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Deterministic polynomial factoring and association schemes

Manuel Arora, Gábor Ivanyos, Marek Karpinski and Nitin Saxena

Abstract

The problem of finding a nontrivial factor of a polynomial f(x) over a finite field Fq has many
known efficient, but randomized, algorithms. The deterministic complexity of this problem is a
famous open question even assuming the generalized Riemann hypothesis (GRH). In this work
we improve the state of the art by focusing on prime degree polynomials; let n be the degree. If
(n− 1) has a ‘large’ r-smooth divisor s, then we find a nontrivial factor of f(x) in deterministic

poly(nr, log q) time, assuming GRH and that s = Ω(
√

n/2r). Thus, for r = O(1) our algorithm
is polynomial time. Further, for r = Ω(log logn) there are infinitely many prime degrees n for
which our algorithm is applicable and better than the best known, assuming GRH. Our methods
build on the algebraic-combinatorial framework of m-schemes initiated by Ivanyos, Karpinski
and Saxena (ISSAC 2009). We show that the m-scheme on n points, implicitly appearing in our
factoring algorithm, has an exceptional structure, leading us to the improved time complexity.
Our structure theorem proves the existence of small intersection numbers in any association
scheme that has many relations, and roughly equal valencies and indistinguishing numbers.

1. Introduction

We consider the classical problem of finding a nontrivial factor of a given polynomial over a
finite field. There exist various randomized polynomial time algorithms for this problem, such
as Berlekamp [6], Rabin [41], Cantor and Zassenhaus [12], von zur Gathen and Shoup [51],
Kaltofen and Shoup [32], and Kedlaya and Umans [35], but its deterministic time complexity
is a longstanding open problem. It pertains to the general derandomization question in
computational complexity theory, that is whether any problem solvable in probabilistic
polynomial time can also be solved in deterministic polynomial time.

In this paper, we consider the deterministic time complexity of the problem of polynomial
factoring over finite fields assuming the generalized Riemann hypothesis (GRH) (Section 3.1).
GRH enables us to find primitive rth nonresidues in a finite field Fq, which are in turn used to
find a root x (if it exists in Fq) of polynomials of the type xr − a over Fq [1]. Assuming GRH,
there are many deterministic factoring algorithms known but all of them are super-polynomial
time except on special input instances: Rónyai [45] showed that under GRH, any polynomial
f(x) ∈ Z[x] can be factored modulo p deterministically in polynomial time in the order of the
Galois group of f(x), except for finitely many primes p. Rónyai’s result generalizes previous
work by Huang [29], Evdokimov [17], and Adleman, Manders and Miller [1]. Bach, von zur
Gathen and Lenstra [4] showed that polynomials over finite fields of characteristic p can be
factored in deterministic polynomial time if φk(p) is smooth for some integer k, where φk(p) is
the kth cyclotomic polynomial. This result generalizes previous work by Rónyai [44], Mignotte
and Schnorr [38], von zur Gathen [50], Camion [11], and Moenck [39].

The line of research which interests us was started by Rónyai [43]. He used GRH to find
a nontrivial factor of a polynomial f(x) ∈ Fq[x], where n = deg f has a small prime factor,
in deterministic polynomial time. Rónyai’s framework relies on the discovery that finding a
nontrivial automorphism in certain algebras (such as A := Fq[x]/f(x) and its tensor powers)
yields an efficient decomposition of these algebras under GRH. Building on Rónyai’s ideas,
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Evdokimov [18] showed that an arbitrary degree n polynomial f(x) ∈ Fq[x] can be factored
deterministically in time poly(log q, nlogn) under GRH. This line of approach has since been
investigated, in an attempt to either remove GRH [30] or improve the time complexity,
leading to several analytic number theory, algebraic-combinatorial conjectures and special
case solutions [13, 23, 31, 46].

Our method in this paper, building on [31], encompasses the known algebraic-combinatorial
(if not analytic number theory) methods and ends up relating the complexity of polynomial
factoring to ‘purely’ combinatorial objects (called schemes and intersection numbers) that are
central to the research area of algebraic combinatorics. The methods of [13, 18, 23, 43, 46]
arrange the underlying roots of the polynomial in a combinatorial object that satisfies some
of the defining properties of schemes. This paper contributes to the understanding of schemes
by making progress on a related purely combinatorial conjecture, which is naturally connected
with polynomial factoring.

1.1. Our main result

We study the problem of finding a nontrivial factor of a polynomial of prime degree. Intuitively,
this case should not be any easier. However, it turns out that our combinatorial framework is
quite well behaved over a prime number of roots and gives an improved time complexity. We
call a number s ∈ N r-smooth if each prime factor of s is at most r.

Theorem 1.1 (Factoring). Let f(x) be a polynomial of prime degree n over Fq. Assume

(n − 1) has an r-smooth divisor s, with s >
√
n/` + 1 and ` ∈ N>0. Then we can find a

nontrivial factor of f(x) deterministically in time poly(log q, nr+log `) under GRH.

Naturally, one asks if there exist infinitely many primes n for which Theorem 1.1 is
a significant improvement. A well-known number theory conjecture concerning primes in
arithmetic progressions is connected to this question (Section 5.1). Under the conjecture that
L = 2 is admissible for Linnik’s constant [37], we prove that there exist infinitely many primes
n for which the time complexity in Theorem 1.1 is polynomial. Even simply under GRH the
factoring algorithm has an improved time complexity over the best known ones, for infinitely
many n.

Corollary 1.2 (Infinite family). Assuming GRH, there exist infinitely many primes n
such that every polynomial f(x) ∈ Fq[x] of degree n can be factored deterministically in time
poly(log q, nlog logn).

Further, if L = 2 is admissible for Linnik’s constant, then there exist infinitely many primes
n such that every polynomial f(x) ∈ Fq[x] of degree n can be factored deterministically in
time poly(log q, n).

The techniques known before our work do not give a result as strong as ours on this particular
infinite family of degrees. The best one could have done before is poly(log q, nlogn) time, by
the general purpose algorithm of Evdokimov [18]. At the core of our algorithmic result lies a
new combinatorial theorem; we prove the existence of ‘small’ intersection numbers in a fairly
large class of schemes. The formal statement is Theorem 1.3, together with an evidence of its
optimality in Section 5.2. We now motivate the concept of schemes briefly.

1.2. Idea of m-schemes

The GRH based algorithm for factoring polynomials over finite fields by Ivanyos et al. [31]
(called IKS-algorithm in the following) relies on the use of combinatorial schemes, more
specifically m-schemes (for a given positive integer m). If we denote [n] := {1, . . . , n}, then
an m-scheme can be described as a partition of the set [n]s, for each 1 6 s 6 m, which
satisfies certain natural properties called compatibility, regularity and invariance (Section 2.1).
The notion of m-scheme is closely related to the concepts of presuperscheme [54–56],
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superscheme [48], association scheme [5, 58], coherent configuration [27], cellular algebra [53]
and Krasner algebra [36]. Curiously, techniques initiated by [53] are used in another
outstanding problem: deciding graph isomorphism. Moreover, coherent configurations provide
a natural framework for fast matrix multiplication [15].

