ERRATUM

THE REPRESENTATION OF LINEAR OPERATORS ON SPACES OF FINITELY ADDITIVE SET FUNCTIONS

by C. A. CHENEY and A. DE KORVIN (Received 20th August 1977)

The following changes should be made in the statement of Theorem 3.1 and its proof.

A set function $\Psi: \Sigma \to Y$ is said to be λ -convex if whenever A and B are in Σ with $A \cap B = \phi$, then

$$\Psi(A \cup B) = \frac{\lambda(A)}{\lambda(A \cup B)} \Psi(A) + \frac{\lambda(B)}{\lambda(A \cup B)} \Psi(B).$$

Then in Theorem 3.1 "finitely additive" should be replaced by " λ -convex." It is straightforward to verify that Ψ as defined in the proof is λ -convex.

The proof for the uniqueness of Ψ should be as follows:

Suppose $T(\mu) = \int \Psi_1 d\mu = \int \Psi_2 d\mu$ where Ψ_1 and Ψ_2 are λ -convex. Then

$$T(W_E) = \int \Psi_1 \, dW_E = \lim \sum W_E(A) \Psi_1(A) = \lim \sum \frac{\lambda_E(A)}{\lambda(E)} \Psi_1(A)$$

where each limit is taken over partitions π of E and each sum taken over A in π . But by the λ -convexity of Ψ_1 , the sum in the last limit is just $\Psi_1(E)$. Similarly, $T(W_E) = \Psi_2(E)$. Therefore, $\Psi_1(E) = \Psi_2(E)$.

A corresponding change should be made in Theorem 4.3: Ψ is λ -convex and uniqueness is proved in much the same way as above.

Indiana State University Terre Haute Indiana 47809