
J. Functional Programming 5 (4): 501-547, October 1995 © 1995 Cambridge University Press 501

Semantics directed program execution monitoring

AMIR KISHON and PAUL HUDAK

•t

Department of Computer Science, Yale University,
New Haven, CT 06520, USA

e-mail: {kishon,hudak}8cs .yale .edu

Abstract

Monitoring semantics is a formal model of program execution which captures 'monitoring
activity' as found in profilers, tracers, debuggers, etc. Beyond its theoretical interest, this
formalism provides a new methodology for implementing a large family of source-level
monitoring activities for sequential deterministic programming languages. In this article we
explore the use of monitoring semantics in the specification and implementation of a variety of
monitors: profilers, tracers, collecting interpreters, and, most importantly, interactive source-
level debuggers. Although we consider such monitors only for (both strict and non-strict)
functional languages, the methodology extends easily to imperative languages, since it begins
with a continuation semantics specification.

In addition, using standard partial evaluation techniques as an optimization strategy, we
show that the methodology forms a practical basis for building real monitors. Our system
can be optimized at two levels of specialization: specializing the interpreter with respect to a
monitor specification automatically yields an instrumented interpreter; further specializing this
instrumented interpreter with respect to a source program yields an instrumented program,
i.e. one in which the extra code to perform monitoring has been automatically embedded into
the program.

Capsule Review

Monitoring activities are those performed by profilers, tracers, etc. In this paper the authors
describe a formalism for combining several monitoring semantics in a correct way. The
importance here being that the monitoring activities do not interfere with each other or
with the standard semantics. The authors present several examples of monitoring semantics
for both a strict and lazy functional language and combine these with the corresponding
semantics, especially if a tracer for a lazy language does not change the order of evaluation.
The authors show how partial evaluation can be used to automatically transform a standard
interpreter and a monitor specification into an instrumented interpreter that performs the
monitoring activity. They also show partial evaluation which can then be used to generate
instrumented programs by specializing these instrumented interpreters with respect to subject
programs. The results obtained in this way are very impressive and compare well with those
of handwritten programs.

This research was supported by ARPA under ONR contracts N00014-90-C-0024 and
N00014-91-J-4043.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

502 Kishon and Hudak

1 Introduction

We define a program execution monitor, or simply 'monitor', as any software tool
that monitors some aspect of the dynamics of program execution. Examples include
debuggers, profilers, tracers, collecting interpreters, etc. We are interested in the
general problem of formally specifying and implementing monitors, although in
this paper we limit the scope to monitors for sequential, deterministic programming
languages (or a language's sequential, deterministic interpretation).

Despite the importance of monitors in any software development environment,
there has been little work on either formal or general treatments of the problem.
Current systems are primarily based on two approaches:

• Code transformation. The source program is transformed (instrumented) to
include monitoring instructions (for representative research see (Dybvig et al.,
1988; O'Donnell and Hall, 1988; Tolmach and Appel, 1990)).

• Execution transformation. The process that executes the source code (e.g. an
interpreter) is modified (instrumented) to incorporate monitoring activities
(see (O'Donnell and Hall, 1988; Safra and Shapiro, 1989; Shapiro, 1982; Ster-
ling and Shapiro, 1986; Toyn and Runciman, 1986) for some exemplary work).

These strategies have their advantages, but as general methodologies many limita-
tions arise. In particular:

1. Informality. Approaches based on a language's formal semantics (whether
denotational or otherwise) are rare (some preliminary work in the area can be
found (Berry, 1991; Bertot, 1988; Toyn and Runciman, 1986)). Thus many of
the current techniques have little formal semantic justification.

2. Unsoundness. Some approaches use unsound transformations which may in-
teract adversely with normal execution or with other monitoring activities. For
example, O'Donnell and Hall's (1988) instrumentation of functional programs
interferes with non-strict evaluation order, and the debugging data is not
necessarily faithful to the standard semantics.

3. Hand-crafting. Many approaches amount to a hand-crafting of debugging
tools. As a result, common elements of monitors' designs are often overlooked,
and the solutions do not provide a basis for a general framework.

4. Non-compositionality. The composition of monitoring tools is usually ne-
glected. For example, by instrumenting the source code to perform one kind
of monitoring, another monitoring activity that relies on the source code will
'see' the extra code.

Motivated by the need for a more formal treatment of program execution moni-
toring, we have developed a specification technique that we call monitoring semantics
and an implementation technique based on partial evaluation that together provide a
sound and effective methodology for building program execution monitors (Kishon,
1992; Kishon, Hudak and Consel, 1988).

The soundness of our methodology begins with the observation that a language's
continuation semantics specifies a linear ordering on program execution, and thus

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Scheme

ML

Haskell

Pascal

Semantics

' semantics

Corresponding
tracer specifications

1

W

directed

M

program <execution

')

S) fc

monitoring

Scheme |

ML 1
Haskell I" facing semantics

1
asca

503

Fig. 1. Combining tracer specifications with different standard semantics

can be used as the basis for ordering monitoring activity (just as it is used to
guide code generation in 'semantics-directed compilers'). Using the framework of
continuation semantics, one can specify the behaviour of a large family of monitors.
The resulting monitor specifications can then be automatically combined with a
language's standard semantics to yield a composite semantics that captures both
standard behaviour and monitoring activities. This composite semantics, instead of
interpreting a program's meaning as an element a in a domain AnsJt,j of standard
'final answers', interprets it as a function / with type Ansmon = MS —»(Ansst(iXMS),
where MS is a domain of 'monitor states'. Given GQ : MS as an initial (presumably
empty) monitor state, then:

where <T/ is the resulting monitoring information and a! is the result of the standard
evaluation. We systematically construct the composite semantics in such a way
that all instantiations of the semantics (i.e. all possible monitors defined using our
approach) have the property that a' = a.

In this paper we describe our overall methodology and its application, highlighting
the following attributes:

1. Applicability. A monitoring semantics can be specified for any language for
which a continuation semantics is available (e.g. Scheme (Clinger and Rees,
1991), Pascal (Tennent, 1977), Prolog (Allison, 1986), etc.).

2. Expressiveness. The methodology is able to capture a large family of sequential
monitoring activities (e.g. profiling, tracing, interactive debugging, etc.).

3. Modularity. The monitor specification is written relatively independently from
the standard semantics, yet inherits the standard semantics for actual com-
putation. This means that a single tracer specification, for example, can be
combined with the the standard semantics of several different source languages,
as shown in Figure 1. Similarly, one can construct different debugging tools
for a language by combining its standard semantics with different monitor
specifications, as shown in Figure 2. (The '&' operator is the key element in
our framework that combines an interpreter and monitor specification.)

4. Soundness. We show that any monitor constructed within our framework cannot
alter the standard semantics, even though it relies on the standard semantics.

5. User Interaction. Interactive debuggers are obviously an important capability,
and despite the implied I/O-dependencies, this capability is easily captured in
our framework.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

504 Kishon and Hudak

Scheme semantics A « 5 » ^
^ ^ l profiling I

Profiler 1 J H ^ I (t v C S) W S c h e m e debugging > semantics

Debugger > specification ^ H^f^B / tracing J

Tracer I ^ W^J J
Fig. 2. Combining different monitor specifications with standard semantics

6. Practicality. To use our methodology to build practical monitors, we rely on
automatic partial evaluation (D. BJ0rner et al., 1988; Jones et al., 1987) as an
optimization strategy. In particular:

(a) Instrumented interpreter. Specializing an interpreter with respect to a fixed
set of monitor specifications automatically yields an interpreter instru-
mented with monitoring actions.

(b) Instrumented program. Specializing the instrumented interpreter (from the
previous step) with respect to a source program produces an instrumented
program; i.e. a program with extra code to perform the monitoring actions.

With this technique we have built monitors whose execution speed compares
reasonably well to the execution speeds of conventional interpreters and com-
piled programs instrumented for debugging.

1.1 Overview

Figure 3 illustrates the relationships between the various components of our sys-
tem. From the standard interpreters for strict and non-strict functional languages
described in Section 2, and the monitor specifications described in Section 3, we
describe in Section 4 how to automatically derive a monitoring interpreter by com-
bining both specifications (using the '&' operator). Then in Section 5 we present
several more monitor specifications for the strict and and non-strict standard in-
terpreters, followed by a discussion of monitor composition in Section 6. Section 7
describes how to specify interactive monitors, using as an example a generic inter-
active source-level debugger for both the strict and non-strict languages. Finally, in
Sections 8 and 9 we describe optimizations based on partial evaluation, and provide
some detailed benchmarks of the resulting monitors.

Rather than use denotational semantics notation, all of the semantics specified
in this paper are written in Haskell,1' which resembles closely the meta-language
of denotational semantics. But this is more than just a stylistic choice: all of the
specifications given can be executed, and indeed our goal is to create real monitors,
not just mathematical specifications. Readers not familiar with Haskell are referred
elsewhere (Hudak and Fasel, 1992; Hudak et al, 1992).

t As an aid to the eye we use 'X instead of Haskell's 'V for lambda abstractions.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 505

Fig. 3. System diagram

2 Starting point: standard interpreters

The starting point for the derivation of monitoring interpreters is the standard
(continuation based) interpreter for the target language. This section presents the
definition of two standard interpreters for functional languages, one with strict and
the other with non-strict semantics.

2.1 Kernel language

Our source language will be a sugared lambda calculus typical of the 'kernel
language' of many functional languages. Its abstract syntax is given by:

e ::= k
\x

| lambda x . e
| i f e\ then e2 e l se e-$
| e\ op e2

| le t rec / = lambda x . e\ in e2

or, as it would be defined as a Haskell datatype:

(constant)
(variable)
(application)
(abstraction)
(conditional)
(binop)
(letrec)
(labeled expressions)

module KernelSyntax where
data Exp = Con Int

I Var Id
I App Exp Exp
I Abs Id Exp
I Cnd Exp Exp Exp
I Bop Id Exp Exp
I Rec Id Exp Exp
I Lxp Label Exp

— Constant
— Variable
— Application
— Abstraction
— Conditional
— Binary Application
— Letrec
— Labeled Expression

Note the category of 'labeled expressions', whose purpose is solely for monitoring;
the purpose of these labels will be discussed later. In the remainder of this section

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

506 Kishon and Hudak

module Lazy where — see KernelSyntax module for syntax specification

SEMANTIC ALGEBRAS

— Denotable values: integers, booleans and functions

data D = Num Int I Bol Bool I Fun (StoreVal -> Store -> Kont -> Ans)

— Storeable values: values, thunks and undefined store values

data StoreVal = Val D I Thunk (Store -> Kont -> Ans) I StoreValUndef

type Env = Id -> Loc — Environments

envlnit = (Aid -> error "undef id") :: Env

type Store = StoreType StoreVal — Stores

storelnit = (storeEmpty StoreValUndef) :: Store

type Kont = (D, Store) -> Ans — Continuations

kontlnit = U(v,store) -> toAns (v,store)) :: Kont

VALUATION FUNCTIONAL —

eval :: Exp -> (Env,Store) -> Kont -> Ans

eval = fix lazyEvalf

lazyEvalf :: Functional (Exp -> (Env,Store) -> Kont -> Ans)

lazyEvalf eval = Aexp (env,s) k -> case exp of

(Con v) -> k (Num v,s)

(Var id) -> case (storeLook s loc) of (Val v) -> k (v,s)

(Thunk t) -> t s k'

where k' (v,s) = k (v,storeUpd s loc (Val v))

loc = (env id)

(Abs id el) -> k (Fun f,s)

where f v s = eval el (env',s')

where (loc.s') = storeAlloc s

s' = storeUpd s' loc v

env' = envUpd env id loc

(App el e2) -> eval el (env.s) U(Fun f,s') ->

f (Thunk Qs' -> eval e2 (env.s'))) s> k)

(Cnd el e2 e3) -> eval el (env.s) (/l(Bol v.s') ->

eval (if v then e2 else e3) (env.s') k

(Bop id el e2) -> eval el (env.s) Q(v',s') ->

eval e2 (env.s') (A(v',s') ->

k (applyBop id v' v',s')))

(Rec id el e2) -> eval e2 (env'.s') k

where (loc.s') = storeAlloc s

env' = envUpd env id loc

thunk = Thunk (/is k -> eval el (env'.s) k)

s' = storeUpd s' loc thunk

applyBop :: Id -> D -> D -> D — similar to applyBop in module Eager

Fig. 4. Lazy interpreter.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 507

we present two standard interpreters for this language, one using lazy evaluation,
the other eager.*

2.2 Lazy interpreter

As discussed in Section 1, we require that the standard semantics be given in
a continuation-passing style (often written 'CPS'). At first this may seem odd for a
purely functional language, but in fact for a non-strict language it is quite useful, since
it allows us to explicate the manipulation of thunks in a sequential interpretation.
More precisely, we use the environment to map identifiers to locations, the store to
map locations to either a closure (thunk) or a computed value (if the thunk has
already been evaluated), and continuations to capture the evaluation order. In this
way we are able to reflect the fact that lazy evaluation results in each expression
being evaluated 'at most once'.

