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On Subcritically Stein Fillable 5-manifolds

Fan Ding,Hansjörg Geiges, and Guangjian Zhang

Abstract. We make some elementary observations concerning subcritically Stein ûllable contact
structures on 5-manifolds. Speciûcally, we determine the diòeomorphism type of such contact
manifolds in the case where the fundamental group is ûnite cyclic, and we show that on the 5-
sphere, the standard contact structure is the unique subcritically ûllable one. More generally, it is
shown that subcritically ûllable contact structures on simply connected 5-manifolds are determined
by their underlying almost contact structure. Along theway, we discuss the homotopy classiûcation
of almost contact structures.

1 Introduction

A Stein domain in the sense of [4, Deûnition 11.14] is a compact manifold W with
boundary admitting a complex structure J and a J-convex Morse function for which
the boundary ∂W =∶ M is a regular level set. We shall write a Stein domain as a pair
(W , J), although, strictly speaking, the J-convex Morse function is part of the data.
_e complex tangencies TM ∩ J(TM) deûne a contact structure.
A closed contact manifold (M , ξ) is said to be Stein ûllable if it arises in thisway as

the boundary of a Stein domain. It iswell known that a Stein domain of dimension 2n
has a handle decomposition, adapted to the Stein structure, with handles of index at
most equal to n. A Stein ûlling is called subcritical if there are no handles of index n.

In this note we are concerned with topological and contact geometric aspects of
subcritically Stein ûllable contact 5-manifolds. _e ûrst resultwewant to discuss gives
a uniqueness statement for the diòeomorphism type of such contact manifolds when
it has a ûnite cyclic fundamental group. _is extends a corresponding result for simply
connected contact manifolds due to Bowden–Crowley–Stipsicz [3]. _emain issue is
one of simple homotopy theory, which in our examples can be addressed with results
of Hambleton–Kreck [7] on 2-complexes and, as in [3], the Mazur–Wall theory of
thickenings.

In order to state the result, we need to introduce certain model manifolds. Let
m ≥ 2 be an integer. Write Lm for the 3-dimensional lens space L(m, 1) with an open
3-disc removed. _is space Lm can be obtained from a solid torus S1×D2 by attaching
a 2-handle along an (m,−1)-torus not in ∂(S1 × D2).
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OrientedD3-bundles over Lm are classiûed by the second Stiefel–Whitney classw2
(this standard fact will be elucidated in the proof of_eorem 1.1). Since H2(Lm ;Z2)

is trivial for m odd, and isomorphic to Z2 for m even, the only D3-bundles are the
product Lm ×D3 and, for m = 2n even, the non-trivial bundle L2n×̃D3. A�er round-
ing of corners, we can think of the total spaces of these bundles as manifolds with
boundary.

Similarly, over S2 we have the trivial S3-bundle S2 × S3, and the non-trivial one
S2×̃S3. In [3, Proposition 7.4] it was shown that if (M , ξ) is a closed, simply connected
5-dimensional contact manifold admitting a subcritical Stein ûlling, then M is dif-
feomorphic to #rS2 × S3 if M is spin, and S2×̃S3#r−1S2 × S3 if M is not spin, where
r = rankH2(M;Z).

Our ûrst result extends this to ûnite cyclic fundamental groups.

_eorem 1.1 Suppose that (M , ξ) is a closed, connected contact 5-manifold admit-
ting a subcritical Stein ûlling, with π1(M) ≅ Zm for some integer m ≥ 2. Set r =

rankH2(M;Z).
(i) If m = 2n + 1 is odd, then M is diòeomorphic to

∂(L2n+1 × D3
)#r(S2

× S3
) or ∂(L2n+1 × D3

)#(S2
×̃S3

)#r−1(S2
× S3

),

depending on whether M is spin or not.
(ii) If m = 2n is even, then M is diòeomorphic to

∂(L2n × D3
)#r(S2

× S3
)

ifM is spin, and to

∂(L2n×̃D3
)#r(S2

× S3
) or ∂(L2n × D3

)#(S2
×̃S3

)#r−1(S2
× S3

)

when M is not spin.
_e diòeomorphism type of the subcritical Stein ûlling is determined by M.

On any of thesemanifolds, each homotopy class of almost contact structures contains
a subcritically Stein ûllable contact structure, unique up to isotopy, with a Stein ûlling,
unique up to Stein homotopy.