The IKS-algorithm (Section 3.2) associates to a polynomial f(x) ∈ Fq[x] the natural quotient
algebra A := Fq[x]/f(x) and explicitly calculates special subalgebras of its tensor powers
A⊗s (1 6 s 6 m). Through a series of operations on systems of ideals of these algebras (which
can be performed efficiently under GRH), the IKS-algorithm either finds a zero divisor in A,
which is equivalent to factoring f(x), or obtains an m-scheme from the combinatorial structure
of A⊗s (1 6 s 6 m). In the latter case, the m-scheme obtained may be interpreted as the
‘reason’ why the IKS-algorithm could not find a zero divisor in A. It is not difficult to prove
that the IKS-algorithm always finds a zero divisor in A if we choose m large enough (namely,
in the range log n), yielding that the IKS-algorithm deterministically factors f(x) in time
poly(nlogn, log q). Moreover, it is conjectured that even choosing m as constant, say m = c
where c > 4, is enough to find a zero divisor in A (and hence factor f), which would give
the IKS-algorithm a polynomial running time under GRH. This is the subject of the so-called
schemes conjecture (Section 2.4) on the existence of matchings (Sections 2.3 and 3.3).

We note that the schemes conjecture is a purely algebraic-combinatorial conjecture
concerning the structure of certain kinds of m-schemes. We also note that the schemes
conjecture is already proven for an important class of m-schemes, namely the so-called orbit
m-schemes (Theorem 2.7). In this current work, we prove the schemes conjecture for an
interesting class of m-schemes on a prime number of points, culminating in a somewhat
surprising result about the factorization of prime-degree polynomials. Our proof builds on
the strong relationship of m-schemes and association schemes (Section 2.2), and involves
fundamental structure results about association schemes of prime order by Hanaki and Uno [25]
and Muzychuk and Ponomarenko [40].

1.3. Idea of association schemes

Underlying Theorem 1.1 is a structural result about association schemes with bounded
valencies and indistinguishing numbers. Recall [40, 58] that an association scheme is a pair
(X,G) which consists of a finite set X and a partition G of X ×X such that:

(1) G contains the identity relation 1 := {(x, x) | x ∈ X};
(2) if g ∈ G, then g∗ := {(y, x) | (x, y) ∈ g} ∈ G; and
(3) for all f, g, h ∈ G, there exists an intersection number chfg ∈ N such that for all (α, β) ∈ h,

chfg = #{γ ∈ X | (α, γ) ∈ f, (γ, β) ∈ g}.
An element g ∈ G is called a relation (or color) of (X,G). We call |X| the order of
(X,G). For each g ∈ G, we define its valency ng := c1gg∗ , and its indistinguishing number
c(g) :=

∑
v∈G c

g
vv∗ .

Whenever it helps, an association scheme can also be thought of as a colored directed graph
with X as vertices and G as edges. But it is richer in algebraic structure than a graph and often
evokes the feeling ‘group theory without groups’ [5]. Below we formulate our main scheme
theory result; it essentially proves that a large number of relations means the existence of
small intersection numbers (assuming bounded valency and indistinguishing number). It is
vaguely related to the structural results in the literature that concern the so-called Schurity
of schemes [19–21, 40]. We are concerned ‘merely’ with two small intersection numbers and
hence we are able to work with better parameters.

Theorem 1.3 (Small intersection numbers). Let (X,G) be an association scheme. Assume
there exist c, k, ` ∈ N and 0 < δ1, δ

′
1, δ
′
2 6 1 with 1 < ` < (δ21/δ

′
1) ·k such that for all 1 6= g ∈ G,

δ1 · k 6 ng 6 δ′1 · k and c(g) 6 δ′2 · c.
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If |G| > 2(δ′1/δ1)3δ′2 · c/(`− 1) + 2 then there exist nontrivial relations u 6= v, w 6= w′ ∈ G such
that 0 < cwu∗v 6 cw

′

u∗v < `.

The above theorem establishes the existence of small intersection numbers in association
schemes where both the valencies and indistinguishing numbers of nontrivial relations are
confined to a certain range. Interestingly, we give evidence that the result is optimal
(Section 5.2). An important example of association schemes of this type are schemes of prime
order (Sections 4.1 and 5.2). There the nontrivial relations have equal valency, say k [25] and
equal indistinguishing numbers (k − 1) [40].

Corollary 1.4 (Prime scheme). Let (X,G) be an association scheme of prime order n =
|X| and valency k. Let ` ∈ N>1. If |G| > 2(k − 1)/(`− 1) + 2 then there exist nontrivial

relations u 6= v, w 6= w′ ∈ G such that 0 < cwu∗v 6 cw
′

u∗v < `.

Drawing on the connection of association schemes and m-schemes, we deduce from
Corollary 1.4 the existence of matchings in certain m-schemes on a prime number of points
that helps in algebra decomposition (Section 4.2). This is the prime source of our results in
the domain of polynomial factoring.

1.4. Organization

Section 2 provides an introduction to the notion of m-schemes and surveys important results
and concepts associated therewith. We put a special emphasis on explaining the connection
between association schemes and m-schemes (§ 2.2). In § 3 we describe the IKS-algorithm for
factoring polynomials over finite fields, which builds on the theory of m-schemes. Theorem 3.4
delineates how to factor polynomials by exploiting m-scheme structure. In § 4 we prove our
main results: Theorem 1.1 on the factorization of polynomials of prime degree and Theorem 1.3
on the existence of small intersection numbers in association schemes with bounded valencies
and indistinguishing numbers. In addition, § 5 explains how Theorem 1.1 ties in with the
density of primes in arithmetic progressions (§ 5.1) and discusses in which sense the bounds
given in Theorem 1.3 are optimal (§ 5.2).

2. Preliminaries: m-Schemes

In this section we define special partitions of the set [n]m that we call m-schemes on n points.
These combinatorial objects were first defined in [31]. They occur naturally as part of the
IKS-algorithm for factoring polynomials over finite fields. In the following, we give an overview
of the basic theory of m-schemes.

2.1. Basic definitions

In this section, we introduce the necessary definitions for the study of m-schemes. For reference
purposes, the terminology used here is the same as in the paper [31].

s-tuples. Throughout this section, V is an arbitrary set of n distinct elements. For 1 6 s 6
n, we define the set of essential s-tuples by

V (s) := {(v1, v2, . . . , vs) | v1, v2, . . . , vs are s distinct elements of V }.

Projections. For s > 1, we define s projections πs1, π
s
2, . . . , π

s
s : V (s) −→ V (s−1) by

πsi : (v1, . . . , vi−1, vi, vi+1, . . . , vs) −→ (v1, . . . , vi−1, vi+1, . . . , vs).

Moreover, for 1 6 i1 < . . . < ik 6 s we define

πsi1,...,ik : V (s) −→ V (s−k), πsi1,...,ik = πs−k+1
i1

◦ . . . ◦ πsik .
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Permutations. The symmetric group on s elements Symms acts on V (s) in a natural way
by permuting the coordinates of the s-tuples. More accurately, the action of τ ∈ Symms on
(v1, . . . , vi, . . . , vs) ∈ V (s) is defined as

(v1, . . . , vi, . . . , vs)
τ := (vτ(1), . . . , vτ(i), . . . , vτ(s)).

m-Collection. For 1 6 m 6 n, an m-collection on V is a set Π of partitions P1,P2, . . . ,Pm
of V (1), V (2), . . . , V (m) respectively.

