a compact set from assumption (b), the functions inC+([0, 1]×�) are bounded.
Consider the sequence of random measures σn defined by

∫
h(s, z)σn(ds, dz) := n−1

n∑
i=1

abi h(si, zi) for all h ∈ C+([0, 1] ×�).

The measure σn describes the landscape of the n patch metapopulation model. It is purely
atomic placing mass n−1abi at the point determined by patch i’s location zi and its survival
probability si . We assume that σn satisfies the following assumption.

(e) As n → ∞, σn
d−→ σ for some nonrandom measure σ .

Applying the law of large numbers and Theorem 16.16 of [15], we see that assumption (e)
is satisfied if, for example, the random vectors (zi, ai, si) are independent and identically
distributed.
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3. Deterministic limit

Consider the array of random measures μn,t constructed from the Markov chain Xnt by

∫
h(s, z)μn,t (ds, dz) := n−1

n∑
i=1

abi X
n
i,th(si, zi) for all h ∈ C+([0, 1] ×�). (3.1)

The measure μn,t has a similar structure to σn; however, μn,t only involves those patches
that are occupied at time t . These measures can be used to determine quantities such as the
proportion of occupied patches weighted by the patch size. The following theorem describes
the behaviour of the metapopulation as the number of patches tends to ∞.

Theorem 3.1. Suppose that assumptions (a)–(e) hold and thatμn,0
d−→ μ0 for some nonrandom

measure μ0. Then μn,t
d−→ μt for all t = 0, 1, . . . , where μt is defined by the recursion

∫
h(s, z)μt+1(ds, dz)

=
∫
sh(s, z)μt (ds, dz)+

∫
h(s, z)f

(∫
D(z, z̃)μt (ds̃, dz̃)

)
σ(ds, dz)

−
∫
h(s, z)f

(∫
D(z, z̃)μt (ds̃, dz̃)

)
μt(ds, dz) (3.2)

for all h ∈ C+([0, 1] ×�).

Consider the special case where D(z, z̃) = 1 for all (z, z̃) ∈ � × � and we assume that
ai = 1 for all i. Let h(s, z) = sk for k = 0, 1, 2, . . . Then recursion (3.2) becomes

d(t + 1; k) = d(t; k + 1)+ f (d(t; 0))(s̄k − d(t; k)), (3.3)

where d(t; k) = ∫
skμt (ds, dz) and s̄k = ∫

skσ (ds, dz). This special case is related to the
model studied in [18]. The difference between equation (3.3) and equation 2.1 of [18] is that
in [18] it is assumed that extinction and colonisation events occur in distinct alternating phases.

Despite the complexity of the recursion (3.2), we are able to provide conditions for the
existence of a nonzero fixed point and show that if a nonzero fixed point exists then it is
unique. Fixed points are important in applications as they determine the equilibrium behaviour
of the metapopulation. In particular, the presence of a nonzero fixed point implies that the
metapopulation may persist for a long time.

Three further assumptions are introduced to study the fixed points of the recursion (3.2).

(f) The function f is increasing, strictly concave, and twice differentiable with bounded
second derivative in a neighbourhood of 0.

(g) For some ε > 0 sufficiently small, σ([1 − ε, 1] × �) = 0. Also, for every z ∈ � and
every open neighbourhood Nz of z, σ([0, 1] ×Nz) > 0.

(h) D(z, z̃) > 0 for all (z, z̃) ∈ �×�.

Assumption (f) is satisfied for f (x) = 1 − exp(−βx), β > 0, but not for f (x) = x2/(β + x2),
β > 0. In ecological terms, by introducing assumption (f) we are trying to exclude a
metapopulation levelAllee-like effect. AnAllee-like effect refers to a metapopulation exhibiting
a critical threshold in the occupancy level below which the metapopulation goes extinct;
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see [6, pp. 103–105]. Note that, even for simple models displaying an Allee-like effect,
determining the number of fixed points can be a challenging problem. Assumption (g) excludes
the possibility of any patches having a very large survival probability. Furthermore, for any
μn,t defined by (3.1) such that μn,t

d−→ μt , assumption (g) implies that μt([1 − ε, 1]×�) = 0.
Assumption (h) means that all patches are connected to each other. Although some range
limited forms of D have been used, the most common forms satisfy assumption (h); see [21,
Section 2.2.1].

Letμ∞(ds, dz) denote a fixed point of (3.2) and defineψ(z) = ∫
D(z, z̃)μ∞(ds̃, dz̃). Upon

rearranging (3.2), we see that any fixed point satisfies∫
h(s, z)(1 − s + f (ψ(z)))μ∞(ds, dz) =

∫
h(s, z)f (ψ(z))σ (ds, dz). (3.4)

By definition, ψ(z) ≥ 0 and, by assumption (c), ψ is continuous on �. Under assumption (g)
the support of σ , and hence the support of μ∞, is contained in [0, 1 − ε] ×�. Therefore, for
any h ∈ C+([0, 1] × �), the function h(s, z)(1 − s + f (ψ(z)))−1 is a continuous function
on the support of μ∞. Using this fact together with equation (3.4), we see that, for any
h ∈ C+([0, 1] ×�),∫

h(s, z)μ∞(ds, dz) =
∫
h(s, z)

f (ψ(z))

1 − s + f (ψ(z))
σ (ds, dz).

Clearly, μ∞ is absolutely continuous with respect to σ and has Radon–Nikodym derivative

∂μ∞
∂σ

= f (ψ(z))

1 − s + f (ψ(z))
,

where ψ satisfies the equation

ψ(z) =
∫
D(z, z̃)

f (ψ(z̃))

1 − s̃ + f (ψ(z̃))
σ (ds̃, dz̃). (3.5)

The number of solutions to equation (3.5) is determined by the following theorem.

Theorem 3.2. Suppose that assumptions (b)–(d) and (f)–(h) hold. Let A : C(�) �→ C(�) be
the bounded linear operator

Aφ(z) = f ′(0)
∫
D(z, z̃)

(1 − s̃)
φ(z̃)σ (ds̃, dz̃), φ ∈ C(�), (3.6)

and let r(A) be the spectral radius of A. If r(A) ≤ 1 then ψ = 0 is the unique solution to
equation (3.5). If r(A) > 1 then (3.5) has two solutions of which one is ψ = 0.

