RELATION BETWEEN HIGHER OBSTRUCTIONS
AND POSTNIKOV INVARIANTS

KENICHI SHIRAIWA*

Introduction

The problem of extending a continuous map is one of the most important
problems in algebraic topology. Many topologists have contributed for the
solution of this problem. One of the most powerful methods in the extension
problem is the obstruction theory defined first by S. Eilenberg [1] and developed
by many others. N.E. Steenrod worked on the primary obstruction and showed
that there is a strong connection between obstruction theory and cohomology
operations [7].

The main objective of this paper is to establish a certain relation between
higher obstructions and the higher order cohomology operations induced by the
Postnikov invariants in the sense of F. P. Peterson [4]. But this is done only

for the stable range.

1. Obstruction set

By a pair (K, L) we shall mean a connected CW-complex K together with
a subcomplex L C K. Let K? be a g-skeleton of K and K%= K%L. Let f: K¢
- X (¢g=1) be a map from KY to a topological space X, which is »-simple for
all n=1. Then we define the obstruction cocycle ¢**'(f) € Z7" K, L; m(X))
in a usual fashion, where Z9"'(K, L; n,(X)) is the (g+ 1)-dimensional group
of cocycles of K modulo L with coefficients in n,(X) and #,(X) is the ¢-dimen-
sional homotopy group of the space X.

Let f, and f; be maps of K? to X which agree on K?”', then we can define
a difference cochain d%(f,, f1) € C(K, L; n,{X)) in a usual fashion, where
CUK, L; m4(X)) is the g-dimensional cochain group of X modulo L with coef-

ficients in #,(X). Then the following properties are well known. (Cf. Eilenberg
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[1]1, Olum [3], Steenrod [7])

(1.1) If fu ~f (i.e. f; and fi are homotopic), then ¢?" () =c¢?"'(f1).

(1.2) ¢?*Y(f) =0 if and only if / extends over K9'%

(1.3)  8d%( Sy, f1) =S — 27 (f1), where ¢ is the coboundary operation.
(1.4) If fy and de CUK, L; =%(X)) are given, there exists a map f; such that
a’(fo, /1) =d.

(1.5) d%fy, f1) +dUSf, 12 =dYU f, f2).

(1.6) d%Jfs, f1) =0 if and only if f, ~ f, relative to K97,

(1.7) If g: (K, L)~ (K' L') is cellular and f: K'? > X, then g¥c?™(f)
="t fo g),

where g* is an induced cochain map of g.

Let f: K> X, we define O,(f) for r > qg+1 as a set of all obstruction
cocycles ¢"(f'), where f'is an extension of / over K”™'. Then O%"*(f) is either
an empty set or a single cohomology class by (1.3) and (1.4). Therefore, we
denote by ¢7**(f) the cohomology class O3’ (f) if f is extendable over K9,
Next we define Zy(f) for r> g+1 as a set of all ¢'(f') of an extension
/' : K™% - X of f which is extendable over X”"'. Then we have the following
equality.

(1.8) 0O4(f) = the set of all cocycles whose cohomology classes belong to Zz(f).
Therefore, by (1.2) we have
(1.9) Zg(f) = 0-cohomology class if and only if f is extendable over K'.

2. Postnikov system

Let X' be a simply connected CW-complex, then there exists a sequence of
fiber spaces pn+1 @ Xn+1 =~ Xn (#=2) such that
(2.1) X! and X are of the same homotopy type, where X is the inverse limit
of X,
(2.2) the fiber of pue1 @ Xur1 - Xn is a (mne1(X'), n+ 1)-type complex, (ie.
homotopy groups of the fiber vanish except for the (7 + 1)-st homotopy group
which is isomorphic to mu+1(X'))
(2.3) 7melmn) =0 for g > n,

Dt t mg( Xnv1) T we( X)) for g < n, and

(2.4) pa+: is an homeomorphism on the #n-skeleton of X,::, and its inverse
over the n-skeleton of X, is extendable over the (z+ 1)-skeleton of X, as a

cross-section.
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The sequence of fiber spaces {(X.:1, Xu, pu:1)} is by definition the Post-
nikov system in the sense of Moore. (Cf. Moore [21.)

