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Abstract. We present KETJU, a new regularized tree code based on algorithmic chain reg-
ularization and implemented into Gadget-3. This new code is able to follow simultaneously
galactic-scale dynamical and astrophysical processes and the small-scale supermassive black
hole binary dynamics. We present here the general idea of this new code and show a test simu-
lation of black hole binary dynamics in a galaxy merger of two massive elliptical galaxies. The
separation of the black holes at the time of the merger is several orders of magnitude smaller in
KETJU than when compared to ordinary Gadget-3 simulations. The merger timescale is also
longer by 100 − 200 Myr.
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1. Introduction
All massive early-type galaxies and stellar bulges host supermassive black holes (SMBH)

in the mass range of 106M� � M• � 1010M� in their centres (e.g. Kormendy & Rich-
stone 1995). In addition, galaxies do not live in isolation but frequently interact and
merge with each other shaping their evolution (White & Rees 1978, Johansson et al.
2009). Galaxy mergers also bring multiple SMBHs into the same stellar system. As very
close quasar pairs appear to be observationally rare there should be an efficient physi-
cal mechanism which drives the two SMBHs rapidly into coalescence. Indeed, dynamical
friction from the stars and gas in the host galaxy causes the SMBHs to sink to the center
of the merger remnant. Forming a wide (a ∼ 10 pc) binary SMBH, the black holes now
interact with the central stars slingshotting them away in three-body encounters. In this
process the binary loses orbital energy at the expense of the ejected stars and becomes
‘harder’. At sub-parsec separations, the energy loss by gravitational wave (GW) emission
drives the binary into coalescence (e.g. Merritt & Milosavljević 2005).

Future space-borne GW detection experiments, such as LISA (Amaro-Seoane et al.
2012), have generated interest in estimating the SMBH merger rates using numerical
simulations. Naively, the SMBH merger rate depends on the frequency of galaxy merg-
ers containing multiple SMBHs and the SMBH merging timescale after the binary has
formed. However, there are considerable uncertainties in the estimates, especially in the
duration of the slingshot-hardening phase. In the hardening phase, the inverse semi-major
axis of the binary is expected to evolve as d(1/a)/dt ∝ ρ�(t)/σ�(t), where ρ� and σ� are
the stellar density and velocity dispersion at the center of the galaxy (Quinlan 1996).
Thus, a simulation predicting the SMBH merger timescale should accurately describe
both the global kiloparsec-scale evolution of the host galaxy of the SMBH binary and
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also model the SMBH binary evolution at sub-parsec scales. In this proceedings con-
tribution, we present a new regularized tree code KETJU, based on algorithmic chain
regularization and implemented into the widely used galaxy simulation code Gadget-3
(Springel 2005).

2. Regularization
2.1. Background

In the case of point-like simulation particles, the Newtonian gravitational force is man-
ifestly divergent when two particles collide: the gravitational force |F̄ij | → ∞ as their
separation |r̄i − r̄j | → 0. The most straightforward manner to circumvent this collision
problem is to introduce a small softening length ε in order to render |F̄ij | finite at particle
collisions and close encounters. However, this procedure has the unfortunate consequence
that the softening scale ε, typically 1 pc < ε < 100 pc in modern galactic-scale simu-
lations, becomes the natural spatial resolution limit of the simulation. This is highly
undesirable as we want to simulate SMBH binary evolution at sub-parsec scales until the
GW-driven coalescence. Another possibility is the regularization of the close encounters
between simulation particles to avoid the Newtonian force divergences. The Keplerian
two-body problem was regularized a century ago by the pioneering work of Levi-Civita.
A practical three-dimensional KS-regularization method including external perturbing
forces was developed by Kustaanheimo & Stiefel (1965). Subsequent development in the
field yielded several new regularization methods, such as the Aartseth-Zare method and
Heggie’s global regularization scheme (see e.g. Aarseth 1999 and references therein). An
important chain-based formulation of the KS regularization was found by Mikkola &
Aarseth (1993). Finally, the work of Mikkola & Tanikawa (1999) and Preto & Tremaine
(1999) on time-transformed regularization methods resulted in the formulation of the
Algorithmic Regularization Chain (ARCHAIN) algorithm, which is also our choice of
regularization method for KETJU (‘ketju’=‘chain’ in Finnish).

2.2. The ARCHAIN algorithm
The inner workings of the ARCHAIN algorithm consist of three aspects. First, the equa-
tions of motion are time-transformed. As opposed to regularization methods reviewed
in the previous section, no spatial coordinate transformation is performed: the singu-
larities remain in the equations of motion but are avoided algorithmically by using a
leapfrog integrator, hence the name of the algorithm. The new time coordinate, which is
an independent variable, is defined as

ds = [αU + βΩ + γ] dt, (2.1)

where U is the negative of the gravitational potential energy and the function Ω is
generally used to regularize the encounters between particles with very different masses,
if an extrapolation method is not used. The triplet (α, β, γ) determines the exact regu-
larization procedure. Note that constants α and β are dimensional so that the expression
inside the brackets is dimensionless. See Mikkola & Merritt (2006) and Mikkola & Merritt
(2008) for a detailed description of the time transformation and the different parameter
choices. The equations of motion are now transformed using the new time coordinate
ds. The algorithm also allows for Post-Newtonian corrections as velocity-dependent per-
turbations. The corrections are added up to the order PN3.5. The second aspect of
ARCHAIN is the use of chained inter-particle vectors for each chain subsystem instead
of a global reference frame. This proceduce greatly reduces the numerical round-off error
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Figure 1. A schematic illustration of a chain subsystem surrounding a SMBH in the KETJU
code.