Theorem 3.2 simplifies considerably for certain special cases. For example, consider the
case where D(z, z̃) = exp(−θ(‖z − z0‖ + ‖z̃ − z0‖)) for some θ > 0 and z0 ∈ �. This form
for D(z, z̃) can be interpreted as follows: individuals moving from a patch located at z̃ to a
patch located at z are required to first go through the point z0. To apply Theorem 3.2, we note
that A maps continuous functions to functions of the formC exp(−θ‖z−z0‖) for someC > 0.
Therefore, the spectral radius of A is easily computed to be

f ′(0)
∫

exp(−2θ‖z̃− z0‖)
1 − s̃

σ (ds̃, dz̃).

Further discussion of metapopulations with D of this form is given in [20].
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To end this section we comment on the problem of stability of the fixed points. Although
we have been unable to determine the stability of these fixed points, we conjecture that if
r(A) > 1 then the nonzero fixed point is asymptotically stable and the zero fixed point is
unstable. Otherwise, if r(A) ≤ 1 then the zero fixed point is asymptotically stable. In other
words, we conjecture that this metapopulation will persist for a long time if r(A) > 1 but will
go extinct quickly if r(A) ≤ 1, a property called the extinction threshold. In support of this
conjecture, note that if the extinction and colonisation events were assumed to occur in distinct
alternating phases, as in [18] and [20], then stability of the fixed points could be established
using similar arguments to those used to prove Theorem 3 of [20].

4. Point process limit

We now consider the case where initially only a small number of habitat patches are occupied.
Although we could still apply Theorem 3.1, we would not obtain any useful information about
the metapopulation. In that case, μn,0 converges to the trivial measure which implies that μt
is the trivial measure for all t ≥ 0. A different analysis is needed to understand the behaviour
of the metapopulation model near the extinction state. We replace assumption (a) by

(a′) Ai = n−1/b for all i.

Assumption (a′) implies that all habitat patches are of the same size. Note that, from assump-
tion (c), D(z, z̃) can be continuously extended to all R

d so that D(·, z̃) = 0 for all z̃ �∈ �′,
where �′ is a compact subset of R

d and � ⊂ �′.
As in [18], we define the point processes associated with the IFM using a random counting

measure. Let μn,t denote the random measure defined by

μn,t (B) := #{(si, zi) ∈ B : Xni,t = 1} (4.1)

for any bounded Borel set B. Note that the definition of μn,t given at (4.1) has two important
differences to the one given at (3.1); all patches are of the same size and there is no longer a
scaling by n−1. The main tool that we shall use in the analysis of these point processes is the
probability generating functional. Let V denote the class of all real-valued Borel functions h
on R

d+1 with 1 − h vanishing outside some bounded set and satisfying 0 ≤ h(s, z) ≤ 1 for all
(s, z) ∈ R

d+1. The probability generating functional of the point process μn,t is defined by

Gn,t [h] := E

(
exp

(∫
logh(s, z)μn,t (ds, dz)

))
= E

( n∏
i=1

(Xni,th(si, zi)+ 1 −Xni,t )

)
.

Moyal [22] introduced a generalisation of branching processes called multiplicative popula-
tion chains. Multiplicative population chains (MPC) are a family of point processes that evolve
in discrete time such that the point process at time t + 1 is a superposition of conditionally
independent point processes representing the offspring from each element of the point process at
time t . LetGt [· | (s, z)] denote the probability generating functional of the MPC at time t given
that the MPC at time 0 consisted of a single element located at (s, z). Moyal [22, Theorem 1.1]
showed that the probability generating functional of an MPC satisfies the functional relation

Gt [h | (s, z)] = Gu[Gt−u[h | ·] | (s, z)], u = 1, . . . , t − 1. (4.2)

Given the probability generating functional at time 0, denoted byG0, the probability generating
functional at time t can be obtained from the recursion (4.2) by Gt [h] = G0[Gt [h | (s, z)]].
In the following theorem we show that, under certain assumptions, the IFM converges to an
MPC and give the recursion for the probability generating functional.
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Theorem 4.1. Suppose that assumptions (a′) and (b)–(f) hold. Assume that the sequence of
point processes {μn,0}∞n=1 converges weakly to some point process with probability generating
functional G0 and that supn E(exp(α

∑n
i=1X

n
i,0)) < ∞ for all α > 0. The sequence of

point processes {μn,t }∞n=1 converges weakly to the point process with probability generating
functional given by the recursion

Gt+1[h] = Gt [G1[h | (s, z)]] for any h ∈ V, (4.3)

where

G1[h | (s, z)] = (1−U(s)(1−h(s, z))) exp

(
−f ′(0)

∫
D(z̃, z)(1−h(s̃, z̃)

)
σ(ds̃, dz̃)) (4.4)

and U is the distribution function of the standard uniform distribution.

As is the case with branching process approximations of Markov chains, of particular interest
is the probability that the limiting MPC goes extinct in finite time. Moyal [22, Theorem 3.1]
shows that to determine the extinction probability we need to find the smallest nonnegative
solution to the functional equation h = G1[h | (s, z)], h ∈ V. Clearly, one solution is given
by h(s, z) = 1 for all (s, z) ∈ R

d+1. Therefore, we need to determine conditions under which
smaller solutions exist.

Theorem 4.2. Suppose that assumptions (b), (c), (g), and (h) hold. The probability that the
limiting MPC goes extinct in finite time is less than one if and only if r(A) > 1, where A is
the bounded linear operator defined by equation (3.6). If r(A) > 1 then the probability of
extinction in finite time is given by

G0

[
(1 − U(s))ψ∗(z)
1 − U(s)ψ∗(z)

]
,

where ψ∗ is the smallest nonnegative solution to

ψ(z) = exp

(
−f ′(0)

∫
D(z̃, z)

(
1 − ψ(z̃)

1 − U(s̃)ψ(z̃)

)
σ(ds̃, dz̃)

)
for all z ∈ �.

When D(z, z̃) = 1 for all (z, z̃) ∈ � × �, the results of this section are parallel to those
of [18, Section 3] with the small differences being due to the phase structure of colonisation
and extinction events assumed in [18]. The proof of Theorem 4.2 (Appendix A.4) uses similar
functional analytic tools to those used in the proof of Theorem 3.2 (Appendix A.2).