The lazy interpreter's specification is shown in Figure 4 (some of the operations
used are defined in the 'standard algebras' section in Appendix A). There are two
unconventional features in this interpreter: First is the explicit use of the fixpoint of
functionals to specify the valuation functions (see lazyEvalf); this will allow us later
to derive enhanced valuation functions that 'inherit' the behaviour of the standard
semantics (we use the term functional to denote a function which we intend to take
the fixpoint of to capture the intended semantics of interest).

The second unconventional feature is the omission of the definition of the answer
domain Ans and its constructor toAns. This was done intentionally, since we would
like to parameterize the interpreter with respect to its final answer. For example, a
very simple answer algebra for this language might be given by:

module StdLazyAnswer where

type Ans = Int

toAns :: (D,Store) -> Ans
toAns (Num n,store) = n

which will interpret the results as integers. However, for the purpose of monitoring,
we wish to interpret a program as a function f : : MonState -> (stdAns.MonState),
such that given monState : : MonState as an initial monitor state, then:

(stdAns.monState') = f monState

where monState'::MonState is the resulting monitoring information and stdAns
is the standard interpretation. To do this we redefine the answer algebra as follows

We use the terms 'lazy' and 'eager' here rather than 'strict' and 'non-strict' because we are
capturing an operational property, not just a mathematical one.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

508 Kishon and Hudak

(the actual definition of the monitor state datatype MonState will be defined later
in the monitor specification):

module MonLazyAnswer where

type Ans = MonState -> (Int, MonState)

toAns :: (D,Store) -> Ans
toAns (Num n,store) = /fononState -> (n,monState)

An 'interpreter package' and the standard driver. To help modularize the design, we
now package the components of the interpreter specification within the following
datatype:

data InterpreterType parser evalf semArgs kont =

Interpreter parser evalf semArgs kont

Thus, for the lazy interpreter we define:

lazy :: InterpreterType
(String->Exp) — Parser
(Functional (Exp->(Env,Store)->Kont->Ans)) — Valuation fnal
(Env,Store) — Semantic args
Kont — Continuation

lazy = Interpreter expParse lazyEvalf (envlnit.storelnit) kontlnit

where expParse is a parsing function whose definition we omit.

Finally, we provide a 'driver' for the standard interpretation:

stdExecute (Interpreter parse evalf semArgs kont) prog =
(fix evalf) (parse prog) semArgs kont

fix :: (a -> a) -> a
fix f = f (fix f)

which is polymorphic in interpreters. Thus given an expression involving factorial
(in which we use a hypothetical source-level syntax):

fact3 = "letrec mul = lambda x y . x * y in

in letrec fac = lambda n ace .

if n=0 then ace else fac (n-1) (mul n ace)

in fac 3 1"

we can evaluate it using our lazy interpreter as follows:

Run> stdExecute lazy fact3

6

On the other hand, if we use the enhanced answer algebra (module MonLazyAnswer)
and apply the result to an initial monitoring state monState = () , we get:

Run> stdExecute lazy fact3 ()
(6,0)

Since the actual interpretation is still not monitored (we did not enhance the
interpreter), the initial monitor state (in this case a null value) remains unchanged.
We will of course alter this behaviour shortly.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 509

module Eager where — see

SEMANTIC ALGEBRAS

— Denotable values: integers

data D = Num Int 1 Bol Bool

type Env =

envlnit id

type Kont =

kontlnit =

Id -> D

= DUndef

D -> Ans

Av -> toAns v

— VALUATION FUNCTIONAL —

eval :: Exp

eval = fix

eagerEvalf

eagerEvalf

(Con

(Var

(Abs

(Cnd

(Bop

(App

(Rec

applyBop ::

applyBop id

— STRICT

-> Env -> Kont ->

eagerEvalf

:: Functional (Exp

eval = /lexp env k

KernelSyntax module for syntax specification

.booleans,functions and undefined values

1 Fun (D -> Kont -> Ans) I DUndef

— Environments

— Continuations

Ans

-> Env -> Kont -> Ans)

-> case exp of

v) -> k (Num v)

id) -> k (env id)

id el) -> k (Fun Gv -> eval el (envUpd env id v)))

el e2 e3) -> eval

id el e2) -> eval

el e2) -> eval

id (Abs arg body)

eval

where

Id -> D -> D -> D

(Num vl) (Num v2)

INTERPRETER

eager = Interpreter expParse

Fig. 5. Eager

el env W(Bol v) ->

eval (if v then e2 else e3) env k

el env (Avl ->

eval e2 env Qv2 ->

k (applyBop id vl v2)))

el env W(Fun f) -> eval e2 env Qv -> f v k))

e2) ->

e2 env' k

env' = envUpd env id (Fun closure)

closure v = eval body (envUpd env' arg v)

= case id of "+" -> Num (vl + v2)

"-" -> Num (vl - v2)

"*" -> Num (vl * v2)

"=" -> Bol (vl == v2)

eagerEvalf envlnit kontlnit

interpreter (valuation function).

2.3 Eager interpreter

In the same fashion we can interpret our language as strict by defining an 'eager'
interpreter, which we can also package into an interpreter datatype that we will
call eager. Again, we use a fairly straightforward and conventional continuation
semantics specification for our interpreter, as shown in Figure 5.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

510 Kishon and Hudak

As with the lazy interpreter we can define different answer algebras to map the
final answer to arbitrary domains. For example a standard answer algebra to map
the results to integers is given by:

module StdEagerAnswer where

type Ans = Int

toAns : : D -> Ans
toAns (Num n) = n

whereas the monitoring answer algebra that we will be using is:
module MonEagerAnswer where

type Ans = MonState -> (Int, MonState)

toAns :: D -> Ans
toAns (Num n) = AnonState -> (n, monState)

The standard driver can now make use of eager to evaluate fact3 as before:

Run> stdExecute eager fact3
6

3 Second step: monitor specifications

The derivation of a monitoring interpreter can be viewed as combining two inter-
pretations: the standard interpretation and a non-standard monitor interpretation.
In this section we discuss the specification of the latter, then in the next section we
show how to combine them together.

3.1 A monitor

Like the standard interpreter, the monitor specification has its own syntax, algebras,
and 'semantic functions'.

Monitor syntax

To invoke a particular monitoring activity at a specific program point we will
annotate the source code. In the simplest form these annotations might simply be
labels through which the system may uniquely reference any program point; in more
complex situations, they may involve 'directives' to control the monitoring process.
We use the 'labeled expressions' given earlier in the syntax of our languages to
realize these annotations.

As an example, let us introduce two labels A and B, and annotate a factorial
program with them (written again in our hypothetical source language):

fac(n) = if (n = 0) then {A}: 1 else {B}:(n * fac(n-l))

We can now design a monitor to increment a corresponding counter whenever an
expression annotated with {A} or {B> is evaluated; i.e. a simple profiler. The full
specification of this monitor is presented in Section 3.2.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 511

module Profile where

— SYNTAX —

data Label = LProfile FunName

annotate :: Exp -> Exp — omitted, annotate every declared function

ALGEBRAS

— Profiler s ta te : association l i s t of counters
type MonState = AssocType FunName Counter
type Counter = Int

— MONITORING FUNCTIONS —

pre :: Label -> ast -> semArgs -> MonState -> MonState
pre (LProfile funName) exp semArgs profileEnv =

assocPut funName (v+1) profileEnv
where v = if (assocExist funName profileEnv)

then (assocGet funName profileEnv) else 0

post :: Label -> ast -> semArgs -> kontArgs -> MonState -> MonState
post label exp semArgs kontArgs profileEnv = profileEnv

Fig. 6. A profiler monitor specification.

Monitor algebras

Like the standard interpreter, a monitor utilizes a set of algebras (i.e. datatypes
and operations) to support its activity. For example, a profiler uses an environment
which maps function names to their corresponding counters. We will refer to the
parameters needed to support the incremental monitoring activity as the monitor
state. That is, the monitor state captures information of interest to a specific monitor,
and will be incrementally updated during the monitoring process.

Monitoring functions

The monitoring semantic functions actually perform the monitoring activity. A key
aspect of our framework is how we construct these: At program points that we
wish to monitor, we probe the standard evaluation process just before and just after
evaluation. Thus, a monitor specification defines a pair of functions: what we call the
pre- and post-monitoring functions. Both functions receive the current monitor state
and evaluation context (i.e. the expression, annotation, and semantic arguments), and
they both yield an updated monitor state. But since the post-monitoring function is
invoked after evaluation, it takes as an additional argument the intermediate result
normally passed to the continuation.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

512 Kishon and Hudak

The need for both a pre- and a post-monitoring function simply reflects the needs
of specific monitors; later examples will validate this need.

3.2 My first monitor: a profiler specification

We profile a program by associating a counter with each function definition in the
source program, and incrementing a function's counter whenever its body is about
to be evaluated. To achieve this in our framework we simply annotate each function
body with its own function name.

Figure 6 shows the specification of our profiler. The syntax specification defines
the annotation syntax by defining the Label datatype. The annotate function,
however, which maps unannotated programs into annotated ones, is left undefined;
it is our way, here and throughout the rest of the paper, of ignoring the details of
which expressions get annotated and how (for example, in a graphical environment
a simple mouse click may induce the annotation). The monitor state is simply an
association list (see Appendix A) that maps function names to counter values. Last is
the specification of the monitoring functions: the pre-monitoring function increments
the appropriate counter upon seeing a profiled expression, and the post-monitoring
function does nothing.

The behaviour of the standard interpreters combined with this profiler is given in
the next section.