By (2.2) and the classification theorem for fiber spaces with fiber a (=, n)-
type space, we obtain a map &% °: X, —> K{(7zn;(X’), n+2) such that the fiber
space (X1, Xu, Pn+1) is equivalent to the induced fiber space of the standard
fiber space over K(ma+1( X'}, n+2) by "%, where the standard fiber space over
the Eilenberg-MacLane complex K(7,.1(X"), n+2) is the fiber space whose
total space is contractible. To define the Postnikov invariants, we need a

following well-known lemma.

LEMMA 2.5, oK, K{z', s} = H'(K, '),

where =(K, K(r!, n)) is a group whose elements are homotopy classes of
mappings K- K{x', ) with multiplication indwced by the gromp structwre of
K(7', n), and H"(K, 7') is the n-th cohomology group of K with coefficients
in w'.

By the above lemma we have a unique cohomology class 2"7*(X) in
H""*(Xy,mn1(X')) corresponding to £°%: Xu » K(zne(X'), n4+2). {E'2X))
is by definition the Postnikov invariants of X, and it is known that 2" *(X) is
equal to the primary obstruction of the fiber space (X,.1, Xn, pns1). (Cf.
Moore [21.)

Let f: K7~ X' be any map and % : X' —» X be an homotopy equivalence
given in (2.1), then it is easy to see that the obstruction for extending f is
equivalent to that for hof. Therefore, we can assume that X'=X for the
rest of the paper.

Let /: K7~ X be extendable over K“"'. Then py° f: K9 > X, is extendable
over K since X, has vanishing homotopy groups =/(X) for i > ¢, where p, : X

- X, is a natural projection. Let F: K - X, be any extension of p/,° /. Then
LEmMA 2. 6. ) = FHRVNX),

where F* « HT(X,, 70 (X)) - HU(K, 7q-1( X)) s the induced homomorphism
of F.

Proof. This is an easy consequence of the fact that k?**(X) is also the
primary obstruction for the fiber space , : X » X,, and it is equal to the ob-
struction for extending the cross-section as a continuous map for this fiber

space.
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Suppose f: K? - X be extendable over K'*!, =g, then p,of: K?~ X,
is extendable over K by the same argument above. By Lemma 2.6, we im-

mediately have

LemMa 2.7. Z3Y*(f) is the set of all F*E"*(X), where F: K- X, is an
extension of prof: K> X,.

3. Higher order cohomeology operations

We shall give a brief resume of higher order cohomology operations in the
sense of Peterson (for details and proofs see Peterson [4]).

Let {(X+1, Xy Pg+1)} be a Postnikov system, and suppose X, = K(ra, n).
Consider the following diagram.

lpq-l-l
kfl+2
e 4 Xq —_———— K(n'q-}-l, ll+2)
J(Pq

iq—l ket

K(ng-1,9—1) —— Xgo1 —

qu—l

li’n+2

iy

K(rqg, @) ——

—_—> K(n‘q, q+1)

in+1 knt+3
K(nps1, n+1) —> Xnt1 — —> K(mp+2, n+3)
lpnﬂ
kn+2
Xn ————— Klapi, n+2)

Diagram 1.

where pg : X4 -» X4-1 is the fiber map of the Postnikov system, i, : K(ng, @) = X,
is the inclusion map of the fiber into the total space of the fibering X, » X,-1,
B X, > K(rge1, g+2) is the map corresponding to the postnikov invariant
of X, and ng = me(X).

Assume that each k?"*(X) is a suspension for the rest of this section.
Applying the functor X - n(K, X) to the diagram 1, we have the diagram 2,
by using Lemma 2.5.
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a1
: iq l E1t2 s :
HY (X, ny) ——— nlK, X)) ———> HY(K, rgn1)
il’q
-1 fg-1 k1 +1
Hq (K, 7'L'q~1) —_— TI(K, Xq-—l) ——> IIG (K, ﬂ'q)
lpu—l
' pn+2
N

in+l kn+3

—> 7‘-'(K, Xn+1) —_—> H”+3(K, 7Z'n¢2)

lpn+l B
n+2
HMK, 7n) —— H"K, 7n+1)

HnH(K, Tl'nﬂ)

Diagram 2.