Colors. For 1 6 s 6 m, the equivalence relation on V (s) corresponding to the partition Ps
will be denoted by ≡Ps . Moreover, we refer to the elements P ∈ Ps as s-colors.

Below, we discuss some natural properties of m-collections that are relevant to us. In the
following, let Π = {P1,P2, . . . ,Pm} be an m-collection on V .

P1 (Compatibility). We say that Π is compatible at level 1 < s 6 m, if ū, v̄ ∈ P ∈ Ps
implies that for every 1 6 i 6 s there exists Q ∈ Ps−1 such that πsi (ū), πsi (v̄) ∈ Q.

In other words, if two tuples (at level s) have the same color then for every projection the
projected tuples (at level s− 1) have the same color as well. It follows that for a class P ∈ Ps,
the sets πsi (P ) := {πsi (v̄) | v̄ ∈ P}, for all 1 6 i 6 s, are colors in Ps−1.

P2 (Regularity). We call Π regular at level 1 < s 6 m, if ū, v̄ ∈ Q ∈ Ps−1 implies that for
every 1 6 i 6 s and for every P ∈ Ps,

#{ū′ ∈ P | πsi (ū′) = ū} = #{v̄′ ∈ P | πsi (v̄′) = v̄}.

Fibres. We call the tuples in P ∩ (πsi )
−1(ū) the πsi -fibres of ū in P . So regularity, in other

words, means that the cardinalities of the fibres above a tuple depend only on the color of the
tuple.

Subdegree. The above two properties motivate the definition of the subdegree of an s-
color P over an (s − k)-color Q as s(P,Q) := |P |/|Q|, assuming πsi1,...,ik(P ) = Q for some
1 6 i1 < . . . < ik 6 s and that Π is regular at all levels 2, . . . , s.

P3 (Invariance). We say that Π is invariant at level 1 < s 6 m, if for every P ∈ Ps and
τ ∈ Symms, we have:

P τ := {v̄τ | v̄ ∈ P} ∈ Ps.

In other words, the partitions P1, . . . ,Pm are invariant under the action of the corresponding
symmetric group.

P4 (Homogeneity). We say that Π is homogeneous if |P1| = 1.

P5 (Antisymmetry). We say that Π is antisymmetric at level 1 < s 6 m, if for every
P ∈ Ps and id 6= τ ∈ Symms, we have P τ 6= P .

P6 (Symmetry). We say that Π is symmetric at level 1 < s 6 m, if for every P ∈ Ps and
τ ∈ Symms, we have P τ = P .

Note that an m-collection is called compatible, regular, invariant, symmetric, or
antisymmetric if it is at every level 1 < s 6 m, compatible, regular, invariant, symmetric, or
antisymmetric respectively.
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m-Scheme. An m-collection is called an m-scheme if it is compatible, regular and invariant.
We start with an easy non-existence lemma for m-schemes [31, Lemma 1]. Note that the

lemma below puts the main content of [43] in a more general framework.

Lemma 2.1. Let r > 1 be a divisor of n. Then for m > r there does not exist a homogeneous
and antisymmetric m-scheme on n points.

Proof. For m > r, clearly every m-scheme contains an r-scheme (hint: project the tuples
to the first r places). Hence it suffices to prove the above statement for m = r. Suppose for
the sake of contradiction that there exists a homogeneous and antisymmetric r-scheme Π =
{P1,P2, . . . ,Pr} on V = {v1, v2, . . . , vn}. Then by definition Pr partitions n(n−1) . . . (n−r+1)
tuples of V (r) into, say, tr colors. By antisymmetry, every such color P has r! associated colors,
namely {P τ | τ ∈ Symmr}. Moreover, by homogeneity, the size of every color at level r is
divisible by n. Hence, r!n | n(n−1) . . . (n− r+ 1). But this implies r!mid(n−1) . . . (n− r+ 1),
which contradicts r | n. Therefore, Π cannot exist. 2

In the following section, we describe the relationship between m-schemes and association
schemes.

2.2. 3-schemes from association schemes

The notion of m-schemes is closely related to the concept of association schemes. Association
schemes are standard combinatorial objects for which there exists extensive literature [5, 9,
10, 16, 58]. We recall some important identities which involve the valencies of association
schemes. Note that the identities given below can all be found in [58].

Lemma 2.2. Let (X,G) be an association scheme and let d, e, f ∈ G. The following hold:

(i) cfde = cf
∗

e∗d∗ ;

(ii) cedf · ne = cdef∗ · nd;
(iii)

∑
g∈G c

f
ge = ne∗ ;

(iv)
∑
g∈G c

g
ef · ng = ne · nf .

We now show that the concepts of 3-scheme and association scheme are essentially equivalent
(strictly speaking, the former is a refinement of the latter). The following lemma states that
the first two levels of any 3-scheme constitute an association scheme (up to containment of the
identity relation).

Lemma 2.3. Let Π = {P1,P2,P3} be a homogeneous 3-scheme on the set V =
{v1, v2, . . . , vn}. Then (V,P2 ∪ {1}) constitutes an association scheme, where 1 = {(v, v) |
v ∈ V } denotes the identity relation.

Proof. We prove that for all Pi, Pj , Pk ∈ P2, there exists an integer ckij such that for all
(α, β) ∈ Pk,

ckij = #{γ ∈ V | (α, γ) ∈ Pi, (γ, β) ∈ Pj}.
The trivial case where at least one of Pi, Pj , Pk is the identity relation is omitted. By the
compatibility and regularity of Π at level 3, there exists a subset S ⊆ P3 such that for all
(α, β) ∈ Pk, the set {γ ∈ V | (α, γ) ∈ Pi, (γ, β) ∈ Pj} can be partitioned as⊔

P∈S
{γ ∈ V | (α, γ) ∈ Pi, (γ, β) ∈ Pj , (α, γ, β) ∈ P}.

By the compatibility of Π at level 3, this partition can simply be written as⊔
P∈S
{γ ∈ V | (α, γ, β) ∈ P}.
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By the regularity of Π at level 3, the size of each set in the above partition is |P |/|Pk|, which
means that

#{γ ∈ V | (α, γ) ∈ Pi, (γ, β) ∈ Pj} =
∑
P∈S

|P |
|Pk|

.

Since the above equation is independent of the choice of (α, β) ∈ Pk, it follows that (V,P2∪{1})
is an association scheme. 2

The next lemma states that, in turn, every association scheme also naturally gives rise to a
3-scheme.

Lemma 2.4. Let (V,P2) be an association scheme on V = {v1, v2, . . . , vn}. Let ≡P2 denote
the equivalence relation on V ×V corresponding to the partition P2. Let P3 be the partition of
V (3) such that for two triples (u1, u2, u3) and (v1, v2, v3), we have (u1, u2, u3) ≡P3

(v1, v2, v3)
if and only if

(u1, u2) ≡P2
(v1, v2), (u1, u3) ≡P2

(v1, v3), (u2, u3) ≡P2
(v2, v3).