A monitor package

Like standard interpreters, monitor components are packaged within a datatype:

data MonitorType ann ast semArgs intermediateRes monState =
Monitor (ast->ast) — Annotate function

(ann->ast->semArgs->monState->monState) — Pre function
(ann->ast->semArgs->

intermediateRes->monState->monState) — Post function
monState — Monitor state

Thus, for the above profiler we define:

profiler :: MonitorType Label Exp semArgs kontArgs MonState
profiler = Monitor annotate pre post assocEmpty

4 Third Step: Combining a monitor with an interpreter

So far we have managed to speak fairly abstractly about monitors; for example, we
have given the specification of a profiler independently of the standard semantics
specification. But now we must show how such specifications can be combined with
the standard semantics. The binary operator (&) is used for this purpose, and its
definition is given in Figure 7. Note that it constructs an enhanced interpreter out of
the monitor and standard interpreter datatypes by simply combining their syntactic
and semantic components, as follows.

First, the enhanced parser is constructed by composing the standard parser with

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 513

module Combine where

—(&) :: (MonitorType..) -> (InterpreterType..) -> (InterpreterType..)
monitor & interpreter =

Interpreter (annotate . parse) — combined parser
(combineEval evalf pre post) — combined val fun
(semArgs,monState) — combined semantic args
kont — continuation

where (Monitor annotate pre post monState) = monitor
(Interpreter parse evalf semArgs kont) = interpreter

combineEval evalFunctional preFun postFun =
AnewEval ->
Xexp semArgs kont ->

case exp of
(Lxp label exp') ->

(newEval exp' semArgs (postMonitor kont)) . preMonitor
where preMonitor = preFun label exp' semArgs

postMonitor kont = AkArgs ->
kont kArgs . postFun label exp' semArgs kArgs

otherwise -> evalFunctional newEval exp semArgs kont

Fig. 7. A combine operator for an interpreter and a monitor specification

the monitor's annotate function. Then, the more difficult part, an enhanced valuation
functional is synthesized by combining the standard valuation functional with the
pre- and post-monitoring functions (see combineEval). This is the most interesting
aspect of the design, and it relies intrinsically on the manipulation of functionals
rather than their fixpoints. Note first that the new derived functional has the same
behaviour as the standard functional (evalFunctional) for all expressions except
those tagged with monitor annotations. Second, recall the intent that the standard
interpreter communicate its dynamic context to the monitor before and after the
valuation of an annotated expression. This is accomplished by composing the pre-
and post-monitoring functions (preFun and postFun) with the standard functional in
such a way that the standard value is passed along unchanged, whereas the monitor
state is threaded and (possibly) updated by the monitoring functions. Finally, the
valuation function is the fixpoint of the newly derived functional, and thus the new
behaviour is exhibited at all levels of recursion, i.e. for all subexpressions of the
original program.

As stated earlier, the resulting composite interpretation is a function mapping an
initial monitor state to a pair: the original answer and a final monitor state. To
accommodate this new behaviour we redefine the standard driver:

execute (Interpreter parse evalf (semArgs,monState) kontlnit) prog =
(fix evalf) (parse prog) semArgs kontlnit monState

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

514 Kishon and Hudak

4.1 A working profiler

We are now ready to combine the profiler discussed in Section 3.2 with the standard
interpreters and apply it to a program. Consider:

fact3 = "letrec mul = lambda x y . {LProfile mul):x * y

in letrec fac = lambda n ace .

(LProfile fac): if n=0 then ace

else fac (n-1) (mul n ace)

in fac 3 1"

For clarity, the annotations generated by the annotate function are explicitly
included here in the source-level syntax, distinguished by curly brackets.

Let us now test our profiler on the above program:

Run> execute (profiler ft eager) fact3

(6, [(fac,4),

Run> execute (profiler & lazy) fact3
(6, [(fac,4), (mul,3)])

In this example the profiling results for both interpreters are the same. However,
this is not always the case; for example, if we change the consequent branch in fac
to 1 rather than ace (a plausible error):

badFact3 = "letrec mul = lambda x y . x * y
in le t rec fac = lambda n ace . if n=0 then 1

else fac (n-1) (mul n ace)
in fac 3 1"

then the lazy profiler result differs from the eager one because ace is never used:

Run> execute (profiler ft eager) badFact3
(1, [(fac,4), (mul,3)])

Run> execute (profiler & lazy) badFact3
(1, [(fac,4)])

This profiler is simple enough to suit both the eager and lazy interpreters. However,
not all monitor specifications can be combined with either interpreter; some will be
dependent on the specific characteristics of each interpreter (for example, the eager
interpreter stores identifier values in an environment while the lazy interpreter uses
a store). Examples of this appear in the next section.

5 Monitors, monitors and more monitors

In this section we give several more examples of useful monitor specifications for
both the lazy and eager interpreters, including:

• A tracer.
• A collecting monitor (a la collecting interpretations).
• A demon (event monitor).

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 515

module EagerTrace where

— SYNTAX —

— Tracer label: function and formal arguments names

data Label = LTrace FunName [ArgName]

annotate :: Exp -> Exp — omitted

— ALGEBRAS —

— Tracer state: list of trace messages and a trace depth counter,

type MonState = ([TraceMsg].TraceDepth)

data TraceMsg = Receive TraceDepth FunName [D]

I Return TraceDepth FunName D

type TraceDepth = Int

— MONITORING FUNCTIONS —

pre :: Label -> exp -> Env -> MonState -> MonState

pre (LTrace funName args) exp env (traceMsgs,depth) =

(traceMsgs ++ [Receive depth funName (map env args)] , depth+1)

post :: Label -> exp -> Env -> D -> MonState -> MonState

post (LTrace funName args) exp env result (traceMsgs,depth) =

(traceMsgs ++ [Return depth' funName result], depth')

where depth' = depth - 1

— A TRACER FOR EAGER —

eagerTracer :: MonitorType Label Exp Env D MonState

eagerTracer = Monitor annotate pre post ([],0)

Fig. 8. A tracer for eager.

5.1 A tracer

A tracer is designed to report, for every traced function:

• The dynamic values of the formal parameters at each function call.
• The resulting value at each function return.

5.1.1 An eager tracer

The specification of a tracer for eager is presented in Figure 8. It is designed to
collect the tracing information before and after evaluating any function body. As
for the profiler, we therefore annotate each function body with a tracer annotation,
but in addition to the name of the function, this syntax also includes the formal
parameter names. The tracer state consists of a history of tracing data and a trace
depth counter. Each piece of tracing data captures the trace depth level, the function
name, and either the values of the actual arguments or the returned value.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

516 Kishon and Hudak

Combining this tracer with the eager standard interpreter yields the expected
tracing behaviour, as shown in Figure 10 for the evaluation of f act3, annotated as
follows:

fact3 = "letrec mul = lambda x y . {LTrace mul(x,y)}:x * y
in letrec f ac = lambda n ace .

{LTrace fac(x.y)}: if n=0 then ace
else fac (n-1) (mul n ace)

in fac 3 1"

The results presented in Figure 10 are 'pretty-printed', but for simplicity we have
omitted the code that accomplishes this.

5.1.2 A lazy tracer

The definition of a lazy tracer is similar to that of the eager tracer. The only
difference relates to the fact that function arguments are possibly unevaluated at
call time. This is at odds with the conventional tracing strategy of printing function
arguments' dynamic values at call time. We are faced with two options: either
use the conventional strategy and get only the partial information about argument
values that exists at call time or wait until the execution ends and then look
up the arguments' values in the final store. The latter technique provides more
information since arguments eventually used are by then already evaluated. On
the other hand, accumulating such trace information constitutes a potentially large
space leak. Nevertheless, we opt for this strategy because of its increased utility to
the programmer.

Our lazy tracer is shown in Figure 9. Since we do not wish to force the evaluation
of formal parameters at call time (thus changing evaluation order), we only determine
and save their store locations. After the entire program execution is complete, we look
at the saved locations in the store to determine their values. This post-interpretation
processing is achieved by annotating the whole program with a special tracer label
{LTrace top()}.

Figure 11 shows the evaluation of fact3 using the lazy tracer, with the output
again pretty-printed; it should be contrasted with the eager results in Figure 10.
The differences reflect the different evaluation orders between the lazy and strict
interpreters.

Another useful feature of our lazy tracer is the way it handles unevaluated
arguments. For example, consider the following program and its trace:

silly = "letrec baz = lambda x . x + 1 in
letrec foo = lambda x y . baz x
in foo 3 2"

Run> execute (lazyTracer & lazy) silly
(4, [foo receives [3,<thunk>]

I baz receives [3]
I baz returns 4
foo returns 4])

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 517

module LazyTrace where

— SYNTAX {omitted, same as in EagerTrace} —

— ALGEBRAS —
— Tracer state: list of trace messages and a trace depth counter,

type MonState = ([TraceMsg].TraceDepth)

data TraceMsg = Receive TraceDepth FunName [ValString]

I Return TraceDepth FunName ValString

type TraceDepth = Int

— MONITORING FUNCTIONS —

pre :: Label -> exp -> (Env,Store) -> MonState -> MonState

pre (LTrace funName args) exp (env,store) (traceMsgs,depth) =

case funName of

"top" -> (traceMsgs,depth)

otherwise -> (traceMsgs ++ [rcvMsg], depth+1)

where rcvMsg = Receive depth funName (map (show . env) args)

post::Label -> exp -> (Env,Store) -> (D,Store) -> MonState -> MonState

post (LTrace funName _) exp (_,_) (result.store') (traceMsgs,depth) =

case funName of

"top" -> (map (postLookup store') traceMsgs, depth)

otherwise -> (traceMsgs ++ [rtnMsg], depth')

where rtnMsg = Return depth' funName (show result)

depth' = depth - 1

postLookup :: Store -> TraceMsg -> TraceMsg

postLookup store traceMsg =

case traceMsg of

(Receive depth funName Iocs) ->

Receive depth funName (map getVal Iocs)

where getVal loc = case (storeLook store (read loc)) of

(Val d) -> (show d)

(Thunk t) -> "<thunk>"

otherwise -> traceMsg

— A TRACER FOR LAZY —

lazyTracer :: MonitorType Label Exp (Env,Store) (D,Store) MonState

lazyTracer = Monitor annotate pre post ([],0)

Fig. 9. A tracer for lazy.

Notice that unevaluated arguments (e.g. the second argument of foo) remain
unevaluated and are displayed as <thunk>s. In this way the tracer output reflects
correctly the behaviour of lazy evaluation. Although the trace does not provide
information about the time at which arguments are evaluated, this could be achieved
by, for example, adding a counter that kept track of 'reduction steps'.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

518 Kishon and Hudak

Run> execute (eagerTracer & eager) fact3
(6, [fac receives [3,1]

mul receives [3,1]
mul returns 3
fac receives [2,3]
I mul returns [2,3]
I mul returns 6
I fac receives [1,6]
I I mul receives [1,6]
I I mul returns 6
I I fac receives [0,6]
I I fac returns 6
I fac returns 6
fac returns 6

fac returns 6])

Fig. 10. Tracing eager evaluation of f act3.

Run> execute (lazyTracer & lazy) fact3
(6, [fac receives [3,1]

fac receives [2,3]
I fac receives [1,6]
I I fac receives [0,6]
I I I mul receives [1,6]
I I I I mul receives [2,3]
I I I I I mul receives [3,1]
I I I I I mul returns 3
I I I I mul returns 6
I I I mul returns 6
I I fac returns 6
I fac returns 6
fac returns 6

fac returns 6])

Fig. 11. Tracing lazy evaluation of f act3.