In the above diagram we have the following properties.
(3.1) Each object in the diagram 2 is a group and each map is a homo-
morphism.
(3.2) The sequence
iy by ki1 .
HUK, rng) —> n(K, X;) —> (K, X4-1) — HU'(K, =)
is exact.
(3.3) H™K, nn) —M—: H""*(K, 7a+1) is the ordinary cohomology operation corre-
sponding to £*"*(X) € H" *(zn, m, 7n+1), where H" *(zu, n, mas1) is the (24 2)-nd
cohomology group of the Eilenberg-MacLane complex K (z,, #n) with coefficients

in zner.

Let x= H™(K, ns) be an element such that 2*"*(x) =0. By (3.2) we have an
element y € n(K, Xu+1) such that pn+i(¥) =2 Then £***(y) is unique modulo
the image of H""'(K, n,+1) under the mapping £”** o i,.;. We denote by [£"*]
the operation x - £"*"*(y) modulo Image (£""* o 4,.,).

In the same fashion we define [£k?"*] from the Kernel ([£?*']) into
H""*(K, r4+1) modulo a certain subgroup L?**(£?"*). Then we have the follow-

ing lemma.

Lemma 3.4. If x € Kernel ([27*1]), then [k"**]x is the set o 21l F*E7Y(X),
where F : K > X, is a map such that pni1°- - -op,o F=%, and % : I{ > K(zn, n)

is a map corresponding to x € H"*(K, =x).
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The proof of the lemma will follow immediately from the definition of

[kq %'2]-

Lemma 3.5. x < Kernel (L") if and only if there exists a map G : K
- X, such that pni1° o py,o G=X where ¥ : K > K(zy, n) is a map corre-
sponding to x € H™(K, nn).

Proof. By Lemma 3.4 we set p,° G=F, then we immediately have

F*E?"'(X)=0. The converse is also straight forward.

4. Main theorems

Let X be (n—1)-connected (#2=2). Suppose that its Postnikov invariants
k7"*(X) are suspensions for ¢+2=<7. Then each %2*"*(X) defines a higher order
cohomology operation [27*%(X )] for g+2<7r. Let d"(X)< H"X, zx(X)) be
the element corresponding to the inverse of the Hurewicz isomorphism, i.e. the

fundamental cohomology class of X.

TueoreM 4.1. Let X, [ X)] be as above. Let f: K" - X be extend-
able over K" for n<q=<r-2. Then Z}'*(f) is a coset of H'* (K, mg+1 (X))
by L™k X)), and (6" (X)) is in the image of i* : H'(K)- H"(K"), where
i¥ is an isomorphism into induced by the injection i: K" —» K. Furthermore,

7o FMBN(X)) is in the Kernel ([K2"™H( X)), and the following equality holds.
ZIN ) =[N X I e MO XN).

Proof. Since f is extendable over K" (g=n), f™*(6"(X)) is in the image
of £*, and by Lemma 3.5 we have :* ™' o y*(6"( X)) & Kernel ([#"'(X)]). There-
fore, by Lemma 3.4 we have [E7*(X)1{i* "o f*(d"(X))} is the set of all
F7R"*(X), where F: K- X, is a map such that pp+i° -+ - e p,° F is an ex-
tension of ph o f. It is obvious that Z%"*(f) coincides with [E""*(X)J{z* "o
F5b"(X))} by Lemma 2.7.

Remark. 1f X is (n—1)-connected (n=2), then 2?*(X) are suspensions
for g+2<2n—1.

Cororrary 4.2. Let X be (n~1)-connected (#=3), and fF: K" - X be
extendable over K""". Then )

£ ) = S e SO

Proof. Let ¢ : zu(X) = 7,1 X) be the pairing induced by composing the
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S
~1

essential map of S*"' to S” then it induces the squaring operation Sg*:
H™K, m1.(X)) > H" (K, 7p1(X)). It is well-known that £*"*(X) = Sg*(6"( X)).
(Cf. J. H. C. Whitehead [8].) Therefore, the corollary is proved.

For the next theorem we need the following diagarm.