Theorem 4.2 provides further support to our conjecture concerning the stability of the fixed
points of (3.2). Suppose that r(A) > 1, then we conjectured that 0 is an unstable fixed point of
the recursion (3.2). If this were not the case then the metapopulation would display very strange
behaviour. Theorem 4.2 indicates that if the initial number of occupied patches is very small
compared to the number of patches in the metapopulation and r(A) > 1 then the number of
occupied patches will increase and the metapopulation will persist for a long time with positive
probability. However, if 0 were a stable fixed point of recursion (3.2) and a small but positive
proportion of patches are initially occupied in the metapopulation then there should be a rapid
decrease to 0 in the proportion of occupied patches.

5. Discussion

In this paper, we studied the convergence of the IFM under two different sets of initial
conditions. One of the goals of studying convergence was to derive an approximation of the
IFM which would allow a simpler analysis. Although both of the derived limiting processes
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are still quite complex, we have been able to establish some of their features. One benefit of
determining the limiting processes is that the effect of the model parameters is more transparent.
For example, it can be demonstrated that those factors that we would expect to improve the
likelihood of the metapopulation persisting, such as a more rapidly increasing colonisation
function and easier movement between patches, lead to an increase in the nonzero equilibrium
of the deterministic limit from Theorem 3.1 and a decrease in the probability of extinction in
the MPC limit from Theorem 4.1.

Determining the stability of the fixed points of (3.2) remains a significant challenge. We
have conjectured that the nonzero fixed point of (3.2), when it exists, is stable and that when
only the zero fixed point exists, the zero fixed point is stable. A resolution of this problem is
necessary before more complex dynamics, such as a metapopulation Allee-like effect, can be
incorporated.

Appendix A. Proofs

A.1. Proof of Theorem 3.1

We essentially proceed as in the proof of Theorem 2.1 of [18]. First note that if
∫
h dμn

d−→∫
h dμ for all h ∈ C+([0, 1] ×�) then μn

d−→ μ; see [15, Theorem 16.16]. We use induction
on t to prove weak convergence of the random measures μn,t to the nonrandom measures μt .
By assumption μn,0

d−→ μ0 for some nonrandom measure μ0. Suppose that μn,t
d−→ μt for

some nonrandom measure μt . Then

E

(∫
h dμn,t+1

∣∣∣∣ Xnt , sn, an, zn
)

= n−1
n∑
i=1

abi h(si, zi)E(X
n
i,t+1 | Xnt , sn, an, zn)

= n−1
n∑
i=1

abi sih(si, zi)X
n
i,t

+ n−1
n∑
i=1

abi h(si, zi)f

(
n−1

n∑
j=1

abjD(zi, zj )X
n
j,t

)
(1 −Xni,t )

=
∫
sh(s, z)μn,t (ds, dz)+

∫
h(s, z)f

(∫
D(z, z̃)μn,t (ds̃, dz̃)

)
σn(ds, dz)

−
∫
h(s, z)f

(∫
D(z, z̃)μn,t (ds̃, dz̃)

)
μn,t (ds, dz)

=
∫
sh(s, z)μn,t (ds, dz)+

∫
h(s, z)f

(∫
D(z, z̃)μt (ds̃, dz̃)

)
σn(ds, dz)

−
∫
h(s, z)f

(∫
D(z, z̃)μt (ds̃, dz̃)

)
μn,t (ds, dz)+ εn,t (h),

where

εn,t (h) =
∫
h(s, z)

{
f

(∫
D(z, z̃)μn,t (ds̃, dz̃)

)
− f

(∫
D(z, z̃)μt (ds̃, dz̃)

)}
σn(ds, dz)

−
∫
h(s, z)

{
f

(∫
D(z, z̃)μn,t (ds̃, dz̃)

)
− f

(∫
D(z, z̃)μt (ds̃, dz̃)

)}
μn,t (ds, dz).
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By assumption (d) f is Lipschitz continuous, so there exists an L > 0 such that

|εn,t (h)| ≤ L

∫
h(s, z)

∣∣∣∣
∫
D(z, z̃)μn,t (ds̃, dz̃)−

∫
D(z, z̃)μt (ds̃, dz̃)

∣∣∣∣
× (σn(ds, dz)+ μn,t (ds, dz))

≤ 2L

(∫
h(s, z)σn(ds, dz)

)
sup
z∈�

∣∣∣∣
∫
D(z, z̃)μn,t (ds̃, dz̃)−

∫
D(z, z̃)μt (ds̃, dz̃)

∣∣∣∣.
From a small modification of Theorem 3.1 of [27] and assumption (c), it follows that if
μn,t

d−→ μt , where μt is a nonrandom measure, then

sup
z∈�

∣∣∣∣
∫
D(z, z̃)μn,t (ds̃, dz̃)−

∫
D(z, z̃)μt (ds̃, dz̃)

∣∣∣∣ P−→ 0.

Since h ∈ C+([0, 1] × �), both sh(s, z) and h(s, z)f (
∫
D(z, z̃)μt (ds̃, dz̃)) are elements of

C+([0, 1] ×�), the latter being a consequence of assumption (c). This implies that

E

(∫
h dμn,t+1

∣∣∣∣ Xnt , sn, an, zn
)

P−→
∫
sh(s, z)μt (ds, dz)

+
∫
h(s, z)f

(∫
D(z, z̃)μt (ds̃, dz̃)

)
σ(ds, dz)

−
∫
h(s, z)f

(∫
D(z, z̃)μt (ds̃, dz̃)

)
μt(ds, dz).

Now to compute the conditional variance of
∫
h(s, z)μn,t+1(ds, dz) given Xnt :

var

(∫
h dμn,t+1

∣∣∣∣ Xnt , sn, an, zn
)

= var

(
n−1

n∑
i=1

abi X
n
i,t+1h(si, zi)

∣∣∣∣ Xnt , sn, an, zn
)

= n−2
n∑
i=1

a2b
i h

2(si, zi)(si(1 − si)X
n
i,t + f (Ci(t))(1 − f (Ci(t)))(1 −Xni,t ))

≤ n−2
n∑
i=1

a2b
i h

2(si, zi).

From assumptions (a) and (b), the conditional variance goes to 0 in probability. Applying a
Chebyshev type inequality [19, Appendix C], we see that

∫
h dμn,t+1 converges to

∫
h dμt+1

in probability which is equivalent to convergence in distribution since
∫
h dμt+1 is nonrandom.

A.2. Proof of Theorem 3.2

The proof of Theorem 3.2 depends on the theory concerning positive operators and monotone
operators. We recall some definitions and notation following [8, Chapter VIII, Appendix].