5.1.3 Non-termination

What happens when a program fails to terminate? In the case of our lazy tracer,
the final store is unattainable and no trace will be produced. This problem can
be solved by using the tracing approach based on partial information discussed
earlier. In particular, we note that this problem is not inherent in our framework,
even though it seems that the final result contains both the standard answer and
the monitor state. One can inspect portions of the monitor state even though the
program may not have terminated; as long as the specific monitor data does not rely
on the final state or answer, there is no problem. In practice, we rely on the non-strict
semantics of Haskell to make this possible, and we later exploit this attribute in the
construction of interactive monitors (see Section 7).

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 519

5.1.4 Tracing and profiling any expression

The asture reader will have noted that both the profiler and tracer are general
enough to profile and trace any expression, not just function bodies. This can be
done by attaching a label to the expression to be monitored; in the case of the
tracer, the 'formal parameters' then correspond to free variables in the expression,
thus allowing one to display any desired portion of the lexical environment. For
example:

letrec mul = lambda x y. if (x == 0)
then {LTrace mulTrue(x,y)} :0
else {LTrace mulFalse(x,y)}: (y+(mul (x-1) y))

in mul 2 3

The eager tracer returns:

Run> execute (eagerTracer & eager) mult
(6, [mulFalse receives [2,3]

I mulFalse receives [1,3]
I I mulTrue receives [0,3]
I I mulTrue returns 0
I mulFalse returns 3
mulFalse returns 6)

5.2 A Collecting Monitor

A collecting interpretation of expressions (or what we will call a 'collecting moni-
tor') is an interpretation of a program that answers questions of the sort: 'What
are all possible values to which an expression might evaluate during program ex-
ecution?' (Hudak and Young, 1988). A collecting monitor for eager is shown in
Figure 12. The collecting monitor for lazy shares almost exactly the same code, the
difference being only in the post function which, for the lazy interpreter, receives
a pair (i.e. the result and an updated store) as intermediate results:

post :: Label -> exp -> semArgs -> (D,Store) -> MonState -> MonState

post (LCollect ide) exp semArgs (result,store') collectEnv =

assocPut ide (setlnsert result vs) collectEnv

where vs = if (assocExist ide collectEnv)

then (assocGet ide collectEnv)

else setEmpty

For a test run, consider again badFact3, but this time with the following annota-
tions:

letrec mul = lambda x y . x * y in
letrec fac = lambda n ace . if {LCollect test}:(n=0) then 1

else fac (n-1) (mul {LCollect n}:n ace)
in fac 3 1"

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

520 Kishon and Hudak

module EagerCollect where

— SYNTAX —
— Label Syntax: expression tags
data Label = LCollect IdeName
annotate :: Exp -> Exp — omitted

— ALGEBRAS —
— Collecting monitor s t a t e : association l i s t of tags to dynamic values
type MonState = AssocType IdeName (SetType D)

— MONITORING FUNCTIONS —
pre : : Label -> exp -> semArgs -> MonState -> MonState
pre _ state = state

post : : Label -> exp -> semArgs -> D -> MonState -> MonState
post (LCollect ide) exp semArgs result collectEnv =

assocPut ide (setlnsert result vs) collectEnv
where vs = if (assocExist ide collectEnv)

then (assocGet ide collectEnv)
else setEmpty

— A COLLECTING MONITOR —
eagerCollector = Monitor annotate pre post assocEmpty

Fig. 12. A collecting monitor for eager.

The results of both collecting monitors in action are compared below:

Run> execute (eagerCollector & eager) badFact3
(1 , [(t e s t , [True,False]) , (n, [1,2,3]))

Run> execute (lazyCollector & lazy) badFact3
(1 , [(t e s t , [T rue ,Fa l se])])

Note again how the reduction strategy affects the monitoring result.

5.5 Event monitoring via demons

Often a programmer wants to invoke monitoring actions only if a specific execution
event (such as an identifier assuming a negative value) occurs. A simple mechanism
called a demon is proposed in (Delisle et al., 1984) for such a purpose, where an
interactive environment for Pascal called Magpie is described. We show in this section
how to specify demons within our framework. Whereas Magpie allows monitoring
events associated with a particular identifier, we show how to specify demons for
essentially any semantic event.

To specify a demon in our framework, one first annotates all program points
where an event might occur. Then one specifies the semantic conditions under which
an action is to be triggered. Finally, the actions themselves are specified in the

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 521

module ForceFind where

— SYNTAX —
data Label = LDemonlnfo FunName — Function name

I LDemonTag — Force-finder tag

annotate :: Exp -> Exp — omitted

— ALGEBRAS —

— Force finder state: current function name,

and function name where force occurred

type MonState = (FunName,FunName)

— MONITORING FUNCTIONS —

pre :: Label -> exp -> (Env,Store) -> MonState -> MonState

pre (LDemonlnfo fn') semArgs (env,store) (fn,where) = (fnJ.where)

pre (LDemonTag) semArgs (env,store) (fn,where) = (fn.fn)

post::Label -> exp -> (Env,Store) -> (D.Store) -> MonState -> MonState

post _ _ _ _ monState = monState

— A "DEMON" —

lazyDemon :: MonitorType Label Exp (Env,Store) (D,Store) MonState
lazyDemon = Monitor annotate pre post ("<void>","<no force>")

Fig. 13. A force-finder demon for lazy.

monitoring functions. As an example, Figure 13 shows the specification of a demon
that determines at what point an expression is 'forced' under lazy evaluation. The
technique is simple: we use two labels, one to inform the monitor of the currently
executing function name, and the other to identify the monitored expression. We
know that the pre-monitoring function will be called only when this expression is
forced, therefore we just update this information when such a force occurs.

As an example, consider the following annotated program:

silly = "letrec baz = lambda x . {LDemonlnfo baz}:(x + 1) in

letrec foo = lambda x y . {LDemonlnfo foo):(baz x)

in foo {LDemonTag}:(2+1) (1+1)"

The demon will return baz indicating that (2+1) was forced at baz. However, if
we annotate the second argument to foo then the result would be <no force>.

Clearly demons may be defined for intercepting a wide spectrum of semantic
events, and one could argue that this capability should be given to the user. This
could be accomplished either by exposing our entire framework to the user, or
by exposing a form tailored to this demon-specification process. In practice, this
capability is quite useful in discovering 'hard-to-find' bugs.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

522 Kishon and Hudak

5.4 A comment on modularity

How much does the monitor implementor need to know about the standard inter-
preter implementation? And conversely, how much does the standard interpreter
implementor need to know about the monitor specification? The answer to both
questions is: very little. Both implementors need only exchange the interface func-
tionality of their respective programs; i.e. the dynamic information that will be
passed between the standard interpreter and the monitor (e.g. environment, store,
monitor state, etc.). Although Figure 1 in the introduction implies that the same
monitor can be used with different languages, in fact this is not always true. But we
feel that the changes are usually so small that it is virtually true: most importantly,
the degree of code reuse is very high.

6 Composing Monitors

Recall that the combining operator (ft) takes an interpreter and a monitor and
returns a monitored interpreter. By treating the result as a new interpreter, we
should be able to repeat the same procedure and compose a second monitor to the
system. To support this, however, we must adjust our design slightly, as follows:

1. Disjoint labels. Each monitor must have a unique set of monitor labels distin-
guishable from other monitors' labels.

2. Multiple monitor states. Instead of propagating a single monitor state we will
be passing a collection of monitor states, one for each monitor in the system.

Figure 14 presents a combine operator which supports multiple monitors. Note
that each monitor now has a unique name and thus its label and state can be easily
identified. The monitor states are stored in an association list that maps monitor
names to their state. The combine operator will look up the appropriate monitor
state in this environment and update it using the corresponding monitoring function
(see updMonEnv.)

Using the new operator we can now compose monitors freely:

Run> execute (eagerTracer & profiler & eager) fact3
(6, [(profile, [(fac,4), (mul,3)])

(trace, fac receives [3,1]
I mul receives [3,1]
I mul returns 3
I fac receives [2,3]
and so on...

This composition may be repeated an arbitrary number of times. Since a monitor
can only modify its own arguments, we maintain a high degree of safety such that
new monitors cannot change the behaviours of other monitors.

7 Interactive monitoring

No doubt, source-level interactive debugging is one of the most important compo-
nents of a program development environment. Yet rarely are formal specifications of

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 523

module MultiCombine where

— (&)::(MonitorType..) -> (InterpreterType..) -> (InterpreterType. .)
monitor & interpreter =

Interpreter (annotate . parse) — combined parser
(combineEval evalf monName pre post) — combined val fun
(semArgs.monEnv') — combined semantic args
kont — continuation

where (Monitor monName annotate pre post monState) = monitor
(Interpreter parse evalf (semArgs.monEnv) kont) = in terpre ter
monEnv' = assocPut monName monState monF.nv

combineEval evalFunctional monName preFun postFun =
>inewEval ->

lexp semArgs kont ->
case exp of
— Note that labels now include the monitor name
(Lxp monName' label exp') I monName' == monName) ->
(newEval exp' semArgs (postMonitor kont)) . preMonitor
where preMonitor = updMonEnv monName (preFun label exp' semArgs)

postMonitor kont = AArgs ->
kont kArgs . updMonEnv monName (postFun label exp' semArgs kArgs)

otherwise -> evalFunctional newEval exp semArgs kont

updMonEnv :: MonName -> (MonState -> MonState) -> MonEnv -> MonEnv
updMonEnv monName transtate monEnv =

monEnv'
where monState = assocGet monName monEnv

monState' = transtate monState
monEnv' = assocPut monName monState' monEnv

Fig. 14. A modular combine operator.

such debuggers given. This is partly because debuggers tend to evolve into large soft-
ware projects in which the engineering details overshadow the conceptual content.
Fortunately, using monitoring semantics the high-level specification of an effective
debugger can be easily presented.

The approach that we take is based on the 'stream model' of purely functional
I/O as used by languages such as Haskell (Hudak et al., 1992). In this model a
program communicates to the outside world via streams of messages: a program
issues a stream of requests to the operating system and in return receives a stream
of responses. Thus a program is a function with type Dialogue, given by:

type Dialogue = [Response] -> [Request]

where [Response] is an ordered list of responses and [Request] is an ordered list
of requests; the nth response is the operating system's reply to the nth request.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

524 Kishon and Hudak

7.1 Interactive answer algebra

To adopt this model for our use, we first change the answer algebras to reflect the
new I/O behaviour:

module lOEagerAnswer where

type Ans = MonState -> InChan -> (InChan,OutChan)

toAns :: D -> Ans
toAns (Num v) = ^monState inChan ->

(inChan,"the resu l t i s : " ++ (show v) ++ "\n")

and:

module IOLazyAnswer where

type Ans = MonState -> InChan -> (InChan,Out Chan)

toAns :: (D,Store) -> Ans

toAns (Num v,store) = /tononState inChan ->
(inChan, "the result is:" ++ (show v) ++ "\n")

Note that the new 'final answer' is still a function, but it takes as an additional ar-
gument an input stream, and it returns a pair: the remainder of the input stream and
the output stream (the standard answer is converted into a string and incorporated
in the output stream).

We also define a top-level function to communicate with the operating system.
This function receives an interpreter and a program and returns a Dialogue. The
first request in the dialogue is a request for an input stream; in response the operating
system returns (Str userlnput), the desired stream. The rest of the dialogue is a
list of output requests (i.e. printouts) by the system.