Then {{V },P2 − {1},P3} is a homogeneous 3-scheme.

Proof. It is an easy exercise to show that {{V },P2 − {1},P3} satisfies compatibility,
regularity and invariance. 2

2.3. Matchings

We now define the notion of matchings, certain special colors of m-schemes that play an
important role in the IKS-factoring algorithm described later. This combinatorial object,
matching, provides an algebraic object: ideal automorphism. As before, let V = {v1, v2, . . . , vn}
be a set of n distinct elements and let Π = {P1,P2, . . . ,Pm} be an m-scheme on V .

Matching. A color P ∈ Ps at any level 1 < s 6 m is called a matching if for some
positive integer k there exists 1 6 i1 < . . . < ik 6 s and 1 6 j1 < . . . < jk 6 s with
(i1, . . . , ik) 6= (j1, . . . , jk) such that πsi1,...,ik(P ) = πsj1,...,jk(P ) and |πsi1,...,ik(P )| = |P |.

Note that the paper [31] which originally defined the concept of matchings had the restriction
that k = 1. The above definition is broader and constitutes a natural generalization of
the previous (limited) notion of matchings. The next theorem gives an important sufficient
condition for the existence of matchings in m-schemes [31, Lemma 8].

Theorem 2.5. Let Π = {P1,P2, . . . ,Pm} be an m-scheme on the set V = {v1, v2, . . . , vn}.
Assume Π is antisymmetric at level 2. Moreover, assume there exist colors Pt ∈ Pt and Pt−1 :=
πti(Pt) ∈ Pt−1 for some 1 < t < m and 1 6 i 6 t such that 1 < s(Pt, Pt−1) = |Pt|/|Pt−1| 6 `
and m > t− 1 + log2 `, where ` ∈ N. Then there exists a matching in {P1,P2, . . . ,Pm}.

Proof. Without loss of generality, let us assume that Pt−1 = πtt(Pt) ∈ Pt−1. We outline an
iterative way of finding a matching in Π. Note that the set

Ut+1 := {v̄ ∈ V (t+1) | πt+1
t (v̄), πt+1

t+1(v̄) ∈ Pt}

is a nonempty union of colors in Pt+1. Let Pt+1 be a color of Pt+1 such that Pt+1 ⊆ Ut+1.
Then by the antisymmetry of Π we have

s(Pt+1, Pt) =
|Pt+1|
|Pt|

<
s(Pt, Pt−1)

2
6
`

2
.

Evidently, if s(Pt+1, Pt) = 1 then Pt+1 is a matching. Otherwise, if s(Pt+1, Pt) > 1 we proceed
to level t + 2 and again strictly halve the subdegree (by the same argument as above). This
procedure finds a matching in at most log2 ` rounds. 2

https://doi.org/10.1112/S1461157013000296 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157013000296


130 m. arora, g. ivanyos, m. karpinski and n. saxena

As an easy consequence of the above theorem, we obtain the following corollary.

Corollary 2.6. Let Π = {P1,P2, . . . ,Pm} be a homogeneous m-scheme on the set V =
{v1, v2, . . . , vn}. Let Π be antisymmetric at level 2. If m > log2 n then there exists a matching
in {P1,P2, . . . ,Pm}.

2.4. The schemes conjecture

In Corollary 2.6 it was shown that every antisymmetric m-scheme on n points (for large enough
m) contains a matching between levels 1 and log2 n. Below, we formulate a conjecture which
asserts the existence of a constant c > 4 that could replace the above log2 n-bound.

Schemes Conjecture. There exists a constant c > 4 such that every homogeneous,
antisymmetric m-scheme with m > c contains a matching.

In Section 3 we recall [31] that, under GRH, the correctness of the schemes conjecture
implies a deterministic polynomial time algorithm for the factorization of polynomials over
finite fields (Theorem 3.4). The schemes conjecture is especially motivated by the fact that
it is known to be true for an important class of m-schemes, called orbit schemes. An exact
definition of orbit schemes follows. Let V = {v1, v2, . . . , vn} be a set of n distinct elements
and G 6 SymmV a permutation group. Fix 1 6 m 6 n. For 1 6 s 6 m, let Ps be the
partition on V (s) such that for any two s-tuples (u1, u2, . . . , us) and (v1, v2, . . . , vs), we have
(u1, u2, . . . , us) ≡Ps (v1, v2, . . . , vs) if and only if

∃σ ∈ G : (σ(u1), σ(u2), . . . , σ(us)) = (v1, v2, . . . , vs).

Then {P1,P2, . . . ,Pm} is an m-scheme on V . We call m-schemes which arise in the above-
described manner orbit m-schemes. Note that {P1,P2, . . . ,Pm} is homogeneous if and only if
G acts transitively on V . Moreover, note that {P1,P2, . . . ,Pm} is antisymmetric if and only
if gcd(m!, |G|) = 1. Orbit m-schemes suggest that the notion of m-schemes generalizes that of
finite permutation groups.

Theorem 2.7 (Schemes conjecture for orbit m-schemes). For m > 4, every homogeneous,
antisymmetric orbit m-scheme contains a matching.

Proof. This is shown in [31, § 4.1]. 2

3. Preliminaries: the IKS-algorithm

In this section, we discuss the GRH based IKS-algorithm for factoring polynomials over finite
fields [31]. It fundamentally relies on the theory of m-schemes. It was shown in [31] that the
IKS-algorithm has a deterministic polynomial running time for factoring polynomials of prime
degree n, where (n − 1) is a constant-smooth number. In Section 4, we significantly improve
this result to polynomials of prime degree n, where (n−1) has a large constant-smooth factor.
This relaxation implies that under a well-known number theory conjecture involving Linnik’s
constant, there are infinitely many primes n such that any polynomial f(x) ∈ Fq[x] of degree
n can be factored by the IKS-algorithm in time poly(n, log q).

3.1. Algebraic prerequisites

We now discuss algebraic prerequisites for the description of the IKS-algorithm. Below, we
recapitulate some of the basic concepts of polynomial factoring over finite fields.
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Associated quotient algebra A. In order to solve polynomial factoring over finite fields, it
is enough to factor polynomials f(x) of degree n over Fq that have n distinct roots α1, . . . , αn
in Fq [6, 7]. Given a polynomial f(x) ∈ Fq[x], for any field extension k ⊇ Fq, we have the
associated quotient algebra

A := k[x]/(f(x)).

It is isomorphic to the direct product of n fields. In the following, we interpret A as the algebra
of all functions

V := {α1, . . . , αn} −→ k.

The factors of f(x) appear as zero divisors in A. Assume y(x)z(x) = 0 for some nonzero
polynomials y(x), z(x) ∈ A. Then f(x) | y(x) · z(x), which implies gcd(f(x), z(x)) factors f(x)
nontrivially. Since the gcd of polynomials can be computed by the Euclidean algorithm in
deterministic polynomial time, factoring f(x) is, up to polynomial time reductions, equivalent
to finding a zero divisor in A.