Let C(�) be the Banach space of continuous functions on � (recall � is compact by
assumption (b)). LetK denote the reproducing cone of functions h on� such that h(z) ≥ 0 for
all z ∈ � and let K̊ denote the interior ofK . For any φ, χ ∈ K we write φ ≤ χ if χ − φ ∈ K .
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We have previously noted that the function ψ defined by ψ(z) = ∫
D(z, z̃)μ∞(ds̃, dz̃) is

in K . Let R : K �→ K be the operator defined by the right-hand side of (3.5). The following
properties of R will be used to prove Theorem 3.2.

Proposition A.1. Suppose that assumptions (b)–(d) and (f)–(h) hold. The operator R has the
following properties:

(i) continuity;

(ii) order compactness, that is, for any χ1, χ2 ∈ K , R maps the set {φ : φ ≤ χ2, χ1 ≤ φ} to
a relatively compact set;

(iii) monotonicity, that is, if φ1 ≤ φ2 then Rφ1 ≤ Rφ2;

(iv) strong positivity, that is, if φ ∈ K \ {0} then Rφ ∈ K̊;

(v) strong sublinearity, that is, if λ ∈ (0, 1) and φ ∈ K̊ then R(λφ)− λRφ ∈ K̊ .

Proof. (i) Continuity. We wish to show that for any ε > 0 there exists a δ such that for any
φ1, φ2 ∈ K ,

sup
z∈�

|φ1(z)− φ2(z)| ≤ δ implies that sup
z∈�

|Rφ1(z)− Rφ2(z)| ≤ ε.

Now

|Rφ1(z)− Rφ2(z)| =
∣∣∣∣
∫
D(z, z̃)

[
f (φ1(z̃))

1 − s̃ + f (φ1(z̃))
− f (φ2(z̃))

1 − s̃ + f (φ2(z̃))

]
σ(ds̃, dz̃)

∣∣∣∣
≤

∫
D(z, z̃)

(1 − s̃)|f (φ1(z̃))− f (φ2(z̃))|
(1 − s̃ + f (φ1(z̃)))(1 − s̃ + f (φ2(z̃)))

σ (ds̃, dz̃)

≤ L

∫
D(z, z̃)(1 − s̃)−1|φ1(z̃)− φ2(z̃)|σ(ds̃, dz̃)

since f is Lipschitz continuous from assumption (d). If supz∈�|φ1(z) − φ2(z)| ≤ δ, then
|Rφ1(z) − Rφ2(z)| ≤ LδD̄

∫
(1 − s̃)−1σ(ds̃, dz̃) by assumption (c). By assumption (g),

this integral is finite. By setting δ = ε(LD̄
∫
(1 − s̃)−1σ(ds̃, dz̃))−1, the continuity of R is

established.
(ii) Order compactness. A subset Y of a metric spaceX is relatively compact if any bounded

sequence in Y has a subsequence which converges inX. To prove relative compactness we use
the Arzelà–Ascoli theorem [15, Theorem A2.1] which, in this context, says that any sequence of
functions φ1, φ2, . . . inC(�) that is uniformly bounded and equicontinuous has a subsequence
that converges in C(�).

Take anyχ1, χ2 ∈ K . Letφ1, φ2, . . . be a sequence of functions inK such thatχ1 ≤ φi ≤ χ2
for all i. It is sufficient to show that the sequence of functions Rφ1, Rφ2, . . . is uniformly
bounded and equicontinuous. For any φ ∈ K and all z ∈ �,

Rφ(z) ≤
∫
D(z, z̃)σ (ds̃, dz̃) ≤ D̄

∫
σ(ds̃, dz̃), (A.1)

from assumption (c). Hence, the sequence Rφ1, Rφ2, . . . is uniformly bounded. To prove that
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the sequence is equicontinuous, take z1, z2 ∈ � and φ ∈ K . Then

|Rφ(z1)− Rφ(z2)| ≤
∣∣∣∣
∫
(D(z1, z̃)−D(z2, z̃))

f (φ(z̃))

1 − s̃ + f (φ(z̃))
σ (ds̃, dz̃)

∣∣∣∣
≤

∫
|D(z1, z̃)−D(z2, z̃)|σ(ds̃, dz̃).

It now follows from assumption (c) that the sequence of functions Rφ1, Rφ2, . . . is equi-
continuous. Hence, R is order compact.

(iii) Monotonicity. For a given s ∈ [0, 1 − ε], define the function

gs(x) = f (x)(1 − s + f (x))−1, x ∈ [0,∞). (A.2)

From assumption (f), f (x) is increasing, hence, gs(x) is increasing. It follows that if φ1 ≤ φ2
then ∫

D(z, z̃)
f (φ1(z̃))

1 − s̃ + f (φ1(z̃))
σ (ds̃, dz̃) ≤

∫
D(z, z̃)

f (φ2(z̃))

1 − s̃ + f (φ2(z̃))
σ (ds̃, dz̃)

for all z ∈ �. Hence, Rφ1 ≤ Rφ2.
(iv) Strong positivity. Since φ ∈ K \ {0}, there exists a z0 ∈ � and δ > 0 such that φ(z) > δ

for all z in an open neighbourhood N0 of z0. Therefore,

inf
z∈�Rφ(z) ≥ inf

z∈�

∫
[0,1]×N0

D(z, z̃)
f (φ(z̃))

1 − s̃ + f (φ(z̃))
σ (ds̃, dz̃)

≥
(

inf
z∈� inf

z̃∈N0

D(z, z̃)
) f (δ)

1 + f (δ)
σ ([0, 1] ×N0),

which is positive from assumptions (g) and (h). Hence, Rφ ∈ K̊ for any φ ∈ K \ {0}.
(v) Strong sublinearity. For any λ ∈ (0, 1) and φ ∈ K̊ ,

R(λφ)− λRφ =
∫
D(z, z̃)

[
f (λφ(z̃))

1 − s̃ + f (λψ(z̃))
− λf (λφ(z̃))

1 − s̃ + f (ψ(z̃))

]
σ(ds̃, dz̃)

=
∫
D(z, z̃)

f (λφ(z̃))− λf (φ(z̃))

1 − s̃ + f (λψ(z̃))
σ (ds̃, dz̃)

+
∫
D(z, z̃)

[
λf (φ(z̃))

1 − s̃ + f (λψ(z̃))
− λf (φ(z̃))

1 − s̃ + f (ψ(z̃))

]
σ(ds̃, dz̃)

≥
∫
D(z, z̃)

f (λφ(z̃))− λf (φ(z̃))

1 − s̃ + f (λψ(z̃))
σ (ds̃, dz̃).