— main :: (InterpreterType..) -> ProgText -> Dialogue
main interpreter prog =

ztrsps -> ReadChan stdin : map (AppendChan stdout) (linesln out)
where (in,out) = execute interpreter prog userlnput

(Str userlnput) = head rsps
— linesln chops the output stream to a l is t of lines
linesln out = map (/U.ine -> (line ++ "\n")) (lines out)

Using the factorial of Section 2.2, we can perform an initial test run:

Run> main eager fact3

the result is: 6

Run> main lazy fact3

the result is: 6

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 525

7.2 Interactive monitor

Similarly, we change the functionality of a monitor to correspond to the new I/O
behaviour: the interactive monitoring functions will receive an input stream as an
additional argument and return a triple - the rest of the input stream, an output
stream (monitor messages), and the updated monitor state.

data IOMonitorType arm ast semArgs intermediateRes monState =
lOMonitor (ast->ast) — Annotate function

(ann->ast->semArgs->monState
->InChan->(InChan,OutChan, monState)) — Pre function

(ann->ast->semArgs->intennediateRes->monState
->InChan->(InChan,OutChan,monState)) — Post function

monState — Monitor state

type Indian = String — Input Channel
type OutChan = String — Output Channel

7.3 Combining an interactive monitor with an interpreter

As in Section 4, we define a combine operator for interactive monitor and interpreter
specifications. However, unlike before we extend the behaviour of the new monitoring
interpreter to include 'single stepping', i.e. breaking at every single interpretive step,
which is necessary in certain debugging contexts. This is implemented by calling the
monitoring functions before and after every interpretive step (i.e. every continuation)
with a special label LBreak. Except for this single stepping and the propagation
of I/O streams, the resulting interactive combine operator shown in Figure 15 is
similar to the one given in Section 4.

7.4 An interactive source-level debugger

In Appendix B we present the actual high-level specification of a source-level
debugger for the languages presented in Section 2. Note that:

• Like all monitors, the debugger has its own syntax, algebras and monitoring
functions.

• The design is for a toy debugger, but it has most of the essential features
of real debuggers: break-points, single command stepping, recursive evaluator
and debugger, and several other informative commands.

• Only minor changes (7 lines of code!) are necessary to transform the eager
debugger into a truly lazy one. The lazy debugger is of course consistent with
lazy evaluation. In particular, delayed expressions (i.e. thunks) are not forced,
yet can be 'peeked into' using the recursive debugger; when the recursive
session is complete, all subexpressions return to their original thunk status.

Interactive monitors composition As a final comment, we note that interactive mon-
itors can be composed similarly to other monitors. By composing two interactive
monitors they share the same input and output streams.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

526 Kishon and Hudak

module IOCombine where

ioMonitor & interpreter =

Interpreter (annotate . parse) (combineEval evalf name pre post)

(semArgs,monState) kont

where (IOMonitor annotate pre post monState) = ioMonitor

(Interpreter parse evalf semArgs kont) = interpreter

combineEval evalFunctional preFun postFun =

/inewEval ->

2exp semArgs k ->

case exp of

(Lxp label exp') -> eval <=> preMonitor

where preMonitor = preFun label exp' semArgs

eval = newEval exp' semArgs (postMonitor k)

postMonitor k =

/&Args -> k kArgs <=> postFun label exp' semArgs kArgs

otherwise -> eval <=> preMonitor

where preMonitor = preFun LBreak exp semArgs

eval = evalFunctional newEval exp semArgs (postMonitor k)

postMonitor k =

AkArgs -> k kArgs <=> postFun LBreak exp semArgs kArgs

(<=>) :: (monState -> inChan -> (inChan, OutChan))

-> (monState -> inChan -> (inChan, OutChan, monState))

-> (monState -> inChan -> (inChan, OutChan))

evalActivity <=> monitorActivity =

/imonState input -> (input', output' ++ output')

where (input'.output',monState') = monitorActivity monState input

(input'.output') = evalActivity monState' input'

Fig. 15. Combining an interactive monitor with an interpreter.

8 Optimization via partial evaluation

Partial evaluation is a program transformation technique for specializing a program
with respect to some known part of its input. The resulting residual program has
the property that when applied to the remaining part of the input, it will yield the
desired result. Since many problems can be shown to be 'specializations' of a more
general problem, this provides the basis for a simple, automatic, formal-methods
approach to program development.

The most widely studied application of partial evaluation is semantics-directed
compilation, and our use can be seen as a variation of that idea. As was reported
by Lee (1989), many semantics-directed methodologies generate systems with per-
formance characteristics that are several orders of magnitude worse than those
exhibited by handwritten techniques. Partial evaluation can alleviate this problem.
The work of Safra and Shapiro (1989) can be seen as most closely related to
ours.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 527

8.1 Introduction

When reasoning about partial evaluation, it is important to distinguish between a
program (a syntactic object) and the function that the program denotes (a mathe-
matical object). Notationally we name programs using large capitals, as in P or Int,
and the functions they denote using small capitals, as in p or int. We move freely
between programs and their denotations, knowing that the mapping is implicitly
defined by the language's formal semantics, but we also assume that there exists an
evaluator eval such that:

eval(P,D)=p(d)

where D is the program's input data.
A partial evaluator is a program PE that, given a program P and one input

argument V, computes a residual program Pv which, when applied to a second
argument W, returns the desired result. We can write this as:

eval(Pv, W) = eval(P,{V, W))
where Pv = eval(l,(P,V))

although extensionally it is perhaps clearer to write as:

Pv(w) = p(v, w) where pv = l(p, v)

We say that Pv is a specialized version of P with respect to the argument V.
At the time of this research, the best available partial evaluators were for pure

Lisp (or related dialects), and thus for our experiments we chose Schism, a partial
evaluator for pure Scheme. The version of Schism that we used was written in T,
a close dialect of Scheme. The Haskell specifications were translated into Scheme,
partially evaluated, and then benchmarked under the Orbit implementation of
Scheme/T (Kranz, 1988; Kranz et al., 1986). However, for continuity of exposition,
we have translated the residual Scheme programs back into Haskell for inclusion in
this paper.

8.2 Partial evaluation of monitoring semantics

One can view our overall system as a 'meta-level interpreter' ML-Interpreter which
takes as arguments a standard interpreter, a monitor specification, a program, and
the program's inputs, and returns a standard value together with monitoring data.
Thus ML-Interpreter has functionality:

ML-Interpreter : Interpreter x Monitor x Program x Input —• (Answer, Monlnfo)

Application of ML-Interpreter can be optimized using partial evaluation at two
levels of specialization, as described in the following two subsections and illustrated
in Figure 16.

8.2.1 Level I Specialization: instrumented interpreter

Specializing the meta-level interpreter with respect to its first two arguments, the
standard interpreter and the monitor specification, automatically yields an instru-

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

528 Kishon and Hudak

System Functionality:

Interpreter X Monitor X Program X Input -» (Answer,MonInfo)

Specializing the interpreter w.r.t. monitor.

Instrumented-Interpreter X Program X Input -> (Answer, Monlnfo)

Specializing the instrumented interpreter w.r.t. a program
[Safra & Shapiro].

Instrumented-Program X Input -* (Answer, Monlnfo)

Fig. 16. Partial evaluation optimization levels.

mented interpreter, i.e. an interpreter instrumented with monitoring actions:

Instrumented—interpreter xProgxInput —> (AnsxMonlnfo)

P£(ML-Interpreter,(Interpreter,Monitor))

This step removes the interpretive overhead of the meta-level interpretation.
As an example, the Haskell code in Figure 17 is the residual program result-

ing from the above specialization process, where Interpreter = eager, Monitor =
eagerTracer,§ and ML-Interpreter is a straightforward interpreter for the language
in which eager and eagerTracer are written (in our case Scheme). Note how partial
evaluation has interlaced the tracer functionality into the interpreter and evaluated
its static components. The resulting specialized interpreter has the same behaviour
as the standard interpreter for all expressions except those labelled with monitor
annotations.

8.2.2 Level II Specialization: instrumented program

Specializing the instrumented interpreter of the previous section with respect to a
source program removes the second level of interpretive overhead (that associated
with monitoring), yielding now an instrumented program in which the extra code to
perform monitoring actions has been automatically embedded into the program:

Instrumented—programxlnput —»(AnsxMonlnfo)

/JE(Instrumented-interpreter,Program)

For some examples, we specialize the instrumented eager-tracer from the last
section with respect to a factorial program and a power-of-two program, as shown

For simplicity we have eliminated the bookkeeping of the trace depth from the specification.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 529

eagerEvalf :: Functional (Exp -> Env -> Kont -> Ans)

eagerEvalf eval =

Aexp env k ->

case exp of

(Con v)

(Var id)

(Abs id el)

(Cnd el e2 e3)

(Bop id el e2)

(App el e2)

(Let id el e2)

-> k (Num v)

-> k (env id)

-> k (Fun (/lv -> eval el (envUpd env id v)))

-> eval el env Q(Bol v) -> if v

then (eval e2 env k)

else (eval e3 env k))

-> eval el env

(k vl -> eval e2 env

(A v2 -> (k (applyBop id vl v2))))

-> eval el env

(/l(Fun f) -> eval e2 env Uv -> f v k))

-> eval el env (kv -> eval e2 (envUpd env id v) k)

(Rec id (Abs arg body) e2) ->

eval e2 env'

where env' =

{- all equations

(Lxp (fn.args)

AtraceMsgs

eval el

env
Uv

k
envUpd env id (Fun closure)

where closure v = eval body (envUpd env' arg v)

above are the same as in the standard interpreter -}
el) ->

->

traceMsgs' -> k v (traceMsgs'++[Return fn v]))

(traceMsgs++[Receive fn (map env args)])

Fig. 17. Instrumented eager for tracing.

in Figures 18 and 19, respectively. Each of these figures shows the original program,
a hand-crafted program instrumented according to O'Donnell and Hall's (1988)
methodology, and the instrumented program produced by our methodology.

The first thing to note in these figures is that our instrumented programs are
in continuation-passing style (CPS) while the corresponding handwritten programs
are in direct style. That ours is in CPS should come as no surprise, since partial
evaluation 'compiles' the source program according to the whims of the inter-
preter, which in our case is itself in CPS (Figure 17). Note also that O'Donnell
and Hall's program propagates the monitoring information by enhancing a func-
tion's arguments and result with debugging information (which they call shadow
variables), whereas our instrumented programs use higher-order functions and con-
tinuations to achieve the same effect. Higher-order functions are probably more
expensive than O'Donnell and Hall's shadow variables, but their technique prop-
agates the monitoring information globally, whereas we use higher-order func-
tions to update the monitor information only when a monitoring activity is re-
quired.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

530 Kishon and Hudak

fac n = if (n == 0)
then 1
else n * (fac (n-1))

(a) Factorial standard function.

fac n =
fac' n []
where

fac' n debin =
if (n == 0)
then (1, debin++[(Receive "fac" [1]),(Return "fac" 1)])
else (result, fdeb++[Return "fac" result])

where
result = n * fres
(fres.fdeb) = fac' (n-1) (debin ++ [Receive "fac" [n]])

(b) Traced factorial (O'Donnell and Hall).

fac n =
fac' (Av traceMsgs -> (v,traceMsgs)) n n []
where

fac' k n x =
AtraceMsgs ->

((if (x == 0)
then kPost 1
else fac' (Av -> kPost (x*v)) n (x-1))

(traceMsgs ++ [Receive "fac" [x]]))
where kPost v traceMsgs = k v (traceMsgs ++ [Return "fac" v])

(c) Monitoring semantics instrumented code.

Fig. 18. Comparison of instrumented factorial programs.

9 Performance measurements

In this section we evaluate the performance of our implementation and compare
it to the performances of other implementation techniques. We also measure the
optimizations gained by specializing the system with respect to specific programs
and monitors.