Ideals of A and roots of f(x). For an ideal I of A, we define the support of I as

Supp(I) := V \ {v ∈ V | a(v) = 0 for every a ∈ I}.

Via the support, ideal decompositions of A induce partitions on the set V . This is the subject
of the following lemma.

Lemma 3.1. If I1, . . . , It are pairwise orthogonal ideals of A (that is IiIj = 0 for all i 6= j)
such that A = I1 + . . .+ It, then V can be partitioned as

V = Supp(I1) t . . . t Supp(It).

Tensor powers of A. For 1 6 m 6 n, we denote by A⊗m the mth tensor power of A
(as k-modules). We may regard A⊗m as the algebra of all functions from V m to k. In this
interpretation, the rank one tensor element h1⊗ . . .⊗hm corresponds to a function that maps
(v1, . . . , vm) 7→ h1(v1) . . . hm(vm).

Essential part of tensor powers. We define the essential part A(m) of A⊗m to be the
(unique) ideal of A⊗m consisting of the functions which vanish on all the m-tuples
(v1, . . . , vm) ∈ V m with vi = vj for some i 6= j. One may interpret A(m) as the algebra
of all functions V (m) −→ k.

Ideals of A(m) and roots of f(x). As in the case m = 1, we define the support of an ideal
I of A(m) as

Supp(I) := V (m) \ {v̄ ∈ V (m) | a(v̄) = 0 for every a ∈ I}.
Using this convention, Lemma 3.1 can be generalized as follows.

Lemma 3.2. For s 6 n, if Is,1, . . . , Is,ts are pairwise orthogonal ideals of A(s) such that
A(s) = Is,1 + . . .+ Is,ts , then V (s) can be partitioned as

V (s) = Supp(Is,1) t . . . t Supp(Is,ts).

Connection with GRH. As we already mentioned, the IKS-algorithm relies on the
assumption of the generalized Riemann hypothesis (GRH) [8, 14, 42]. We formally state
the hypothesis below. Recall that a Dirichlet character, of order k ∈ N>1, is defined as a
completely multiplicative arithmetic function χ : (Z,+) −→ (C, ·) such that χ(n + k) = χ(n)
for all n, and χ(n) = 0 whenever gcd(n, k) > 1. Given a Dirichlet character χ, we define the
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corresponding Dirichlet L-function by

L(χ, s) =

∞∑
n=1

χ(n)

ns

for all complex numbers s with real part greater than 1. By analytic continuation, this function
can be extended to a meromorphic function defined on all of C. The generalized Riemann
hypothesis asserts that, for every Dirichlet character χ, the zeros of L(χ, s) in the critical strip
0 < Re s < 1 all lie on the critical line Re s = 1/2.

Under the assumption of GRH, Rónyai [45] showed that the knowledge of any explicit
nontrivial automorphism σ ∈ Aut(A) of A immediately gives us a nontrivial factor of f(x).
The latter result is used in the routine of the IKS-algorithm. In [45], the ability of computing
radicals (rth roots for prime r) in finite fields is used. This can be done assuming GRH by a
result of Huang [28]. Thus, GRH ‘acts’ in fact through Huang’s result. The motivating case
of a prime field and r = 2 can be easily explained by Ankeny’s theorem [2] on the smallest
primitive root.

3.2. Description of the IKS-algorithm

We will now describe the routine of the IKS-algorithm. In the following, let f(x) ∈ Fq[x] be a
polynomial of degree n having n distinct roots V = {α1, . . . , αn} in Fq. For some field extension
k ⊇ Fq, let A := k[x]/(f(x)) be the associated quotient algebra. With regards to the algorithm,
we assume A is given by structure constants with respect to some basis b1, . . . , bn. It was shown
in [31, Lemma 4] that we can efficiently compute the essential parts A(s) (1 6 s 6 n).

Lemma 3.3. A basis for A(m) = (k[X]/(f(X)))(m) over k ⊇ Fq can be computed by a
deterministic algorithm in time poly(log |k|, nm).

We now proceed to give an overview of the routine of the IKS-algorithm. Namely, we
describe how an m-scheme can be obtained from the ideal decompositions of the essential parts
A(s) (1 6 s 6 n). For referential purposes, let us quickly recapitulate the algorithmic data.

Input. A polynomial f(x) ∈ Fq[x] of degree n having n distinct roots V = {α1, . . . , αn}
in Fq.

Also 1 < m 6 n is given, and we can assume that we have the smallest field extension k ⊇ Fq
having sth nonresidues for all 1 6 s 6 m (computing k will take poly(log q,mm) time under
GRH).

Output. A nontrivial factor of f(x) or a homogeneous, antisymmetric m-scheme on V =
{α1, . . . , αn}. (In the latter case we get the m-scheme only implicitly via a system of ideals
of A(m).)

Description of the algorithm. We define A(1) = A = k[x]/(f(x)) and compute the essential
partsA(s) (1<s6m) of the tensor powers ofA (this takes poly(log q, nm) time by Lemma 3.3).

Automorphisms and ideal decompositions of A(s) (1<s6m). Observe that for each τ ∈
Symms, the map defined by

τ : A(s) −→ A(s), (bi1 ⊗ . . .⊗ bis)τ 7→ bi1τ ⊗ . . .⊗ bisτ

is an algebra automorphism of A(s). By [45], this knowledge of explicit automorphisms of A(s)

can be used to efficiently decompose A(s) under GRH: namely, one can compute mutually
orthogonal ideals Is,1, . . . , Is,ts (ts > 2) of A(s) such that

A(s) = Is,1 + . . .+ Is,ts .
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By Lemma 3.2, the above decomposition of A(s) induces a partition Ps on V (s):

Ps : V (s) = Supp(Is,1) t . . . t Supp(Is,ts).

Together with P1 := {V } this yields an m-collection Π = {P1,P2, . . . ,Pm} on V .
We will now show how to refine the m-collection Π to an m-scheme using algebraic operations

on the ideals Is,i of A(s). To do that, we first need a tool to relate lower level ideals Is−1,i to
higher level ideals Is,i′ .

Algebra embeddings A(s−1) −→ A(s). For each 1 < s 6 m we define s natural algebra
embeddings ιs1, . . . , ι

s
s : A⊗(s−1) −→ A⊗s which map bi1 ⊗ . . .⊗ bis−1 to bi1 ⊗ . . .⊗ bij−1 ⊗ 1⊗

bij⊗. . .⊗bis−1
respectively (for the s positions of 1). By restricting ιsj to A(s−1) and multiplying

its image by the identity element of A(s), we obtain s algebra embeddings A(s−1) −→ A(s)

denoted also by ιs1, . . . , ι
s
s. In the following, we interpret ιsj(A(s−1)) as the set of functions

V (s) −→ k which do not depend on the jth coordinate.
The algorithm is now best described by explaining the five kinds of refinement procedures

which implicitly refine Π. (Remember we cannot see V but only have access to it via the
ideal 〈f〉.)