From assumption (f), f is strictly concave giving f (λx)−λf (x) > 0 for any x > 0. Arguing as
in the proof of part (iv), we see that this last integral is positive for all z ∈ � and this completes
the proof of Proposition A.1.

Let Rnφ denote the nth application of the operator R to φ. From Proposition A.1, we can
apply the cone limit trichotomy (see [13, Theorem 6.3]) to show that one of the following
holds:

• for any φ ∈ K \ {0}, the sequence {Rnφ}∞n=0 is unbounded;

• for any φ ∈ K , the sequence {Rnφ}∞n=0 converges to 0 which is the unique fixed point
of R;
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• for any φ ∈ K \ {0}, the sequence {Rnφ}∞n=0 converges toψ which is the unique nonzero
fixed point of R.

From equation (A.1) we may exclude the first possibility. It remains to determine conditions
that will decide which of the latter two possibilities hold. For this, we briefly summarise some
theory from functional analysis which extends the Perron–Frobenius theorem.

Let � : C(�) �→ R denote a linear functional on C(�). A positive linear functional is
a linear functional with the property that �g ≥ 0 if g ≥ 0 on �. Since � is compact, the
Riesz–Markov theorem (see [17, Section A.5]) states that a positive linear functional on C(�)
can be expressed as

�(g) =
∫
g dm∗ for all g ∈ C(�),

for a unique positive Borel measurem∗ on�. The set of positive Borel measures on� forms the
dual cone K∗. Let K̊∗ denote the interior of K∗. If the unique Borel measure m∗ is identified
for a positive linear functional then we write the linear functional as 〈g,m∗〉 := �(g).

Theorem A.1. (Krein–Rutman theorem.) Let K be a reproducing cone, with interior K̊ �= ∅,
and let B be a strongly positive compact bounded linear operator on K . Then the spectral
radius of B, r(B), is a simple eigenvalue of B and B∗ (the adjoint of B), and their associated
eigenvectors belong to K̊ and K̊∗. Furthermore, all other eigenvalues are strictly less in
absolute value than r(B).

Corollary A.1. Let B be a strongly positive compact bounded linear operator, s a positive
number, and φ ∈ K \ {0} satisfying sφ ≤ Bφ. Then s ≤ r(B) with equality if and only if
sφ = Bφ.

Proof. Let u∗ be the eigenvector of B∗ associated with the eigenvalue r(B). From Theo-
rem A.1, u∗ ∈ K̊∗. Since Bφ− sφ ∈ K , we have 0 ≤ 〈Bφ− sφ, u∗〉 with equality if and only
if sφ = Bφ. Now

〈Bφ − sφ, u∗〉 = 〈Bφ, u∗〉 − s〈φ, u∗〉 = 〈φ,B∗u∗〉 − s〈φ, u∗〉 = (r(B)− s)〈φ, u∗〉.
Since u∗ ∈ K̊∗ and φ �= 0 we have 〈φ, u∗〉 > 0. Hence, s ≤ r(B) with s = r(B) if and only
if Bφ = sφ. This completes the proof of Corollary A.1.

Adapting the arguments of Proposition A.1, we see that, under assumptions (c), (g), and (h),
A is a strongly positive compact operator. Therefore, the Krein–Rutman theorem can be applied
to A. The next proposition shows that the operator R can be bounded by A.

Proposition A.2. For any φ ∈ K , Rφ ≤ Aφ with equality if and only if φ = 0.

Proof. From assumption (f), f is strictly concave and, therefore, the function g, defined in
(A.2), is also strictly concave in x. For any x > 0 and s ∈ [0, 1),

f (x)

1 − s + f (x)
<
f ′(0)
1 − s

x.

For any φ ∈ K \{0}, the set {(s, z) : 0 < φ(z)} will have positive σ measure by assumption (g).
Therefore, for all φ ∈ K and all z ∈ �,

∫
D(z, z̃)

f (φ(z̃))

1 − s̃ + f (φ(z̃))
σ (ds̃, dz̃) <

∫
D(z, z̃)

f ′(0)
(1 − s̃)

φ(z̃)σ (ds̃, dz̃),
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by assumption (h). In other words, the inequality Rφ ≤ Aφ is strict for any φ ∈ K \ {0}.
To complete the proof, we simply note that if φ = 0 then Rφ = Aφ.

We are now able to prove the first part of Theorem 3.2.

Lemma A.1. If r(A) ≤ 1 then ψ = 0 is the unique solution to equation (3.5).

Proof. Suppose that there exists a φ ∈ K \ {0} such that φ = Rφ. From Proposition A.2,
φ ≤ Aφ. From Corollary A.1, this is only possible if r(A) ≥ 1. So, if r(A) < 1 then the only
solution to equation (3.5) is ψ = 0. Now suppose that r(A) = 1. Then Corollary A.1 implies
that φ = Aφ. From Proposition A.2, this is only possible if φ = 0.

It remains to consider the case where r(A) > 1.

Lemma A.2. If r(A) > 1 then there exists a unique nonzero solution to (3.5).

Proof. Let u be the eigenvector of A associated with the eigenvalue r(A). Take δ > 0.
Then

R(δu) = A(δu)+
∫
D(x, z̃)

(
f (δu(z̃))

1 − s̃ + f (δu(z̃))
− f ′(0)δu(z̃)

1 − s̃

)
σ(ds̃, dz̃). (A.3)

Since f is twice differentiable in a neighbourhood of 0, from assumption (f), and the support
of σ is restricted to [0, 1 − ε] ×� by assumption (g), the second term on the right–hand side
of equation (A.3) is o(δ‖u‖2) as δ → 0. Since u is an eigenvector of A we have u ∈ K̊ and
R(δu) = r(A)δu + o(δ‖u‖2). By assumption r(A) > 1, so, for a sufficiently small δ > 0,
δu ≤ R(δu). The set of continuous functions bounded below by δu and bounded above by 1
form a closed convex set. It follows from the monotonicity of R (part (iii) of Proposition A.1)
that R maps this set into itself. Since R is a compact map (part (ii) of Proposition A.1), we can
apply the Schauder fixed point theorem (see [14, Theorem 5.1.2]) to conclude that there exists
at least one nonzero solution to equation (3.5). To complete the proof of Lemma A.2, we note,
from the cone limit set trichotomy, that R can have at most one nonzero fixed point.