9.1 Methodology

All experiments were run on a SUN Sparc station model 4/60fgx with a 20 MHz
clock, 16 Megabytes of main memory, a hard disk with an average seek time of 22
milliseconds, and running SunOS Unix Release 4.1.1.

From our Haskell specifications we derived Scheme implementations of the meta-
level interpreter (Section 8.2), the standard interpreter (Figure 17), a set of monitor
specifications (namely a profiler, a tracer and a debugger), and a suite of benchmark
programs (described in the next section).

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 531

For each of the monitor specifications, we generated an instrumented monitor
as described in Section 8.2.1. Then for each instrumented monitor and for each
benchmark program we generated an instrumented program as described in Sec-
tion 8.2.2. All resulting programs were compiled and run as Scheme programs. In
our benchmark programs, we tried to minimize runtime overhead by using type-
specific arithmetic and keeping storage allocation to a minimum. For the same
reason, all our measurements exclude the time for garbage collection. In each test
run the benchmark was iterated such that it would execute for a fixed processor
time (50-100 s). The number of iterations was typically in the hundreds and above.
The reported results are averages over all iterations.

9.1.1 Benchmark programs

The programs comprising the benchmark suite are:

• fac: Integer factorial. The standard recursive factorial program to calculate
the nth factorial (n = 12).

• power2: Integer power of 2, i.e. 2". A log n recursive program to compute 2"
(n = 28).

• deriv: Symbolic derivation. A straightforward recursive program for the sym-
bolic derivation of polynomials. The polynomials are represented symbolically
as a list and the result is a list representing the derivative of the input. The
expression used in this experiment is: 3x2 + ax + 2x + 5.

• qsort: The standard recursive quicksort routine using lists. We measured the
optimization for small lists because of the overhead of running the unoptimized
system for larger lists.

• nsqrt: Floating-point square root using Newton's method (n = 3.0, margin of
error e = le—6). This program is the only floating-point program in the suite,
and has the usual overheads associated with floating-point computations.

9.2 Benchmark results

In this section we present performance measurements for the following quantities:

• Partial evaluation time.
• Partial evaluation speedup.
• Comparison of instrumented interpreters.
• Comparison of instrumented programs.

9.2.1 Execution time for partial evaluation

Is it computationally expensive to instrument interpreters and programs using partial
evaluation? For the level I specialization in Section 8.2.1, specializing the meta-level
interpreter with respect to the eager interpreter and eager tracer took 17 seconds;
similar results were obtained for the other instrumented interpreters. Since we do
not expect the user to re-specialize her interpreter frequently, and because, as we

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

532 Kishon and Hudak

power2 n =
if (n == 0) then 1

else if isEven n
then sqr (power2 (n 'div ' 2))
else 2 * power2 (n - 1)

where isEven n = (2 * (n 'd iv ' 2)) == n
sqr x = x * x

(a) Power of 2 standard function.

power2 n =
if (n==0) then (1,1)

else if (isEven n)
then (sqr fres , fdeb+1)

where (fres,fdeb) = power2 (n 'div ' 2)
else (2*fres, fdeb+1)

where (fres,fdeb) = power2 (n-1)
where isEven n = (2 * (n 'd iv ' 2)) == n

sqr x = x * x

(b) Profiled power of 2 (O'Donnell and Hall).

power2 n =
power2' Qv fdeb -> (v.fdeb)) data data 0
where

power2' kont fdeb n =
Afdeb ->

((if (n == 0)
then kont 1
else if ((2 * (n 'dev' 2)) == n)

then power2' (Av (kont (v*v))) data (n 'div ' 2)
else power2' (Av -> kont (2*v)) data (n-1))

(fdeb+1))

(c) Monitoring semantics instrumented code.

Fig. 19. Comparison of instrumented power-of-2 programs.

will see later, this optimization entails speedups of up to 50 times, the overhead of
this task seems reasonable.

For the level II specialization in Section 8.2.2, the following listing shows partial
evaluation times (broken down into binding-time analysis (BTA) and specialization
times) for various benchmark programs. As can be seen, it takes 7-16 seconds to
instrument the benchmark programs (size ranging from three lines for f ac to about
30 lines for deriv) . This overhead should be weighed against the resulting increase
in performance, which in some cases is a 70-fold decrease in execution time (see
Section 9.2.2).

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 533

Program Activity BTA (sec.) Specialization (sec.)

PE((instrumented interpreter), f ac)
PE((instrumented interpreter), power2)
PE((instrumented interpreter), deriv)
PE((instrumented interpreter), qsort)
PE((instrumented interpreter), nsqrt)

tracing
profiling
profiling
tracing
tracing

4.45
4.11
4.11
4.45
4.45

2.24
3.63
11.96
3.87
3.85

9.2.2 Partial evaluation speedup

The following table compares the speedups gained by partial evaluation for the
benchmark programs:

Program

fac
power2
deriv
qsort
nsqrt

Unoptimized
system (ms)

478.42
568.17
2642.00
1554.50
494.00

Instrumented
interpreter (ms)

11.20 (x43)
14.17 (x40)
61.53 (x40)
36.82 (x42)
12.08 (x41)

Instrumented
program (ms)

0.69 (xl6)
0.34 (x42)
0.88 (x70)
2.34 (xl6)
1.16 (xlO)

Total
speedup

x693
X1671
x2797
x664
x425

The listing shows the execution times of the benchmark programs in the unopti-
mized system, the instrumented interpreter level, and the instrumented program level.
Each optimization removes one level of interpretation which results in the speedup
shown in parentheses. Every interpretation level contributes a slowdown of about
15-70 times. By removing these levels of interpretation using partial evaluation, the
speedup gained is up to three orders of magnitude (the largest speedup being 2797).
These results dramatically reveal the advantage of partial evaluation.

9.2.3 Comparison of instrumented interpreters

How well do our instrumented interpreters compare with other interpreters? Fig-
ure 20 compares the performance of our interpreter for the execution of the bench-
mark programs with:

• Standard interpreter. A conventional hand-written Scheme interpreter (Abelson
and Sussman, 1985), written in Scheme.

• Hand-crafted monitored interpreter. An instrumented version of the above
interpreter which propagates monitoring information through function pa-
rameters (similar to O'Donnell and Hall's method).

Notice that our automatically generated instrumented interpreter is 20-80% slower
than the standard interpreter and 10-50% slower than a hand-crafted monitoring

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

534 Kishon and Hudak

fae
(trace)

power2
(profile)

d.riv
(profile)

gsort
(trace)

nsgrt
(trace)

• Conventional interpreter [Abelson & Sussman]

D Ad hoc monitored interpreter

• Our monitored interpreter

26.79
26 84

H42 43
44.71

19.76
—11.77

12 08 execution time in milliseconds I

Fig. 20. Interpreters compared.

• Hand-crafted monitored program lOTtonnell& Hall] (Compiled T)

B Our monitored program (Compiled T)

116 execution time in milliseconds

Fig. 21. Instrumented programs compared.

interpreter. The slowdown of our interpreter is caused mainly by the additional
monitoring activity (vis-a-vis the standard interpretation) and the CPS form of our
monitoring interpreter (vis-d-vis the hand-crafted monitoring interpreter and the
standard interpreter which are specified in direct style). The overhead of CPS is
explored further in Section 9.2.4.

9.2.4 Comparison of instrumented programs

In this section we compare the performance of our automatically instrumented
programs with respect to handwritten instrumented programs.

Monitoring semantics versus O'Donnell and Hall. Figure 21 compares our instru-
mented benchmark programs with corresponding hand-crafted instrumented pro-
grams written using O'Donnell and Hall's technique (for actual code of some of the
instrumented programs see Section 8.2.2). Our instrumented programs run about 1.5-
2.8 times slower than their corresponding handwritten programs. This is probably a
result of the inherent CPS style of our code.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 535

Overhead of CPS. To assess the potential inefficiency of programs written in CPS,
the following compares some of our instrumented programs with the corresponding
non-monitored programs written in Scheme in both direct and CPS style.

Program Direct (ms) CPS (ms) Ours monitored (ms)

fac
qsort

nsqrt

0.12
0.22

0.58

0.20
0.56
0.72

0.69
1.98

1.16

Our instrumented programs are about 2-9 times slower than the standard Scheme
program written in direct style, and 1.6-3.5 times slower than the corresponding
CPS programs. However, this is an 'unfair' comparison since our programs are also
performing the monitoring activity. Nevertheless, these numbers can provide a feel
for the performance expected from our fully optimized system.

We also point out that the Orbit compiler performs a CPS transformation as
part of its normal compilation process, and thus our programs essentially undergo
a double CPS conversion! Note from the table that the CPS programs are about
1.3-2.5 slower than their direct style counterparts, a clear indication of the penalty
of the double conversion. As we discuss later in Section 10.2.1, an obvious direction
to explore is to interface our output directly with the intermediate form of Orbit (or
similar CPS-based compiler).

Monitoring semantics versus conventional systems. To assess our system's performance
compared to conventional facilities, we compared our tracer with the one used in
the Orbit/T system, which performs tracing by redefining a function so that it prints
tracing information at call and return time. Since the Orbit/T tracer only works on
interpreted code, for fairness we ran our programs interpreted as well. The following
listing presents the results:

Program Orbit/T traced (ms) Ours traced (ms)

fac
qsort

nsqrt

39.70
126.40
541.30

25.81
59.6
441.86

Note that our instrumented programs perform 1.2-2.0 times better than the
Orbit/T technique. This is probably because in the Orbit/T system, every function
call goes first through a function which prints the tracing messages and then calls
the original function, whereas partial evaluation has 'in-lined' our capability into the
function itself. The Orbit/T technique is also limited since it is based on redefinition
of top level functions, whereas our technique allows tracing local definitions. Finally,

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

536 Kishon and Hudak

our approach allows compilation of the instrumented programs, thus providing an
additional order of magnitude speedup.

10 Related and future work

The work presented in this paper, to the best of our knowledge, is one of the
first attempts to provide a general and formal framework for monitoring. However,
several ideas in programming language research has influenced or compares closely
with our work:

• O'Donnell and Hall's (1988; 1985) work is notable, and is closely related to
ours in its advocation of program instrumentation for debugging purposes. Our
work improves on theirs in that monitoring semantics provides a higher degree
of modularity and abstraction, monitors are derived automatically rather than
hand-crafted, monitors are compositional and proven not to interfere with the
standard semantics, and we have explored a broader range of monitors.

• Shapiro's work on the use of enhanced meta-circular interpreters for debug-
ging Prolog programs (Shapiro, 1982; Sterling and Shapiro, 1986) was the first
to note the power of meta-circular interpreters for debugging purposes.

• Safra and Shapiro's (1989) work, which advocates the use of partial evaluation
to instrument programs with monitoring activities. Our work has much in
common with theirs, but many of the details are different because of the dif-
ferences between logic and functional programming. Our work extends theirs
conceptually in at least one important way: the use of partial evaluation to
generate instrumented interpreters, not just instrumented programs.

• Various efforts at using functionals to specify semantics, in particular seman-
tics involving notions of inheritance (Cook and Palsberg, 1989; Hudak and
Young, 1988; Reddy, 1988). To the best of our knowledge, the monitoring
semantics framework is unique in providing an extensive exploration of this
technique as a method to enhance semantics.

There are several avenues of future research stemming from the results in this
paper, as outlined below.