R1 (Compatibility). If for any 1<s6m, for any pair of ideals Is−1,i and Is,i′ in the
decomposition of A(s−1) and A(s) respectively, and for any j ∈ {1, . . . , s}, the ideal
ιsj(Is−1,i)Is,i′ is neither zero nor Is,i′ , then we can efficiently compute a subideal of Is,i′ and
thus, refine Is,i′ and the m-collection Π.

Note that R1 fails to refine Π only when Π is a compatible collection.

R2 (Regularity). If for any 1<s6m, for any pair of ideals Is−1,i and Is,i′ in the
decomposition of A(s−1) and A(s) respectively, and for any j ∈ {1, . . . , s}, ιsj(Is−1,i)Is,i′ is
not a free module over ιsj(Is−1,i), then by trying to find a free basis, we can efficiently compute
a zero divisor in Is−1,i and thus, refine Is−1,i and the m-collection Π.

Note that R2 fails to refine Π only when Π is a regular collection.

R3 (Invariance). If for some 1 < s 6 m and some τ ∈ Symms the decomposition of A(s) is
not τ -invariant, then we can find two ideals Is,i and Is,i′ such that Iτs,i ∩ Is,i′ is neither zero
nor Is,i′ ; hence, we can efficiently refine Is,i′ and the m-collection Π.

Note that R3 fails to refine Π only when Π is an invariant collection.

R4 (Homogeneity). If the algebra A(1) = A is in a known decomposed form, then we can
trivially find a nontrivial factor of f(x) from that decomposition.

Note that R4 fails to refine Π only when Π is a homogeneous collection.

R5 (Antisymmetry). If for some 1 < s 6 m, for some ideal Is,i and for some τ ∈ Symms \
{id}, we have Iτs,i = Is,i, then τ is an algebra automorphism of Is,i. By [45], this means we
can find a subideal of Is,i efficiently under GRH and hence, refine Is,i and the m-collection Π.

Note that R5 fails to refine Π only when Π is an antisymmetric collection.

Summary. The algorithm executes the ideal operations R1–R5 described above on A(s)

(1 6 s 6 m) until either we get a nontrivial factor of f(x) or the underlying m-collection Π
becomes a homogeneous, antisymmetric m-scheme on V . It is routine to verify that the time
complexity of the IKS-algorithm is poly(log q, nm).

3.3. From m-schemes to factoring

We saw in the last subsection how to either find a nontrivial factor of a given f(x) or construct
an m-scheme on the n roots of f(x). In the following, we explain how to deal with the ‘bad
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case’, when we get a homogeneous, antisymmetric m-scheme instead of a nontrivial factor.
We will see how the properties of homogeneous and antisymmetric m-schemes can be used
to obtain a nontrivial factorization of f(x) even in this case. The next theorem is of crucial
importance (it is [31, Theorem 7] extended to our general notion of matchings).

Theorem 3.4 (Matchings refine). Let f(x) be a polynomial of degree n over Fq having n
distinct roots V = {α1, . . . , αn} in Fq. Assuming GRH, we either find a nontrivial factor of
f(x) or we construct a homogeneous, antisymmetric m-scheme on V having no matchings,
deterministically in time poly(log q, nm).

Proof. We apply the algorithm from Section 3.2. Suppose it yields a homogeneous,
antisymmetric m-scheme Π = {P1,P2, . . . ,Pm} on V . For the sake of contradiction, assume
that some color P ∈ Ps is a matching. Let 1 6 i1 < . . . < ik 6 s and 1 6 j1 < . . . < jk 6 s
with (i1, . . . , ik) 6= (j1, . . . , jk) be such that πsi1,...,ik(P ) = πsj1,...,jk(P ) and |πsi1,...,ik(P )| = |P |.
Then πsi1,...,ik(πsj1,...,jk)−1 is a nontrivial permutation of πsi1,...,ik(P ). For the corresponding

orthogonal ideal decompositions of A(1), . . . ,A(m), this means that the embeddings

ιsi1,...,ik := ιsi1 ◦ . . . ◦ ι
s−k+1
ik

, ιsj1,...,jk := ιsj1 ◦ . . . ◦ ι
s−k+1
jk

both give isomorphisms Is−k,l′ −→ Is,l, where the ideals Is−k,l′ and Is,l correspond to
πsi1,...,ik(P ) and P , respectively. Hence, the map (ιsi1,...,ik)−1ιsj1,...,jk is a nontrivial auto-
morphism of Is−k,l′ . By [45], this means we can find a subideal of Is−k,l′ efficiently under
GRH and thus, refine the m-scheme Π. 2

Combining the above result with Corollary 2.6, we conclude that one can completely factor
f(x) in time poly(log q, nlogn) under GRH. This reproves Evdokimov’s result [18], which is
based on a framework less general than that of m-schemes described above. Note that any
progress towards the schemes conjecture (Section 2.4) will directly result in an improvement
of the time complexity of the IKS-algorithm. A proof of the schemes conjecture, for parameter
c, would imply that the total time taken for the factorization of f(x) would improve to
poly(log q, nc).

In the special case that f(x) is a polynomial of prime degree n, where (n−1) satisfies certain
divisibility conditions, we study the structure of association schemes of prime order to show
that for a ‘small’ m the ‘bad’ case in Theorem 3.4 never happens. This is discussed in the
following section.

4. Factoring prime-degree polynomials

In this section we show that the IKS-algorithm has polynomial running time for the
factorization of polynomials f(x) ∈ Fq[x] of prime degree n, where (n−1) has a large constant-

smooth factor. By this we mean a number s ∈ N of magnitude
√
n/` such that s | (n− 1) and

all prime factors of s are smaller than r. The exact relationship between `, r and the time will
appear later. Previously, the IKS-algorithm was only known to have polynomial running time
for the factorization of polynomials of prime degree n, where (n− 1) is constant-smooth [31].
Our new results imply that under a well-known number theory conjecture involving Linnik’s
constant, there are infinitely many primes n such that any polynomial f(x) ∈ Fq[x] of degree
n can be factored by the IKS-algorithm in time poly(log q, n). As a main tool, we employ
structural results about association schemes of prime order, most notably [25, 40].

4.1. Schemes with bounded valencies and indistinguishing numbers

We now prove Theorem 1.3, which concerns the existence of small intersection numbers in
association schemes (with bounded valencies and indistinguishing numbers) assuming a large
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number of relations. Note that Theorem 1.3 is the principal scheme theory result underlying
our main theorem about the factorization of prime degree polynomials (Theorem 1.1). It is
a counting argument on the graph of the scheme. It is elementary assuming the fundamental
theorems about schemes, but it yields a new interesting property for this class of schemes.

Proof of Theorem 1.3. Fix a relation 1 6= u ∈ G and a pair (α, β) ∈ u. For all v ∈ G \ {1, u},
define

Sv := {(α′, γ) ∈ X2 | (α′, β) ∈ u; (α, γ) 6= (α′, γ) ∈ v}.
The set Sv consists of those pairs (α′, γ) ∈ X2 which together with (α, β) form a non-degenerate
quadrilateral of the type seen below.