_e strategy for proving this theorem is as follows. First, we use homotopy-theo-
retic methods to arrive at a topological classiûcation of the potential subcritical ûll-
ings. We then appeal to the fundamental work of Cieliebak–Eliashberg [4] that re-
duces the existence and classiûcation question for Stein structures in the subcriti-
cal case, yet again, to a problem of homotopy theory. _e relevant results from [4]
will be recalled below. _at second homotopy-theoretic problem, the homotopy clas-
siûcation of almost contact and almost complex structures on 5-dimensional and
6-dimensional manifolds, respectively, is amatter of classical obstruction theory; see
Section 2.
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_e same strategy, combined with the results of [3], allows us to complete our dis-
cussion of subcritical Stein ûllings of simply connected 5-manifolds in [5], whichwas
written previous to [4] being available.

_eorem 1.2 Let M be a closed, simply connected 5-manifold admitting a subcritical
Stein ûlling, that is, one of the manifolds #rS2 × S3 or S2×̃S3#r−1S2 × S3. _en each
homotopy class of almost contact structures contains a subcritically Stein ûllable contact
structure, unique up to isotopy, with a Stein ûlling, unique up to Stein homotopy.

Two particular consequences (or special cases) of this result are worth noting.
Here, for (M , ξ) a contact manifold, c1(ξ) ∈ H2(M;Z) denotes the ûrst Chern class
of ξ; recall that a contact structure carries a complex bundle structure, unique up to
homotopy [6, Proposition 2.4.8].

Corollary 1.3 (i) Any subcritically Stein ûllable contact structure on S5 is isotopic
to the standard contact structure.

(ii) Let (M i , ξ i), i = 1, 2, be two simply connected subcritically Stein ûllable con-
tact 5-manifolds. If there is an isomorphism ϕ∶H2(M1;Z) → H2(M2;Z) such that
ϕ(c1(ξ1)) = c1(ξ2), then (M1 , ξ1) and (M2 , ξ2) are contactomorphic.

Part (i) conûrms an expectation from [5, Section 6]. Part (ii)was proved in [5,_e-
orem 4.8] under the additional assumption that the ûllings contain no 1-handles. As
pointed out by the referee, an isomorphism ϕ as required by part (ii) of the corollary
exists if and only if the Chern classes c1(ξ1) and c1(ξ2) have the same divisibility in
the free abelian group H2(M i ;Z); see [8,_eorem 8.20]. _us, the divisibility of the
ûrstChern class is the only contactomorphism invariant of a subcritically Stein ûllable
contact structure on a simply connected 5-manifold.

2 Homotopy Classification of Almost Contact Structures

In this section we discuss the homotopy classiûcation of almost contact structures on
5-manifolds, correcting a negligence in [6]. Likewise, we describe the classiûcation
of almost complex structures on 6-manifolds, correcting a similar oversight in [17].
_ese classiûcation results are key ingredients in the proof of_eorems 1.1 and 1.2.
A careful discussion of this homotopy classiûcation can be found in M. Hamilton’s

thesis [8, VIII.4], and our reasoning goes along the same lines. We show that by a
closer look at this obstruction-theoretic argument, one can in fact exhibit a free and
transitive action of the second cohomology group on the space of almost contact (resp.
complex) structures.

Let M be a compact (not necessarily closed), oriented 5-manifold. A choice ofRie-
mannian metric on M, or equivalently, a reduction of the structure group of the tan-
gent bundle to SO(5), allows us to describe the tangent bundle TM in terms of a clas-
sifying map f ∶M → BSO(5). Deûne the inclusion U(2) ⊂ SO(5) by the embedding
C2 ≡ R4 ×{0} ⊂ R5. Any subgroup G ⊂ O(5) acts on the space V(5) of orthonormal
5-frames in R∞, and this deûnes the universal bundles V(5) → BG ∶= V(5)/G. _e
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quotientBG is the classifying space forG-bundles; see [18, SectionA.2]. _e inclusion
U(2) ⊂ SO(5) deûnes a ûbration p∶BU(2)→ BSO(5) with ûbre F5 ∶= SO(5)/U(2).
An almost contact structure on M is a reduction of the structure group of TM

from SO(5) to U(2), which amounts to a li� f̃ of the classifying map f :

BU(2)

M
f
-

f̃ -

BSO(5)

p
?

_e li�ing condition p ○ f̃ = f is equivalent to saying that themap

M ∋ x z→ σ(x) ∶= (x , f̃ (x)) ∈ M × V(5)/U(2)

is a section of the induced bundle E ∶= f ∗V(5)/U(2) = f ∗BU(2) over M with û-
bre F5. _is is the obstruction-theoretic setting of [15, Part III]. Notice that f ∗V(5)
is the frame bundle of M.
From now onwewill interpret almost contact structures on M as sections σ of this

bundle E → M. Homotopy of almost contact structures means homotopy of such
sections.