1 | T |
+ v nl N 7} N
e e — > ‘Yﬁf) > e e > X'(IZ) ——— X;ll' ——> X,
| , |
| ! I i
v v 772 1 v 7/}1 1 N
a- -
(2) (1)
g-1 ~ > Xgoq T Xq-‘
| |
v v v
l | |
i 9 1 i
vlz' 7}71L2 v(ll 77::*2 M
Xule === Xyio = Xnso
| 1
1 "
M " 7‘n+l ¥
. »
A n+l —> An'vl
|
|
¥
Xn
Diagram 3.

The above diagram is constructed as follows.

ymer @ X i1 — Xner is the injection of the fiber X, of the fiber space
Drrrt Xner = Xno X - X&) (s=n+2) is the induced fiber space of Xs — X1
by 7s-1: XY > Xs-1, and %} @ X" -» X, is the induced fiber space map. Then
the sequence of fiber spaces {Xs’ — Xi;) forms the Postnikov system of the
space X' which is obtained from X by killing the n-th homotopy group =»(X).
We obtain inductively X" by the same constiuction, and the sequence of fiber
spaces {X{' > X} is the Postnikov system of X' which is obtained from
X" by killing the (n+t—1)-th homotopy group of X

Let 2, : X" > X, be the composition of the maps 7,’s. Then &, &7"*(X)
is the Postnikov invariant of X‘*, and it is a suspension as far as %?"*(X) is.

By using the above notations, we obtain the following theorem.

Tueorem 1.3, Let /1 K¥'= X be extendable over K™, in=s=q=2n -3)

Wl
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Let 1y, f1: K° - X be two extensions of f which are extendable over K**'. Then
Z3 () and ZIT'(f) are cosets of HYY*(K, nqei(X)) by the subgroup
LT BT X)), the difference cocycle d*(fy, f.) € Kernel [£527*k*"(X)], and
the following relation holds.

ZIfo) = ZI( ) =87 R X)) 1d° (S, 11).

5. Proof of the theorem 4.3

We divide the theorem into two parts.
(I,s) Let f: K*-> X be extendable over K™ (n<s<q=<2n-3), then Z2**(f)
is a coset of H'"*(K, ng+1(X)) by the subgroup L¥**(&5 "*E7**(X)).
(I1;s) Let f: K* ' X be extendable over K7™ (n<s<qg<2n-3). Let fo,
/1 : K-> X be two extensions of f which are extendable over K?"!. Then
d*(fy, f1) € Kernel ([£5-7*Ek7*%(X)]) and

ZIN ) = 28 ) =L "R (X)) Da (fi, f).

We shall prove (I;s) and (II,s) by double induction on (q, s) (n<s=gq
=2n-23).

If s=gq, Z3"*(fy) and ZJ**(f)) are single cohomology classes ¢?**(f;) and
(A1), and EXTRUTH(X) € HYTTHXGTY, man( X)) = HT ny(X), g5 maer(X)).
Therefore, [£3-"*k%**(X)] is a usual cohomology operation, and L9*2(2£4~"*
E*%(X)) is the zero group. Therefore, (I, ,) is proved for any g¢.

We shall prove (I, s) and (Il;s) in two steps.

(A) Assuming (I;s), (I, s) for ¢ <gq, n=s'<¢q and (I,,s), (Il s+1) for s'=s,
we deduce (1II,,5). .

(B) Assuming (I,s), (Il s) for ¢ <q, n<s'<q' and (I,), (I, s) for s'=s,
we deduce (I,,s-1).

HM)\\
(In+1,n+1) > (Hnﬂ,nn) ’(In*x,n) (Hnu,n)

P T B T It A A S

(Ig,g) — (g, q) —> (Ig,q-1) > (Ilg,0-1) T
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Step (B)

LEMMa 5.1. L7727 R X)) = Image (257" k**(X)], where we con-
sider Tmage [25 " F7"(X)] as a wunion of cosets in HY (K, nge1(X)) by
L7 RT(X)).

This follows immediately from the definition.

Step (B) follows from (I;s), (Il,s), and Lemma 5.1.
Step (A)

By our assumption 5, f; are extendable over K?'', therefore, ZI'*(fy)
=ZI*f) =0 for ¢ <q By (I, (¢ <¢g we have d°(fs, /1)< Kernel
[£527*k7"1(X)]. Next, we shall prove the equality.