α

u

��

v

��

b // α′

u

��
v

��
β

w
// γ

We determine the cardinality of Sv. Note that for any relation b ∈ G, there are exactly cubu
choices for α′ ∈ X such that (α, α′) ∈ b and (α′, β) ∈ u. Moreover, after choosing α′, there are
exactly cbvv∗ choices for γ ∈ X such that (α, γ), (α′, γ) ∈ v. Thus, |Sv| =

∑
b∈G c

u
bu · cbvv∗ . In

particular, ∑
v∈G\{1,u}

|Sv| =
∑

16=b∈G

cubu ·
∑

v∈G\{1,u}

cbvv∗ 6
∑

1 6=b∈G

cubu · δ′2 · c 6 δ′1 · δ′2 · c · k,

where the last inequality follows from Lemma 2.2(iii).
For the sake of contradiction, assume that for all v ∈ G \ {1, u} we have either cwu∗v = 0 or

cwu∗v > ` for all except at most one relation w ∈ G. We derive a lower bound on |Sv| in order
to obtain the contradiction. For v ∈ G \ {1, u} define

Wv := {w ∈ G | cwu∗v 6= 0}.

Note that for each relation w ∈ Wv there are exactly cuvw∗ choices for γ such that (β, γ) ∈ w
and (α, γ) ∈ v. Moreover, after choosing γ, there are exactly cwu∗v − 1 choices for α′ such
that (α′, β) ∈ u and (α′, γ) ∈ v. Thus, |Sv| =

∑
w∈Wv

cuvw∗ · (cwu∗v − 1). Now observe that
cuvw∗ > cwu∗v · (δ1/δ′1) for all w ∈ Wv by Lemma 2.2(i), (ii). Since we assume that cwu∗v > ` for
all except at most one relation w ∈Wv we conclude

|Sv| >
δ1
δ′1
·
∑
w∈Wv

cwu∗v(c
w
u∗v − 1) >

δ1
δ′1
·
(

(`− 1) ·
∑
w∈Wv

cwu∗v −
`2

4

)
.

Note that the last inequality is based on the summand-wise inequality: (`−1)cwu∗v−cwu∗v(cwu∗v−
1) 6 (`2/4). From the equation

∑
w∈Wv

cwu∗v ·nw = nu∗ ·nv (see Lemma 2.2(iv)) it follows that∑
w∈Wv

cwu∗v > (δ21/δ
′
1) · k. Moreover, using the assumption 1 < ` < (δ21/δ

′
1) · k, we deduce

|Sv| >
δ1
δ′1
· (`− 1) ·

(
δ21
δ′1
· k − `2

4(`− 1)

)
>

δ31
2(δ′1)2

· (`− 1)k.

In particular, we have ∑
v∈G\{1,u}

|Sv| > (|G| − 2) · δ31
2(δ′1)2

· (`− 1)k.

This yields δ′1δ
′
2·ck > (|G|−2)·(δ31/2(δ′1)2)·(`−1)k and hence 2(δ′1/δ1)3δ′2·(c/(`− 1))+2 > |G|,

a contradiction.
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Let us now consider the special case where (X,G) is an association scheme of prime order
n := |X|. Hanaki–Uno’s theorem [25] tells us that in this case, there exists k ∈ N such that
k = ng for all 1 6= g ∈ G (that is all nontrivial valencies coincide). We will refer to k simply
as the valency of (X,G). It was shown in [40, Theorem 3.2] that for prime order association
schemes (X,G) of valency k, every nontrivial relation g ∈ G has indistinguishing number
c(g) = (k− 1). Combining the above considerations with Theorem 1.3, we immediately obtain
Corollary 1.4 about prime order association schemes.

4.2. Factoring algorithm for prime-degree polynomials

Drawing on the scheme theory results from the preceding subsection, we obtain the following
lemma about the existence of matchings in homogeneous antisymmetric m-schemes on a prime
number of points.

Lemma 4.1. Let Π = {P1, . . . ,Pm} be a homogeneous, antisymmetric m-scheme on V ,
where n := |V | is a prime number. Let k denote the valency of the association scheme
(V,P2 ∪ {1}). Assume that m > 2 log2 `+ 3 and |P2| > 2(k − 1)/(`− 1) + 1 for some ` ∈ N>1.
Then there exists a matching in Π.

Proof. By Corollary 1.4, there exist nontrivial relations u 6= v, w 6=w′ ∈P2 such that
0<cwu∗v 6 cw

′

u∗v <`. Hence there exist α, β, γ, γ′ ∈ V such that (α, β) ∈ u, (α, γ), (α, γ′) ∈ v,
(β, γ) ∈ w and (β, γ′) ∈ w′. Clearly, the relation P ∈ P4 containing the tuple (β, α, γ, γ′)

satisfies π4
1,3(P ) = π4

1,4(P ) = v. Also, |P |/|v| = |P |/|u| 6 cwu∗v ·cw
′

u∗v 6 `2, thus P has subdegree

at most `2 over v. Now if s(P, v) = 1 then P is a matching. On the other hand, if s(P, v) > 1
then we define Q := π4

4(P ) ∈ P3 and consider the equation s(P, v) = s(P,Q)·s(Q, v). It implies
that at least one of the subdegrees s(P,Q), s(Q, v) is both at least 2 and at most `2, thus we
get a matching in Π by suitably invoking Theorem 2.5. 2

Using the above lemma about the existence of matchings in m-schemes on a prime number
of points, we can now prove our main result, Theorem 1.1.

Proof of Theorem 1.1. Let `′ := (2` + 1). It suffices to consider the case that f(x) has n
distinct roots V = {α1, . . . , αn} in Fq. Let m := max{r + 1, 2 log2 `

′ + 3}. We apply the IKS-
algorithm (Section 3) and by Theorem 3.4 either find a nontrivial factor of f(x) or construct
a homogeneous, antisymmetric m-scheme Π = {P1,P2, . . . ,Pm} on V having no matchings,
deterministically in time poly(log q, nm). Suppose for the sake of contradiction that the latter
case occurs.

Clearly, (V,P2 ∪ {1}) is an association scheme of prime order n, where 1 denotes the trivial
relation. Thus, by Hanaki–Uno’s theorem [25] there exists k | (n − 1) such that |P | = kn for
all P ∈ P2. Hence, |P2| = (n− 1)/k. We distinguish between the following two cases.

Case I: gcd(s, k) = 1. Then |P2| = (n− 1)/k > s >
√

2n/(`′ − 1) + 1. Thus,

k <
√
n(`′ − 1)/2 =

√
2n/(`′ − 1) · (`′ − 1)/2 6 (s− 1)(`′ − 1)/2,

implying |P2| > s > 1 + 2k/(`′ − 1). In particular, Π contains a matching by Theorem 4.1,
contrary to our assumption.

Case II: gcd(s, k)> 1. The colors in {P2, . . . ,Pr+1} can be used to define a homogeneous,
antisymmetric r-scheme on k points as follows: pick P0 ∈ P2 and define V ′ := {α ∈ V |
(α1, α) ∈ P0}. Furthermore, define an r-collection Π′ = {P ′1, . . . ,P ′r} on V ′ such that for all
1 6 i 6 r and for each color P ∈ Pi+1, we put a color P ′ ∈ P ′i such that

P ′ := {v̄ ∈ V ′(i) | (α1, v̄) ∈ P}.