Lemmas A.1 and A.2 complete the proof of Theorem 3.2.

A.3. Proof of Theorem 4.1

First note that the functionals defined by (4.3) and (4.4) are indeed probability generating
functionals. Specifically, each of these is the probability generating functional of an MPC,
where the offspring from the member of the population located at (s, z) at time t is generated
according to an inhomogeneous Poisson process with intensity measure f ′(0)D(·, z)σ and the
original member of the population survives to time t + 1 with probability s.

The proof proceeds by induction on t . Let V0 denote the set {h : h ∈ V, infs,z h(s, z) > 0}.
Since {μn,0}∞n=1 converges weakly to some point process μ0, the probability generating func-
tionals Gn,0[h] converge to G0[h] for each continuous h ∈ V0; see [7, Proposition 11.1.VIII].
Now assume that, for some T ≥ 0, Gn,T [h] → GT [h] for each continuous h ∈ V0. The
probability generating functional of μn,T+1 is

Gn,T+1[h] = E

( n∏
i=1

(Xni,T+1h(si, zi)+ 1 −Xni,T+1)

)

= E

(
E

( n∏
i=1

(Xni,T+1h(si, zi)+ 1 −Xni,T+1)

∣∣∣∣ XnT , sn, zn
))
.
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Note that E(Xni,T+1 | XnT , sn, zn) = U(si)X
n
i,T + f (Ci(T ))(1 −Xni,T ). Therefore,

Gn,T+1[h]

= E

( n∏
i=1

(Xni,T U(si)(h(si, zi)− 1)+ 1 + (1 −Xni,T )f (Ci(t))(h(si, zi)− 1))

)

= E

( n∏
i=1

(1 +Xni,T U(si)(h(si, zi)− 1))(1 + (1 −Xni,T )f (Ci(T ))(h(si, zi)− 1))

)
.

Define

G̃n,T+1[h] := E

( n∏
i=1

(1 +Xni,T U(si)(h(si, zi)− 1))(1 + f (Ci(T ))(h(si, zi)− 1))

)
. (A.4)

We want to show that |Gn,T+1[h] − G̃n,T+1[h]| → 0 as n → ∞. We have

|Gn,T+1[h] − G̃n,T+1[h]|

= E

∣∣∣∣
( n∏
i=1

(1 +Xni,T U(si)(h(si, zi)− 1))(1 + (1 −Xni,T )f (Ci(T ))(h(si, zi)− 1))

)

×
(

1 −
n∏
i=1

(1 +Xni,T f (Ci(T ))(h(si, zi)− 1))

)∣∣∣∣

≤ E

∣∣∣∣1 −
n∏
i=1

(1 +Xni,T f (Ci(T ))(h(si, zi)− 1))

∣∣∣∣. (A.5)

Clearly,
∏n
i=1(1 +Xni,T f (Ci(T ))(h(si, zi)− 1)) ≤ 1. Let h0 = infs,z h(s, z). Then

E

∣∣∣∣1 −
n∏
i=1

(1 +Xni,T f (Ci(T ))(h(si, zi)− 1))

∣∣∣∣

≤ 1 − E

(
exp

( n∑
i=1

log(1 − (1 − h0)X
n
i,tf (Ci(T )))

))

≤ 1 − E

(
exp

(
(logh0)

n∑
i=1

Xni,T f (Ci(T ))

))
,

where the second inequality follows from the bound log(1 − (1 − h0)x) ≥ (logh0)x for
x ∈ [0, 1]. From assumption (f), f (x) ≤ f ′(0)x for x ∈ [0,∞). Therefore,

E

∣∣∣∣1 −
n∏
i=1

(1 +Xni,T f (Ci(T ))(h(si, zi)− 1))

∣∣∣∣

≤ 1 − E

(
exp

(
(logh0)f

′(0)
n∑
i=1

Xni,T Ci(T )

))

≤ 1 − E

(
exp

(
(logh0)f

′(0)n−1D̄

( n∑
i=1

Xni,t

)2))
,
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where the final inequality comes from assumption (c). Lemma A.3, given at the end of this
proof, states that exp(α

∑n
i=1X

n
i,t ) is uniformly integrable for any α > 0. Hence, (

∑n
i=1X

n
i,t )

2

is uniformly integrable and n−1(
∑n
i=1X

n
i,t )

2 P−→ 0. Therefore, the right-hand side of inequality
(A.5) goes to zero as required.

To examine the limit of G̃n,T+1(h), given in equation (A.4), as n → ∞, we note that

n∑
i=1

log(1 + f (Ci(T ))(h(si, zi)− 1))

=
n∑
i=1

f (Ci(T ))(h(si, zi)− 1)+ εn,1

=
n∑
i=1

f ′(0)
(
n−1

n∑
j=1

Xnj,T D(zi, zj )

)
(h(si, zi)− 1)+ εn,1 + εn,2

= f ′(0)
n∑
j=1

Xnj,T

(
n−1

n∑
i=1

D(zi, zj )(h(si, zi)− 1)

)
+ εn,1 + εn,2

= f ′(0)
n∑
j=1

Xnj,T

∫
D(z, zj )(h(s, z)− 1)σn(ds, dz)+ εn,1 + εn,2,

where

εn,1 =
n∑
i=1

(log(1 + f (Ci(t))(h(si, zi)− 1))− f (Ci(t))(h(si, zi)− 1)),

εn,2 =
n∑
i=1

(f (Ci(t))(h(si, zi)− 1)− f ′(0)Ci(t)(h(si, zi)− 1)).

Let Ĝn,T+1[h] denote

E

(( n∏
i=1

(1 +Xni,T U(si)(h(si, zi)− 1))

)

× exp

(
f ′(0)

n∑
j=1

Xnj,t

∫
D(z, zj )(h(s, z)− 1)σn(ds, dz)

))
.