Lemma 2.1 _e U(2)-bundle f̃ ∗V(5) → M corresponding to the almost contact
structure deûned by f̃ equals the pull-back of the U(2)-bundle f ∗V(5) → E under the
map σ ∶M → E.

Proof Write the two relevant universal bundles as

πSO∶V(5)Ð→ BSO(5) and πU∶V(5)Ð→ BU(2).

_en
f ∗V(5) = {(x , v) ∈ M × V(5)∶ f (x) = πSO(v)} ,

and the bundle projection πE ∶ f ∗V(5)→ E is given by

πE(x , v) = (x , πU(v)) ∈ f ∗BU(2) = E .

Under σ this pulls back to

{(x ,w) ∈ M × f ∗V(5)∶ σ(x) = πE(w)} ,

with the obvious projection map to M. _is space can be rewritten as

{(x , v) ∈ M × V(5)∶ f̃ (x) = πU(v)} ,

which is the total space of the bundle f̃ ∗V(5)→ M.

_e ûbre F5 of the bundle E → M is diòeomorphic to CP3; see [6, Lemma 8.1.2
and Proposition 8.1.3]. From the homotopy exact sequence of the generalised Hopf
ûbration S1 ↪ S7 → CP3, one then sees that the homotopy groups π i(F5) are trivial
for i = 0, 1, 3, 4, 5, and π2(F5) ≅ Z.

Since the ûbre F5 is simply connected, it is in particular 2-simple in the sense of
[15, §16.5]; i.e., the fundamental group operates trivially on π2(F5). Moreover, the
structure group SO(5) of the bundle E → M is connected. From [15, §30.4] it then
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follows that the bundle of coeõcients over M whose ûbre over x is the homotopy
group π2(Ex) ≅ Z of the ûbre Ex of E is actually a trivial bundle. _is implies that the
obstruction to extending a section of E over the 2-skeleton ofM to the 3-skeleton is a
cohomology class inH3(M;Z). Given two sectionsof E → M that arehomotopicover
the 1-skeleton, the obstruction to homotopy over the 2-skeleton lives in H2(M;Z).
Similarly, the obstruction cocycles are simply integral chains.

_e obstruction class for the existence of a section over the 3-skeleton can be iden-
tiûedwith the third integral Stiefel–Whitney classW3(M); see [6, p. 370]. By the van-
ishing of the other relevant homotopy groups of F5, this class is the only obstruction
to the existence of an almost contact structure. Likewise, the only obstruction to ho-
motopy of two almost contact structures is the primary diòerence class in H2(M;Z).

We can now formulate the homotopy classiûcation of almost contact structures.
Regarding an almost contact structure as a U(2)-bundle, we can sensibly speak of its
ûrst Chern class c1, which is a homotopy invariant. In the following statement and its
proof we allow ourselves to identify an almost contact structure with the homotopy
class it represents. _e k-skeleton of M will be denoted by M(k).

Proposition 2.2 Let M be a compact, oriented 5-manifold withW3(M) = 0. _ere is
a free and transitive action of H2(M;Z) on the set A(M) of almost contact structures
on M. Write u ∗ σ ∈ A(M) for the image of σ ∈ A(M) under the action of u ∈

H2(M;Z). _en c1(u ∗ σ) = c1(σ) + 2u.

Proof Fix a reference element σ0 ∈ A(M). For any u ∈ H2(M;Z), by the ûrst
extension theoremof obstruction theory [15, §37.2],we can ûnd a section σ ′u of E over
M(3) such that the primary diòerence class d(σ0 , σ ′u) ∈ H2(M;Z) equals u. Since
the higher relevant homotopy groups of F5 vanish, σ ′u can be extended to a section σu
over all of M.

Given any other τu ∈ A(M) with primary diòerence d(σ0 , τu) = u, the addition
formula [15, §36.6] implies d(σu , τu) = 0, and hence that σu and τu are homotopic.
_us, σu denotes a well-deûned homotopy class. _is allows us to deûne a free and
transitive action of H2(M;Z) on A(M) by u ∗ σv ∶= σu+v .

It remains to prove the formula for the ûrst Chern class. From the homotopy ex-
act sequence of the universal bundles, we have π2(BU(2)) ≅ π1(U(2)) ≅ Z and
π2(BSO(5)) ≅ π1(SO(5)) ≅ Z2. _e homotopy exact sequence of the bundle

CP3
= F5 ↪ BU(2)Ð→ BSO(5)

then gives us

π2(F5) Ð→ π2(BU(2)) Ð→ π2(BSO(5)) Ð→ π1(F5)
Z Ð→ Z Ð→ Z2 Ð→ 0.