We can assume that f(K"™') is a single point without loss of generality.
Let K, be obtained from K by shrinking K”' to a single point »,. Let 2 : K
- K, be the shrinking map.

Since 7:(X,) =0 for ¢ > q, and f, is extendable over K%', p,ofo: K" > X,
is extendable over K. Let F: K - X, be an extension of p,° f,. Then there
exists a map g : Ky~ X, such that go h=F.

Take a s-cell 47 in the interior of each s-cell 4; of K except one common
vertex. Let K,V X5 ™™ be a union of K, and X; " with a single point in com-

\S—-n)

mon. We shall construct a map & : H"? » K,V X5 as follows.
Let &2 : K°—> K,V X577 be a map such that

(1) ks |l K5 =410 1KY
where 4, : Ky —» Ko,V X5™ is the inclusion map,

(2) ks maps 4 — 4; homeomorphically onto ¢ — 2, in K,

(3) ks maps the boundary of 4 to v, in K, and

(4) ks maps (43, boundary of 4;) into (X5™™, ») by a map corresponding to
d*(f1, f)(a}) € as(X) = = X5,

Then "' (ks) = 8d*(f1, f,) =0. Therefore, ks is extendable over K°*'.
Consider the following diagram.

(S~n)
Xq

A

K Iy Y X

S

™
lZ{‘J
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where ji, j: are natural projections, and ¢, ¢; are inclusion maps. Then it is
easily seen that

jieks~h on K° and
d*(ks, iy° h) = d°(f1, fo).

Suppose ks be extendable ober K™*!, » < g. Since
iKY X5 = mi(Ky) + mi(XE™™) for i<n+s-2

{**(ks) is decomposed into two terms, i.e. one in coefficients in mr+1(K,) and
the other in coefficients in =+ (X5 ™) for »r<q=2n-3. The first term is

zero since j,° ks : K°— K, is homotopic to %, and % is defined ovér K. By
(I, ) (» < q) we have

Z5 N ks) — Z5 4y o B = [85 " B (X)]d%(ks, 41 00)
=[5 2 X135 (S, S1).

But Z{** (40 h) =0, and [257"*E"*(X)1d*( fo, f1) =0 by our assumption. There-
fore Zi**(ks) =0 for r < ¢, and ks is extendable over K.

Since q+1gn+s—2,Z“%m):Z”ﬂﬁom)+Z“Hﬁoka. ZI(jio k)
=Z"%h) =0 and ZI**(j, o k) =0 because mg+;(X5 ™) =0. Therefore, Z2**(ks)
=0, and ks is extendable over K?*

Let ' : K7 - KoV X7 be an extension of k. We shall modify %' to
B K" KVXSE ™™ so that jick~h. Let byt K™ o KV XE™™, r<gq, be
extension of ks such that jio kyyy~h on K™™', and jao Bjoy ~ jo o B.  Then it
is clear that k;., is extendable over K”"% Let k)., be an extension of k., over
K" There exists a map kb, : K72 > K,V XE™™ such that d” k.., ks
=dad " GLo B, B) +daud P joo By, jao K'), where ix (resp. é:s) is induced
by the coefficients homomorphism &« @ mrea(Ko) = mreol KoV X77) (resp. oy -
mreal X5 ) > maa (K Y X57™)). Then it is clear by the simple calculation of
the difference cochain that j, o ky.o~h and js© kriz~ j2o k' on K'*%.  There-
fore, finally we have the desired map % : K9 > K, Y X7~ such that ji0c k~h.

Then we have the following properties.

(5.1) Jiok~n
(5.2) Fro RVFOU(XET) = a (A, ),

where »(X5 ") e H(X{™", (X)) is the fundamental cohomology class and
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Y HY(K) > H*(K?") is the induced homomorphism by the inclusion i : K¢
> K
(5.2) follows from the fact that % is an extension of ks.

Consider the following diagram.
X((]S—ﬂ)

12 Jz
i k G

Ke— K17 —— KVXS Y —X,
h h ile]’x J
Ky

where G| Ko=g and G| X" =¢77".

Then we have the following properties.