To show that |G̃n,T+1[h] − Ĝn,T+1[h]| → 0 as n → ∞ note that the difference is bounded by

|G̃n,T+1[h] − Ĝn,T+1[h]|

≤ E

(( n∏
i=1

(1 +Xni,T U(si)(h(si, zi)− 1))

)

× exp

(
f ′(0)

n∑
j=1

Xnj,T

∫
D(z, zj )(h(s, z)− 1)σn(ds, dz)

)
|(exp(εn,1 + εn,2)− 1)|

)

≤ E|(exp(εn,1 + εn,2)− 1)|
≤ E exp(|εn,1| + |εn,1|)− 1. (A.6)
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Note that | log(1 − x)+ x| ≤ − log(h0)/(1 − h0)
2x2 for x ∈ [0, 1 − h0]. From assumptions

(c) and (f), |εn,1| is bounded,

|εn,1| ≤ − log(h0)

(1 − h0)2

n∑
i=1

f 2(Ci(t)) ≤ − log(h0)

(1 − h0)2
(f ′(0)D̄)2n−1

( n∑
i=1

Xi,t

)2

.

From assumption (f), there exists a c1 > 0 such that |f (x)− f ′(0)x| ≤ c1x
2 for x ∈ [0,∞).

Therefore, εn,2 can also be bounded,

|εn,2| ≤
n∑
i=1

|f (Ci(T ))− f ′(0)Ci(T )| ≤ c2n
−1

( n∑
i=1

Xni,T

)2

for some c2 > 0. Hence,

|εn,1| + |εn,2| < c3n
−1

( n∑
j=1

Xnj,T

)2

for some c3 > 0. Since exp(α
∑n
i=1X

n
i,T ) is uniformly integrable (Lemma A.3) for any α > 0

and n−1(
∑n
i=1X

n
i,T )

2 P−→ 0, the right-hand side of inequality (A.6) goes to 0.
We may now express Gn,T [G1[h | (s, z)]] as

Gn,T [G1[h | (s, z)]] = E

(( n∏
i=1

(Xni,T (1 − U(si)(1 − h(si, zi)))+ 1 −Xni,T )

)

× exp

(
f ′(0)

n∑
j=1

Xnj,T

∫
D(z, zj )(h(s, z)− 1)σ (ds, dz)

))
.

We now show that |Ĝn,T+1[h] −Gn,T [G1[h | (s, z)]]| → 0 as n → ∞. Let G(h;XnT , σn)
denote

n∑
j=1

Xnj,T

(∫
D(z, zj )(h(s, z)− 1)σn(ds, dz)−

∫
D(z, zj )(h(s, z)− 1)σ (ds, dz)

)
.

Noting that 1 +Xi,T U(si)(h(si, zi)− 1) = Xi,T (1 −U(si)(1 − h(si, zi)))+ 1 −Xi,T , we see
that

|Ĝn,T+1[h] −Gn,T [G1[h | (s, z)]]|

=
∣∣∣∣E

(( n∏
i=1

(Xni,T (1 − U(si)(1 − h(si, zi)))+ 1 −Xni,T )

)

× exp

(
f ′(0)

n∑
j=1

Xnj,T

∫
D(z, zj )(h(s, z)− 1)σ (ds, dz)

)

× (exp(G(h;XnT , σn))− 1)

)∣∣∣∣
≤ E| exp(G(h;XnT , σn))− 1|. (A.7)
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From assumption (c) we have |G(h;XnT , σn)| ≤ 2D̄
∑n
j=1Xj,T . Therefore, exp(G(h,XnT , σn))

is uniformly integrable. To show that the right-hand side of (A.7) converges to 0 as n → ∞, it
is sufficient to show that G(h;XnT , σn) converges to 0 in probability. Define the measures σ (h)n

and σ (h) as being the measures with Radon–Nikodym derivative (1−h(s, z))with respect to σn
and σ , respectively. Since h is a continuous function in V0 and, from assumption (e), σn

d−→ σ ,
it follows that σ (h)n

d−→ σ (h). By assumption (c), the kernelD(z̃, z) defines a uniformly bounded
and equicontinuous family of functions on �. Therefore, we can apply a small modification
of [27, Theorem 3.1] to show that

sup
z∈�

(∫
D(z̃, z)(h(s̃, z̃)− 1)σn(ds̃, dz̃)−

∫
D(z̃, z)(h(s̃, z̃)− 1)σ (ds̃, dz̃)

)
P−→ 0.

Since exp(α
∑n
i=1X

n
i,t ) is uniformly integrable for any α > 0 (Lemma A.3), so is

∑n
i=1X

n
i,t .

Therefore, G(h;Xn, σn) P−→ 0. Hence, |Ĝn,T+1[h] −Gn,T [G1[h | (s, z)]]| → 0.
It is easily checked that if h is a continuous function in V0 thenG1[h | (s, z)] is also a con-

tinuous function in V0. Applying the inductive hypothesis, we see thatGn,T [G1[h | (s, z)]] →
GT [G1[h | (s, z)]] for all continuous h ∈ V0. Hence, Gn,T+1[h] → GT [G1[h | (s, z)]] =
GT+1[h] for all continuous h ∈ V0. This completes the proof of Theorem 4.1.

Lemma A.3. Suppose that, for allα > 0, supn E(exp(α
∑n
i=1X

n
i,0)) < ∞. Then, for allα > 0

and all t ≥ 0, supn E(exp(α
∑n
i=1X

n
i,t )) < ∞.

Proof. The proof proceeds by induction on t . By assumption, supn E(exp(α
∑n
i=1X

n
i,0)) <∞ for all α > 0. Suppose now that, for some T ≥ 0, supn E(exp(α

∑n
i=1X

n
i,T )) < ∞ for all

α > 0. Then

E

(
exp

(
α

n∑
i=1

Xni,T+1

))

= E

(
E

(
exp

(
α

n∑
i=1

Xni,T+1

) ∣∣∣∣ XnT , sn, zn
))

= E

( n∏
i=1

((1 − si + si exp(α))Xni,T

+ (1 − f (Ci(T ))+ f (Ci(T )) exp(α))(1 −Xni,T ))

)

≤ E

( n∏
i=1

(Xni,T exp(α)+ 1 + f (Ci(T ))(exp(α)− 1))

)

≤ E

(
exp

( n∑
i=1

(exp(α)Xni,T + f (Ci(T ))(exp(α)− 1))

))

≤ E

(
exp

( n∑
i=1

(
exp(α)Xni,T + f ′(0)D̄n−1(exp(α)− 1)

n∑
j=1

Xnj,T

)))

≤ E

(
exp

(
exp(α)(1 + f ′(0)D̄)

n∑
i=1

Xni,T

))
. (A.8)
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Since supn E(exp(α
∑n
i=1X

n
i,T )) < ∞ for all α > 0, inequality (A.8) implies that, for all

α > 0, supn E(exp(α
∑n
i=1X

n
i,T+1)) < ∞.