10.1 'Destructive' monitoring

We can classify monitoring activities into two major categories: neutral and non-
neutral activities. Neutral activities only measure or determine the values of certain
parameters associated with the dynamic state of the evaluation. On the other hand
non-neutral monitoring activities aim at changing standard program behaviour to
obtain debugging information (e.g. modifying run time values of certain arguments).

Though such capability obviously sacrifices the correctness property, in practice
non-neutral monitoring activities are widely used. The current design of our system
only allows monitoring functions to modify their own monitor state. If we would like
monitors to change program behaviour we must provide the monitoring functions
with more freedom.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 537

Changing runtime values For example, to enable the change of identifier values
we could allow monitoring functions to modify the environment. Thus, instead of
returning just their updated state, monitoring functions would also return an updated
environment. Such non-neutral monitoring functions would have functionality:

Jtfre : Ann - • Exp - • Env - • MS -> (MS x Env)

JlS
post : Ann - • Exp - • Env - • D - • MS -> (MS x Env)

Continuations and reverse execution Another very interesting direction is integrating
the monitor more closely with the continuation passing style, so that the monitoring
functions would receive the continuation as an argument:

Jffre : Ann - • Exp - • Env - • MS -»• Kont —• Ansmon

Jtfost : Ann - • Exp - • Env -> D - • MS ->• Kont - • Ansmon

The continuation could then be stored and invoked later, for example. This would
allow the user to 'travel back in time' to previous execution states. Tolmach and
Appel (1990) have been using such a technique to provide 'reverse-execution' for
ML.

Communicating monitors Currently monitors can only read and update their own
state. However, it may be desirable for monitors to communicate and share informa-
tion. This can be easily implemented by allowing each monitoring function to read
and update other monitors' states. Note that if we only provide a read capability,
our correctness result still holds. However, if monitors can update other monitors'
states we can no longer ensure non-interference amongst monitors.

10.2 Implementing monitors for other languages

Can our methodology be scaled up from the kernel functional languages treated
here to meet the demands of 'real' programming languages? As stated earlier,
the framework is applicable to any language which admits continuation semantics
specification. This includes a large family of programming languages: imperative,
logic, functional, etc. In Kishon (1992) the specification of a monitoring system for
a simple Pascal-like language is given. The implementation strategy repeats itself
almost identically.

An interesting question is what happens in imperative languages in case of
jumps, non-local exits, or even call-with-current-continuation constructs. Recall
that the post monitoring function is embedded in the continuation. However, in
jump-like commands (e.g. goto's, callcc, etc.) the continuation is discarded for a
new continuation. As a result, post-monitoring activity is lost together with its
continuation. Is this a feature or a bug? We believe that this behaviour is faithful
to the actual intent; by jumping we do not conclude the evaluation and therefore
it is expected that the post monitoring function would not be called. However, this
could be changed by identifying the program points where a jump may occur and
calling the post-monitoring function just before the jump.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

538 Kishon and Hudak

10.2.1 'Industrial-strength' Implementation

Every theory longs for its 'industrial-strength implementation'. In most cases such
longings remain unanswered. We believe that the methodology presented in this
paper can effectively be used as a basis for such an implementation. Still, to provide
reasonable industrial-strength performance we need to improve our system in the
following ways:

Tight integration with CPS-based compiler In order to exploit CPS rather than be
penalized by it (Section 9.2.4), it is desirable for the system to be integrated more
tightly with the compiler, since a certain degree of 'compilation' has already been
done. This would be most easily done with a CPS-based compiler, such as Orbit or
Standard ML of New Jersey (Appel and Jim, 1989).

Better partial evaluation technology Our system depends heavily on the performance
of the partial evaluator. Schism performed admirably for this purpose, but at the
time of our experiments it was not quite 'industrial strength'. Since then, Schism
has been improved in many directions: better residual code, better BTA analysis,
and improved user interface. As partial evaluation technology improves so is the
performance and effectiveness of our methodology. But in addition, we would
prefer a partial evaluator for Haskell to take advantage of Haskell's similarity to
denotational semantics notation.

10.3 User-defined monitors

We believe that our methodology is well-structured enough to permit user-defined
monitors; our correctness results provide a degree of safety and modularity not
achievable before. We envision a programming environment which provides a toolbox
of common monitors to which the user may add his or her own monitors and
compose them safely with existing ones. Ultimately this environment could be
populated with different language modules (e.g. Pascal, C, ML, Haskell, etc.), and
with proper engineering it will have good performance.

10.4 Strict versus non-strict debugging

There seems to be some consensus that monitoring approaches for languages based
on different orders of evaluation are inherently different. However, our monitor
specifications for the strict and non-strict interpreters share a large amount of code.
Indeed, it is quite surprising that the lazy debugger, for example, differs only in
seven lines of code from its eager counterpart. A closer look at the code reveals
that most differences are related to how values are retrieved from the environment.
This suggests that by a proper modular design, debugging environments for multiple
languages can be made to share most of their code.

On the other hand, it could be argued that our sequential interpretation of lazy
evaluation is artificial, and too operational. More research is required to explore
other solutions to this problem.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 539

Acknowledgements

We wish to thank Charles Consel for his involvement in earlier phases of this
research, in particular his assistance in the use of Schism. Funding for this research
was received from the Advanced Research Projects Agency under ONR contracts
N00014-90-C-0024 and N00014-91-J-4043.

A Haskell support code

In this appendix we present some common datatypes and utility functions used by
the Haskell specifications presented earlier.

General datatypes

type Functional a = a -> a
type ProgramText = String
type Id = String
type FunName = String
type ArgName = String
type ValString = String
type IdeName = String

Standard algebras

— STACKS —

type StackType a = [a]

stkEmpty :: StackType a

stkEmpty = []

stkPush :: a -> StackType a -> StackType a

stkPush x s = x:s

stkPop :: StackType a -> StackType a

stkPop (_:s) = s

stkTop :: StackType a -> a

stkTop (x:_) = x

— SETS —

type SetType a = [a]

setEmpty :: SetType a

setEmpty = []

setMember :: (Eq a) => a -> SetType a -> Bool

setMember x [] = False

setMember x (y:xs) = (x == y) II setMember x xs

setlnsert :: (Eq a) => a -> SetType a -> SetType a

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

540 Kishon and Hudak

setlnsert x xs = x:[y I y <- xs, x /= y]

setDelete : : (Eq a) => a -> SetType a -> SetType a

setDelete x s = filter ((/=) x) s

— ASSOCIATION LISTS —

type AssocType a b = [(a,b)]

assocEmpty :: AssocType a b

assocEmpty = []

assocPut : : (Eq a) => a -> b -> AssocType a b -> AssocType a b

assocPut id x [] = [(id,x)]

assocPut id x ((id',y):rest) I id==id' = (id,x):rest

I otherwise = (id',y):

(assocPut id x rest)

assocGet :: (Eq a) => a -> AssocType a b -> b

assocGet id ((id',x):rest) I id==id' = x

I otherwise = assocGet id rest

assocExist :: (Eq a) => a -> AssocType a b -> Bool

assocExist id [] = False

assocExist id ((id',x) :rest) = (id == id') II (assocExist id rest)

— ENVIRONMENTS —

type EnvType key value = key -> value

envUpd : : (Eq key) => EnvType key val -> key -> val -> EnvType key val

envUpd env id val = env' where

env' id' I id == id' = val

I otherwise = env id'

envEmpty :: val -> EnvType key val

envEmpty undefVal = ikey -> undefVal

— STORES —

type StoreType storeableVal = (Loc, EnvType Loc storeableVal)

type Loc = Int

storeEmpty :: undefVal -> StoreType undefVal

storeEmpty undefVal = (1,envEmpty undefVal)

storeLook :: StoreType a -> Loc -> a

storeLook (l.env) loc = env loc

storeUpd : : StoreType a -> Loc -> a -> StoreType a

storeUpd (l.env) loc val = (1,envUpd env loc val)

storeAlloc :: StoreType a -> (Loc.StoreType a)

storeAlloc (l.env) = (1,(1+1,env))

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 541

B An interactive source-level debugger

In Section 7 we described how to synthesize an interactive monitor. In this section
we specify a particular source-level interactive debugger for the languages presented
in Section 2.

Debugger annotations

The debugger annotations are similar to the tracer annotations; every function body
is annotated with a label - LDebug - which provides the debugger with information
about the function: the function name, its formal arguments and the the names
of the local definitions. Another debugger label which was already discussed in
Section 7.3 is LBreak. This label is reported at every interpretive step thus allowing
the debugger to single step through the execution.

Debugger algebras

The debugger maintains a stack, called the frame stack, which records the frame of
each function call; each such frame records the function name, its formal arguments
identifiers and the names of local definitions. This stack is updated before every
function call and after its return. In addition, the debugger maintains a set of
breakpoints represented by function names. The user can add or delete functions
from this set. All these arguments and more are captured within the monitor state.

Monitoring functions

The monitoring functions perform the simple chore of updating the frame-stack
whenever a function call/return occurs. In addition, the pre-monitoring function
enters the interactive session with the user whenever a break is desired.

B.I Source-level debugger for strict functional language

Figures 22—23 contain the full specification of the debugger for eager, which
responds to the following commands:

• run: begin/continue with the execution of the program.
• step: perform a single interpretive step.
• list: display the next expression to be evaluated.
• stop (fn): stop execution when function {fn) is called.
• unstop {fn): clear breakpoint at function {fn).
• show: display the formal and local arguments of the current function.
• eval {exp): evaluate {exp) with current dynamic environment.
• debug {exp): debug {exp) with current dynamic environment (recursive debugging).
• where: display the current function call chain.

Other commands like watch points, tracing, stopping at line numbers etc. can be
added to this debugger using the same methodology.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

542 Kishon and Hudak

module EagerDebug where

SYNTAX
— Debugger Label Syntax: a call frame and a break

data Label = LDebug FunName [ArgName] [ArgName] I LBreak

annotate :: Exp -> Exp — omitted

ALGEBRAS

type Frame = (FunName, [ArgName] , [ArgName])

type IOState = (InChan,OutChan,MonState) — Input x Output x MonState

type SemArgs = Env — semantic arguments

type KontArgs = D — continuation arguments

— Debugger State: stop-at set, call-frame stack, and single-step flag

type MonState = (SetType Id, StackType Frame, Bool)

updStp stp (_ .stk.brk) = (stp,stk,brk) — State updaters

updStk stk (stp, _ ,brk) = (stp.stk.brk)

updBrk brk (stp,stk, _) = (stp.stk.brk)

writeUsr :: String -> OutChan

writeUsr msg = msg ++ "\n"

readUsr :: InChan -> (String,InChan)

readUsr inChan = (usrlnput, inChan') where (usrlnput.inChan') = lex inChan

getCmd :: Exp -> SemArgs -> InChan -> MonState -> IOState

getCmd exp semArgs inp dstate = (inp3, outl++out2++out3, dstate3)

where outl = writeUsr "command?"