even without the time transformation. Finally, an extrapolation algorithm is applied in
order to push the error in the dynamical variables to a user-defined level. We utilize
the Gragg-Bulirsch-Stoer (GBS) extrapolation method. The central idea of the GBS ex-
trapolation here is to compute time evolution of the dynamical variables during a time
interval H with a different number of subdivision counts n and finally extrapolate the
variable values to n → ∞. This procedure, although somewhat time-consuming, ensures
that the numerical errors are kept at a very low level which is essential in computing the
temporal evolution of chain systems containing SMBHs and surrounding stars.

3. Implementation
3.1. Chain subsystems and perturber particles

In developing KETJU (Rantala et al. 2016, in prep.) we follow and extend the ideas
behind the rVINE code of Karl et al. (2015). In Gadget-3, the Newtonian gravitational
force between the simulation particles is computed using a TreePM algorithm, including
gravitational softening. We regularize the gravitational dynamics around the SMBHs in
the following way. First, we give every SMBH a parametrized influence radius which
is proportional to the mass of the SMBH: rinfl ∝ αM•. Every stellar particle inside the
influence radius of a SMBH belongs to the chain subsystem of the particular SMBH. If the
volumes of several subsystems overlap, the subsystems are merged. The dynamics of the
particles in the chain (chain particles hereafter) is computed using the algorithmic chain
integrator as opposed to the ordinary Gadget-3 particles (tree particles hereafter). During
the chain integration, the chain particles feel the tidal perturbation of the tree particles
which lie within the perturber radius rpert = γrinfl (m/M•)1/3 , where m is the mass of
the perturber particle and γ is an adjustable free parameter. A simplified illustration
of the situation is presented in Figure 1. The chain subsystem itself is treated as a
single ‘macro’ particle in the tree code. Both the macro particle and the neighbouring
perturber particles receive a correction to their gravitational accelerations due to the
internal structure of the chain subsystem. The macro particles are set to be always at
the lowest active timestep level in the tree code and the tree/chain memberships of the
particles are updated every tree timestep.

3.2. A new SMBH merging criterion
Traditionally, two SMBHs are merged together in softened tree codes, such as Gadget-3,
if their smoothing lengths overlap and their relative velocity is less than a fraction times
the local sound speed. For typical resolutions employed in galaxy-scale simulations this
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Figure 2. The evolution of eccentricity (left panel) an the inverse semi-major axis (right panel)
of the SMBH binary until the GW-driven coalescence. The binary circularizes and hardens as the
gravitational waves carry energy and angular momentum away from the system. The separation
at the time of the SMBH merger is ∼ 1000 AU in this particular test run.

amounts usually to ∼ 10 pc. With KETJU, we can follow the SMBH binary to much
smaller separations and thus a new SMBH merging criterion is required. The new criterion
is based on the analytical GW coalescence timescale by Peters & Mathews (1963) formula
valid at PN2.5. The estimate of the merging timescale is tc = a/4ȧ, where ȧ is obtained
from the Peter’s formula:

ȧ = −64
5

G3M•,1M•,2(M•,1 + M•,2)
c5a3

1 + 73
24 e2 + 37

96 e4

(1 − e2)7/2 , (3.1)

where M•,1 and M•,2 are the masses of the two SMBHs and e is the constant eccentricity.
The timescale estimate is accurate enough for our purposes as efinal ∼ 0.01 << 1. See
e.g. Maggiore (2007) for a more rigorous timescale estimate. The SMBHs coalesce if tc
is smaller than the next global Gadget-3 timestep. The Post-Newtonian evolution of
a SMBH binary at the late stages of a gasless (’dry’) merger of two massive elliptical
galaxies (M� = 1011M�, MDM = 1013M�, Hernquist scale radius a = 1.5 kpc) is shown
in Figure 2. Due to the high eccentricity of the binary inherited from the merger geometry
of the merger progenitor galaxies the GW emisson drives the SMBHs to coalescence ∼ 150
Myr after the formation of the binary. The separation at the time of the SMBH merger
was r ∼ 0.005 pc ∼ 1000 AU in this particular simulation.

4. Conclusions
We have developed a new regularized tree code KETJU using algorithmic chain reg-

ularization and implemented into Gadget-3. Using KETJU, we are able to follow the
evolution of a SMBH binary in a galactic-scale simulation until the GW-driven coales-
cence and study simultaneously the structural evolution of the host galaxy affected by
the evolution of the SMBH binary.
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