Then |V ′| = k, and Π′ = {P ′1, . . . ,P ′r} is a homogeneous, antisymmetric r-scheme on k points.
On the other hand, by gcd(s, k) > 1 we know that k has a prime divisor which is at most r;
therefore, Π′ cannot exist by Lemma 2.1. 2
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5. Number theory considerations

In the present section, we point out that, under a well-known number theory conjecture
involving Linnik’s constant, there are infinitely many primes n for which the time complexity
in Theorem 1.1 is polynomial.

5.1. Primes n of Theorem 1.1

Linnik’s theorem in number theory answers a natural question about primes in arithmetic
progressions. For coprime integers a, s such that 1 6 a 6 s− 1, let p(a, s) denote the smallest
prime in the arithmetic progression {a+is}i. Linnik’s theorem states that there exist (effective)
constants c, L > 0 such that

p(a, s) < csL.

There has been much effort directed towards determining the smallest admissible value for
the Linnik constant L. The smallest admissible value currently known is L = 5, as proven by
Xylouris [57]. It has been conjectured numerous times that L 6 2 [26, 33, 34, 47] as noted
below.

Conjecture 1. There exists c > 0 such that for all coprime integers a, s with 1 6 a 6 s−1,
the smallest prime p(a, s) in the arithmetic progression {a+ is | i ∈ N} satisfies p(a, s) < cs2.

Note that the above conjecture is not known to be true under GRH. The result that comes
closest to it, is [3, Theorem 5.3]: p(a, s) < 2(s log s)2.

Let us consider how the primes of the type we described in Theorem 1.1 relate to p(1, s).
This is the subject of Corollary 1.2, which we prove below.

Proof of Corollary 1.2. For the first part, we just assume GRH. Let r ∈ N>1 be a constant and
s ∈ N a (large enough) r-smooth number. By [3, Theorem 5.3] there is a prime n = p(1, s) <

2(s log s)2. Hence, s >
√
n/2/log s > (

√
n/2/log n) + 1 =

√
n/(2 log2 n) + 1. Thus, we can

generate infinitely many primes n such that Theorem 1.1 applies for ` := `(n) = 2 log2 n, and
proves a time complexity of poly(log q, nlog logn).

For the second part, we additionally assume Conjecture 1. Let r ∈ N>1 be a constant and
s ∈ N a (large enough) r-smooth number. By the conjecture there is a prime n = p(1, s) < cs2.

Thus, s >
√
n/c >

√
n/(c+ 1) + 1. Thus, we can generate infinitely many primes n such that

Theorem 1.1 applies for ` := (c+ 1), and proves a time complexity of poly(log q, n). 2

5.2. Optimality of Theorem 1.3

Naturally, one asks if it is possible to further relax the conditions which Theorem 1.1 places
on the prime number n (that is the degree of the polynomial we want to factor). In our
current framework, this translates to asking to what extent we can relax the conditions for the
existence of small intersection numbers in schemes of bounded valency and indistinguishing
number (Theorem 1.3). However, the example of the cyclotomic scheme below shows that the
conditions of Theorem 1.3 cannot be relaxed (up to constant factors).

Recall the definition of a cyclotomic scheme [16, 24]. Let p be a prime and let e | (p − 1).
Let α be a generator of the multiplicative group F∗p of the field Fp. We denote by 〈αe〉 the
subgroup generated by αe. Let P := {Pi | 0 6 i 6 e} be the partition on Fp × Fp such that
P0 := {(x, x) | x ∈ Fp} and

Pi := {(x, y) ∈ Fp × Fp | x− y ∈ αi〈αe〉}

for i = 1, . . . , e. Then it can be checked that (X,G) = (Fp,P) is an association scheme.
Moreover, the definition of (Fp,P) does not depend on the choice of the generator α. We call
(Fp,P) the cyclotomic scheme in (p, e).
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In the following, let (Fp,P) be the cyclotomic scheme in (p, e) as above and let k := (p−1)/e.
For nontrivial relations Pr, Ps, Pt ∈ P and (x, y) ∈ Pt, we have

ctrs = #{z ∈ Fp | (x− z) ∈ αr〈αe〉, (z − y) ∈ αs〈αe〉}
= #{(y1, y2) ∈ F∗p × F∗p | αrye1 + αsye2 = (x− y)}/e2.

We divide by e2 because that is exactly the number of repetitions of a value (ye1, y
e
2) as we

vary y1, y2 ∈ F∗p.
By the Hasse–Weil bound [49, 52], we have

|#{(y1, y2) ∈ Fp × Fp | αrye1 + αsye2 = (x− y)} − (p+ 1)| 6 e2
√
p+O(1),

from which it follows that ∣∣∣∣ctrs − (p+ 1)

e2

∣∣∣∣ 6 √p+O(1).

To make the ‘error’ term small, we fix p and e such that e = k1/3/c � p1/4 for a large enough
constant c ∈ N (note that there are infinitely many primes p for which there exists such e by
[22, Theorem 7]). Now (p+ 1)/e2 > 2

√
p and we can estimate that

ctrs >
k

2e
> (c/2) · k2/3 � p1/2.

Also, |G| > e > k/(ck2/3). Thus, we have an association scheme where both the number of

relations and the intersection numbers are large, that is in the range k
1
3 and k

2
3 , respectively.

This matches the parameters of Corollary 1.4 exactly.
This proves that our scheme theory result, especially Corollary 1.4, is optimal. But when
|G| is larger than k1/3 the Hasse–Weil bound has too large an error. We do not know whether
new ‘small’ nonzero intersection numbers start showing up.

6. Conclusion

We studied polynomial factoring over finite fields, under GRH, mainly through algebraic-
combinatorial techniques. These are very effective when the polynomial has a prime degree.
We are able to give an infinite family of prime degrees for which our analysis is much better
than the known techniques.

The main open question here is to extend this study to factor all prime degree polynomials.
The key here is to study the underlying m-scheme that the factoring algorithm gets ‘stuck’
with. Its 3-subscheme is a nice association scheme (it is equi-valenced). Since its intersection
numbers, and other deeper representation theory invariants, manifest in the higher levels of
the m-scheme, the schemes conjecture (Section 2.4) might be approachable.

Another question is to slightly improve Corollary 1.4. We do show that it cannot be improved
in generality, but that does not rule out the following improvement: there exist at least two
constant-small intersection numbers when |G| ≈ k/log k. This would be enough to give an
infinite family of primes n so that Theorem 1.1 has a polynomial time complexity (only
assuming GRH).

Finally, we leave the question of extending Theorem 1.3, so that it becomes applicable
to composite order association schemes, open. Improvements there would likely translate to
factoring polynomials of new composite degrees.
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34. H. J. Kanold, ‘Über Primzahlen in Arithmetischen Folgen’, Math. Ann. 156 (1964) 393–395.
35. K. S. Kedlaya and C. Umans, ‘Fast polynomial factorization and modular composition’, SIAM J. Comput.

40 (2011) 1767–1802.
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