(cmd.inpl) = readUsr inp

(resume,(inp2,out2,dstate2)) = processCmd cmd exp semArgs inpl dstate

(inp3,out3,dstate3) = if resume then (inp2,[],dstate2)

else getCmd exp semArgs inp2 dstate2

processCmd :: String->Exp->SemArgs->InChan->MonState->(Bool,IOState)

processCmd cmd exp semArgs inp dstate9(stp,stk,brk) = case cmd of

"run" -> (True, (inp, [] .dstate))

"step" -> (True, (inp, [],updBrk True dstate))

"list" -> (False, (inp, writeUsr (show (delabel exp)), dstate))

"stop" -> (False,(inpl, [].updStp (setlnsert fn stp) dstate))

where (fn.inpl) = readUsr inp

"unstop" -> (False, (inpl, [],updStp (setDelete fn stp) dstate))

where (fn.inpl) = readUsr inp

"show" -> (False,(inp, outl++out2, dstate))

where (fn.fvars.lvars) = stkTop stk

outl = writeVars "formal " fvars semArgs

out2 = writeVars "local " lvars semArgs

"eval" -> (False,recDebug semArgs inp dstate False)

"debug" -> (False,recDebug semArgs inp dstate True)

"where" -> (False, (inp, writeUsr (show fns), dstate))

where fns = [fn I (fn,_,_) <- stk]

otherwise -> (False, (inp,writeUsr "<undef command>", dstate))

Fig. 22. Source-level debugger for eager (part 1).

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 543

recDebug :: SemArgs -> InChan -> MonState -> Bool -> IOState

recDebug currentSemArgs inp dstate®(stp,stk,brk) isDebug = (inp2,out3,dstate)

where (Interpreter parse evalf semArgs kont) = interpreter

interpreter' = Interpreter parse evalf currentSemArgs kont

debugger' = IOMonitor "debug" annotate pre post

(setEmpty,stkEmpty,isDebug)

[(exp, inpl)] = reads inp

(inp2,out2) = execute (debugger' & interpreter') (delabel exp) inpl

out3 = if isDebug

then writeUsr " » Enter Recursive Debug" ++

out2 ++ writeUsr " » Exit Recursive Debug"

else out2

interpreter = eager

writeVars :: String -> [Id] -> SemArgs -> OutChan

writeVars prefix ids semArgs =

case ids of [] -> []

(id:rest) -> writeUsr out ++ writeVars prefix rest semArgs

where out = prefix ++ id ++ " = " ++ getldVal semArgs id

getldVal :: SemArgs -> Id -> String

getldVal env id = case (env id) of (Num n) -> show n

(Bol b) -> show b

(Fun f) -> "<fun>"

(DUndef) -> "<undef>"

writeTrace :: SemArgs -> (StackType Frame) -> OutChan

writeTrace semArgs stk = (writeUsr ("Stop in " ++ fn)) ++ out

where (fn,fargs,_) = stkTop stk

out = writeVars "Formal argument " fargs semArgs

— MONITORING FUNCTIONS —

pre :: Label -> Exp -> SemArgs -> MonState -> InChan -> IOState

pre label exp semArgs dstate@(stp,stk,brk) inp = case label of

(LBreak) -> if brk then getCmd exp semArgs inp (updBrk False dstate)

else (inp, [] ,dstate)

(LDebug fn fvars lvars) ->

if setMember fn stp then (inp,writeTrace semArgs stk',updBrk True dstate')

else (inp, [] , dstate')

where stk' = stkPush (fn,fvars,lvars) stk

dstate' = updStk stk' dstate

post :: Label->Exp->SemArgs->KontArgs->MonState->InChan->IOState

post label exp semArgs result dstate3(stp,stk,brk) inp = case label of

(LBreak) -> (inp, [] .dstate)

(LDebug fn fvars lvars) -> (inp,[].updStk (stkPop stk) dstate)

— PUTTING IT ALL TOGETHER —

eagerDebugger :: IOMonitorType Label Exp Env D MonState

eagerDebugger = IOMonitor annotate pre post (setEmpty,stkEmpty,True)

Fig. 23. Source-level debugger for eager (part 2).

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

544 Kishon and Hudak

Run> main (eagerDebugger & eager) simpleFact3

command? stop fac

command? run

Stop in fac

Formal argument n = 3

command? show

formal n = 3

local r = <undef>
command? run

Stop in fac
Formal argument n = 2

command? where

[fac, fac]

command? step

command? list

(n==0)

command? eval n

the result is:2

command? debug (fac 0)

» Enter Recursive Debug

command? stop fac

command? run

Stop in fac

Formal argument n = 0

command? step

command? list

(n==0)

command? step

command? step

command? step

command? list

1

command? step

the result is:l

» Exit Recursive Debug

command? unstop fac

command? Tim

the result is: 6

Fig. 24. Debugging simpleFact3 with eagerDebugger.

The session shown in Figure 24 was produced by debugging the execution of
simpleFact3, whose annotated abstract syntax is given by:

letrec fac = lambda n . {LDebug fac(n)(r)}:
if n=0 then 1 else let r = fac (n-1) in n * r

in fac 3

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 545

Main> main (lazyDebugger & lazy) silly

command? list

letrec baz = lambda x . x + 1

letrec foo = lambda x y . baz x

in foo 3 2

command? stop baz

command? run

Stop in baz

Formal argument x = <thunk> {x is a thunk)
command? eval x

the result i s : 3 {x is forced in recursive eval}
command? show

formal x = <thunk> {x remains unevaluated!}
command? l i s t

x + 1
command? s tep
command? s tep
command? s tep
command? s tep
command? show

formal x = 3 {eventually x is forced}
command? run
the result is :4

Fig. 25. Debugging s i l ly with lazyDebugger.

B.2 Source-level debugger for a Non-strict functional language

In the previous section we presented the specification of a debugger for the eager
interpreter. Interestingly, only minor changes (seven lines of code) are necessary to
transform the eager debugger into a fully lazy one. As in previous monitor examples,
the changes are mostly related to the way identifier values are looked up in the
environment. Specifically, the following changes are required:

• Redefine SemArgs and KontArgs. We change the semantic domains types to
reflect the lazy interpreter domains:

type SemArgs = (Env, Store)
type KontArgs = (D, Store)

• Change interpreter used in recDebug.

interpreter = lazy

• Change the way identifier values are lookup in the semantic domains. getldVal
now is passed the environment and the store as the semantic arguments and

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

546 Kishon and Hudak

instead of a simple environment lookup we need to go through the store to
get the actual value.

getldVal :: SemArgs -> Id -> String
getldVal (env,store) id = case (storeLook store (env id)) of

(Val d) -> show d
(Thunk t) -> "<thunk>"
(StoreValUndef) -> "<undef>"

• Finally, assign the new debugger to lazyDebugger:

lazyDebugger = IOMonitor annotate pre post (setEmpty.stkEmpty.True)

Obviously, the lazy debugger has similar functionality as the eager debugger, yet
preserves lazy evaluation. To demonstrate this debugger in action, we present in
Figure 24 a session that was produced by debugging s i l l y (Section 5.1.2).

In addition to its laziness and consistency this debugger has some other novel
features. In particular, like the tracer for lazy, unevaluated values are represented
as <thunk>s, and the user is presented with a faithful rendition of the sequential lazy
evaluation order. Nevertheless, one can force values in recursive debugging without
affecting the value at the current evaluation state - this provides an elegant way to
'peek' into thunks without disturbing the actual lazy evaluation order (for example,
see how x is forced in the s i l l y debugging session).

References

Abelson, H., Sussman, G. J. and Sussman, J. (1985) Structure and Interpretation of Computer
Programs. MIT Press.

Allison, L. (1986) A Practical Introduction to Denotational Semantics. Cambridge University
Press.

Appel, A. W. and Jim, T. (1989) Continuation-passing, closure-passing style. In: ACM
Symposium on Principles of Programming Languages, pp. 193-302, January.

Berry, D. (1991) Generating Program Animators from Programming Language Semantics. PhD
thesis, University of Edinburgh, June.

Bertotm Y. (1988) Occurrences in debugger specifications. In: Proceedings ACM Conference
on Programming Languages Design and Implementation. ACM, June.

Bjorner, D., Ershov, A. P. and Jones, N. D. (1988) Partial Evaluation and Mixed Computation.
North-Holland.

Clinger, W. and Rees, J. (1991) Revised4 report on the algorithmic language scheme. Technical

Report MIT AI MEMO, MIT, Cambridge, MA, November.

Cook, W. and Palsberg, J. (1989) A denotational semantics of inheritance and its correctness.

In: 00 PS LA 1989. SIGPLAN Notices, 24(10), October.

Delisle, N. M., Menicosy, D. E. and Schwarts, M. D. (1984) Viewing a programming
environment as a single tool. In: Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments, April. (SIGPLAN
Notices, 19(5), May.)

Dybvig, K. R., Friedman, D. P. and Haynes, C. T. (1988) Expansion-passing style: A general
macro mechanism. In: Lisp and Symbolic Computation, 1, pp. 53-75. Kluwer Academic.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

Semantics directed program execution monitoring 547

Hall, C. V. and O'Donnell, J. T. (1985) Debugging in a side effect free programming environ-
ment. In: Proceedings SIGPLAN Symposium on Programming Languages and Programming
Environments, June.

Hudak, P. and Fasel, J. (1992) A gentle introduction to Haskell. ACM SIGPLAN Notices,
27(5), May 1992.

Hudak, P., Peyton Jones, S. and Wadler, P. (eds.) (1992) Report on the Programming Language
Haskell, A Non-strict Purely Functional Language (Version 1.2). SIGPLAN Notices, 27(5),
May.

Hudak, P. and Young, J. (1988) A collecting interpretation of expressions (without powerdo-
mains). In: Proceedings of the ACM Symposium of Principles of Programming Languages.
ACM.

Jones, N. D., Sestoft, P. and Sondergaard, H. (1987) Mix: a self-applicable partial evaluator
for experiments in compiler generation. Technical Report DIKU Report 87/08, University
of Copenhagen, Denmark.

Kishon, A. (1992) Theory and Practice of Semantics-directed Program Execution Monitoring.

PhD thesis, Yale University, May. (Also Yale Research Report YALEU/DCS/RR-905.)

Kishon, A., Hudak, P. and Consel, C. (1988) Monitoring semantics: A formal framework for
specifying, implementing and reasoning about execution monitors. In: Proceedings of the
ACM Conference on Programming Languages Design and Implementation. ACM, June.

Kranz, D. A. (1988) ORBIT: An Optimizing Compiler for Scheme. PhD thesis, Yale University.

Kranz, D. A., Kelsey, R., Rees, J. A., Hudak, P., Philbin, J. and Adams, N. I. (1986) Orbit: An
optimizing compiler for Scheme. In: Proceedings of the SIGPLAN Symposium on Compiler
Construction, pp. 219-233, June.

Lee, P. (1989) Realistic Compiler Generation. MIT Press.

O'Donnell, J. T. and Hall, C. V. (1988) Debugging in applicative languages. In: Lisp and

Symbolic Computation, 1. Kluwer Academic.

Reddy, U. (1988) Objects as closures: Abstract semantics of object oriented languages. In:

ACM Conference on Lisp and Functional Programming.

Safra, S. and Shapiro, E. (1989) Meta interpreters for real. In: Concurrent Prolog, collected
papers. Vol. 2. MIT Press.

Shapiro, E. (1982) Algorithmic Program Debugging. MIT Press.

Sterling, L. and Shapiro, E. (1986) The Art of Prolog, Advanced Programming Techniques.

MIT Press.

Tennent, R. G. (1977) A denotational definition of the programming language Pascal. Technical
Report Technical Report 77-47, Department of Computing Sciences, Queen's University,
Ontario.

Tolmach, A. P. and Appel, A. W. (1990) Debugging Standard ML without reverse engineering.

In: Proceedings ACM Conference on Lisp and functional programming, June.

Toyn, I. and Runciman, C. (1986) Adapting combinator and seed machines to display
snapshots of functional computations. New Generation Computing, 4:339—363.

https://doi.org/10.1017/S0956796800001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001465