A.4. Proof of Theorem 4.2

Let K denote the cone of continuous positive functions on � and let K1 = {φ : φ ∈ K,

φ ≤ 1}. Define the operator

Rφ(z) = exp

(
−f ′(0)

∫
D(z̃, z)

(
1 − φ(z̃)

1 − U(s̃)φ(z̃)

)
σ(ds̃, dz̃)

)
, φ ∈ K1.

Note that, under assumption (g), 1 − U(s)φ(z) > 0 on the support of σ for any φ ∈ K1 and,
therefore, R : K1 �→ K1. From [22, Theorem 3.1], the asymptotic extinction probability of a
multiplicative population chain starting at (s, z) is given by the smallest nonnegative solution
to h(s, z) = G1[h | (s, z)]. Denote this solution by h∗(s, z), and define

ψ[h](z) = exp

(
−f ′(0)

∫
D(z̃, z)(1 − h(s̃, z̃))σ (ds̃, dz̃)

)
. (A.9)

Note that, for any h ∈ K1, ψ[h] ∈ K1. Substituting (A.9) into G1[h | (s, z)], we obtain

h∗(s, z) = (1 − U(s)+ U(s)h∗(s, z))ψ[h∗](z).
Hence, h∗ satisfies

h∗(s, z) = (1 − U(s))ψ[h∗](z)
1 − U(s)ψ[h∗](z) (A.10)

on the support of σ . Substituting this back into (A.9), we see that ψ[h∗](z) satisfies the
equation ψ(z) = Rψ(z). From the definition of R, ψ(z) = 1 for some z ∈ � if and only if
h = 1, σ -almost everywhere. Since the right-hand side of (A.10) is increasing in ψ , h∗ will be
determined by the smallest nonnegative fixed point of the operator R.

Recall that 1 − exp(−x) ≤ x for all x ≥ 0 with equality if and only if x = 0. Therefore,

1 − Rψ(z) ≤ f ′(0)
∫
D(z̃, z)

(
1 − ψ(z̃)

1 − U(s̃)ψ(z̃)

)
σ(ds̃, dz̃)

≤ f ′(0)
∫

D(z̃, z)

(1 − U(s̃))
(1 − ψ(z̃))σ (ds̃, dz̃)

= A(1 − ψ)(z),

where the equality follows since D is symmetric with respect to its arguments from assump-
tion (c). Note that we have equality if and only if ψ(z) = 1 for all z. As in the proof of
Theorem 3.2, the operator A is strongly positive on K . If ψ∗ is the smallest nonnegative fixed
point of R then

1 − ψ∗ = 1 − Rψ∗ ≤ A(1 − ψ∗). (A.11)

Let r(A) denote the spectral radius of A. Since ψ∗ ∈ K1, 1 − ψ∗ ∈ K and we can apply
Corollary A.1 to conclude that if r(A) < 1 then ψ∗(z) = 1 for all z ∈ �. Furthermore, if
r(A) = 1 then 1 − ψ∗ = A(1 − ψ∗). Since inequality (A.11) is strict for ψ∗ �= 1, it follows
that ψ∗(z) = 1 for all z ∈ �. Hence, if r(A) ≤ 1 then h∗(s, z) = 1 on the support of σ .

We now consider the case of r(A) > 1. We aim to find a convex subset ofK1, not containing
the function 1, such that R maps this set to itself. We can then apply the Schauder fixed point
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theorem [14, Theorem 5.1.2] to show that ψ∗ �= 1. Clearly R0 ∈ K1. Since the function
(1 − x)(1 − sx)−1 is decreasing in x > 0 for any s ∈ [0, 1 − ε], it follows that, for any
φ1, φ2 ∈ K1 such that φ1 ≤ φ2, we have Rφ1 ≤ Rφ2. From the Krein–Rutman theorem (see
Theorem A.1), r(A) is an eigenvalue of A and has an associated eigenvector u ∈ K . For any
δ > 0 sufficiently small, we haveR(1− δu) = R(1)− δAu+εδ,u = 1− δr(A)u+εδ,u,where

εδ,u = R(1 − δu)− 1 + f ′(0)
∫
D(z̃, z)

δu(z̃)

1 − s̃ + s̃δu(z̃)
σ (ds̃, dz̃)

+ δ

∫
D(z̃, z)u(z̃)

(
1

1 − s̃ + δs̃u(z̃)
− 1

1 − s̃

)
σ(ds̃, dz̃).

It can be seen that εδ,u is O(δ2) since∣∣∣∣R(1 − δu)− 1 + f ′(0)
∫
D(z̃, z)

δu(z̃)

1 − s̃ + s̃δu(z̃)
σ (ds̃, dz̃)

∣∣∣∣
≤ (f ′(0))2

(∫
D(z̃, z)

δu(z̃)

1 − s̃ + s̃δu(z̃)
σ (ds̃, dz̃)

)2

≤ (f ′(0))2D̄2δ2
(∫

u(z̃)

1 − s̃
σ (ds̃, dz̃)

)2

and ∫
D(z̃, z)u(z̃)

∣∣∣∣ 1

1 − s̃ + δs̃u(z̃)
− 1

1 − s̃

∣∣∣∣σ(ds̃, dz̃) ≤ δD̄

∫
u(z̃)

(1 − s̃)2
σ(ds̃, dz̃),

where both integrals are finite from assumption (g). Therefore, for δ > 0 sufficiently small,
R(1 − δu) ≤ 1 − δu when r(A) > 1. Take the convex set of functions

Ku := {φ : φ ∈ K,φ ≤ 1 − δu}.
We see that R : Ku �→ Ku and hence, from the Schauder fixed point theorem, there exists
ψ∗ ∈ Ku satisfying ψ = Rψ if r(A) > 1. Hence, if r(A) > 1 then h∗(s, z) < 1 for
all (s, z) in the support of σ . Finally, h∗(s, z) gives the asymptotic extinction probability
of a multiplicative population chain starting with a single point at (s, z). Since the chains
starting from two different points are conditionally independent, the asymptotic probability of
extinction for the limiting metapopulation is E(

∏
i h

∗(si, zi)) = G0[h∗], where the product is
over the occupied patches in the limiting metapopulation at t = 0. This completes the proof of
Theorem 4.2.
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