(5.3) Gofioh=Foji.
(5.4) Goi=¢"
(5.5) (G0 ) =k = — (40 joo b)*

(5.5) follows from (5.1).
By the same argument used in the beginning of this section py o fi : K* > X,
is extendable over K. Let F' be an extension of pﬁ, o fi. Then

d(Gok, F')=d*(Go &k, F)+d’(F, F)
=Gd*(k, @10 h) +d°(fy, f1)
= ds(fly fO) + ds(f()’ fl) =0.

Therefore,
(5.6) Gok~F' on K°.
By Lemma 2.6,
¢ fy) = FYET3( X)), and
EUNf) = FURTA(X).

By (5.6) we have i*¢9"°(f1) and (G k)*k?"*(X) belong to the same obstruc-
tion set ZIM(fi| K% ={*Z2"%(fy). Therefore, by (5.3), (5.5), and (5.4)
P(ZUN) = ZT D)) 2 (Fo )T R7HX) — (G o B)Y*RTH(X)
= (4o M =B )YGETHX) = = (40 oo B)¥*GFETE(X)
= = (o )T GTRTHX) = — (Jao B)F 27 RTTH(X).

https://doi.org/10.1017/50027763000007522 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000007522

32 KENICHI SHIRATWA

On the other hand, &57"*AF7"3(X) e [£5 " E7 (X)) I0°(X5™™) by definition. There-
fore, by (5.2)

NZEN) = Z8HD)) = = (Jao BFLET R XOIP(XE™™)
= —[E5" R X) 1 (oo B B(XT™)
= —[e5 " R X)) 1A (1, 1)
={*[e R (X) 1A oy S1).

Since ¢* is an isomorphism into, we have the desired equality, i.e.

Z37(fo) = ZEH ) = L8 TR XD 1A o, o).

6. Supplementary result

TueoreM 6.1. Let X be 2-connected CW-complex. Let f: K > X be a
map (q=2) which is extendable over K?*'. Let 1y and fi be two extensions of |
over K% which are extendable over K?''. Then

(,—‘qﬂ(fo) -7 ) = qudq(f"’ 11,
where Sq* : HU(K, 7y(X)) > HY(K, nq+1(X)) is the squaring operation.

Proof. With a little modification of the proof of Theorem 4.3, we can
prove

T f) — 1) = (87 RTTH(X) 1A fo, £1)-

gI%* k7" H(X) belongs to HTA( X ¥, 74+1(X)) and X is 2-connected. Therefore,
X{¥ has only one non vanishing homotopy group m,(X) in dimension g, and
£37**p7"2(X) is the Eilenberg-MacLane invariant of the space X¢';%, which has

two non-vanishing homotopy groups in dimensions ¢ and g+ 1. Therefore, it
is well-known that

T RTTX) = SEBUX Y,
ie [ ¥ RT3 X)] = S4°

BiBLIOGRAPHY

[1] S. Eilenberg, Cohomology and continuous mappings, Ann. of Math., 41 (1940), 231-251.
[2] J. C. Moore, Semi-simplicial complexes and Postnikov systems, mimeographed note,
Princeton University, (1957).

[3]1 P. Olum, Obstructions to extensions and homotopies, Ann., of Math,, 52 (1950), 1-50.

[4]1 F. P. Peterson, Functional cohomology operations, Trans. Amer. Math. Soc., 86 (1957),
197-211,

https://doi.org/10.1017/50027763000007522 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000007522

HIGHER OBSTRUCTIONS 33

[5] M. M. Postnikov, Investigations in homotopy theory of continuous mappings, Trudy
Mat. Inst. Steklov, no. 46. Izdat. Akad. Nauk SSSR, Moscow, 1955 (in Russian).

(6] N. Sﬂimada, Homotopy classification of mappings of a 4-dimensional complex into a
2-dimensional sphere, Nagoya Math. Jour., 5 (1953), 127-144.

[7] N. E. Steenrod, Products of cocycles and extensions of mappings, Ann. of Math,, 48
(1947), 290-320.

[8] J. H. C. Whitehead, On the theory of obstructions, Ann. of Math., 54 (1951), 68-84.

Mathematical Institute

Nagoya University

https://doi.org/10.1017/50027763000007522 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000007522