It follows that the ûrst homomorphism in this sequence is multiplication by 2.
_e inclusion map ι∶ F5 → BU(2) is covered by a bundlemap of U(2)-bundles:

SO(5) - V(5)

F5
? ι- BU(2).

?
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_is means that the bundle SO(5) → F5 can be regarded as the induced bundle
ι∗V(5) → F5. By the observation on the homomorphism π2(F5) → π2(BU(2)),
the homomorphism

ι∗∶Z ≅ H2
(BU(2);Z)Ð→ H2

(F5;Z) ≅ Z

is likewise multiplication by 2. Since H2(BU(2);Z) is generated by the ûrst Chern
class, it follows that c1(ι∗V(5)) is twice a generator ofH2(F5;Z) ≅ Z. Choose a gener-
ator of π2(F5) = H2(F5;Z) ≅ Z and the corresponding dual generator ofH2(F5;Z) ≅

Z—in other words, ûx an identiûcation of these groups with Z—in such a way that
c1(ι∗V(5)) = −2.
By construction, we have the formula d(σ , u ∗ σ) = u for the diòerence class. We

therefore need to show that

(∗) c1(τ) − c1(σ) = 2d(σ , τ) for any σ , τ ∈ A(M).

It suõces to prove this formula over the 2-skeleton M(2). Indeed, the inclusion
M(2) → M induces an injective homomorphism H2(M;Z)→ H2(M(2);Z).

_e bundle E∣M(1) is trivial; moreover, the ûbre F5 is simply connected. _us,
we can assume that the sections σ and τ are constant (and identical) over the
1-skeleton M(1).

Recall from [15, §36] the deûnition of the primary diòerence class d(σ , τ), rep-
resented by a cochain with values in π2(F5). Any oriented 2-cell ∆ ⊂ M(2) ⊂ M is
described by a characteristic map φ∆ ∶D2 → M sending Int(D2) homeomorphically
onto ∆, and ∂D2 into M(1). _e section σ of the bundle E → M deûnes a section σ∆
of the pull-back bundle φ∗∆E → D2 via

σ∆(x) ∶= (x , σ ○ φ∆(x)) .

Likewise for τ,

D2
× F5 ≅ φ∗∆E

φ∆ - E

D2

σ∆ , τ∆
6

?

φ∆
- M .

?

σ , τ
6

Notice that the pull-back bundle over D2 is trivial, and in the trivialisation φ∗∆E ≅

D2 × F5 the sections σ∆ , τ∆ may be regarded as maps D2 → F5. However, there is no
a priori relation between this trivialisation and that of E∣M(1) , so σ∆ , τ∆ coincide over
∂D2, but they will not, in general, be constant along ∂D2.

Write π±∶ S2
± → D2 for the projection of the upper and lower hemisphere of the

2-sphere, respectively, onto the equatorial disc. _en the class d(σ , τ) is represented
by the cocycle whose value on ∆ is the element of π2(F5) given by themap

d(σ , τ)(∆) =
⎧⎪⎪
⎨
⎪⎪⎩

σ∆ ○ π+ on S2
+ ,

τ∆ ○ π− on S2
− .
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Here, by a slight abuse of notation, we do not distinguish between cocycles and the
cohomology classes they represent. _e sign convention for the diòerence class is the
standard one as in [15, §33.4].

Over E we have the U(2)-bundle f ∗V(5) → E, which we shall now denote
by η. Our aim is to compute the diòerence c1(τ) − c1(σ), which by deûnition equals
c1(τ∗η)− c1(σ∗η). _ese Chern classes live in the cohomology ofM with coeõcients
in the coeõcient bundle η(π1) in the notation of [15, §30.2]. Since the structure group
U(2) has abelian fundamental group π1(U(2)) ≅ Z, hence is 1-simple, and is con-
nected, again by [15, §30.4] this coeõcient bundle is trivial and we are simply dealing
with integral cohomology classes. (_is is, of course, well known.)

With φ∆ deûned by the diagram above, the pull-back bundle φ∗∆η = D
2 × ι∗V(5)

restricts to a trivial bundle over either σ∆(D2) and τ∆(D2), and we have sections of
these bundles over σ∆(∂D2) = τ∆(∂D2), since σ ○ φ∆ ∣∂D2 = τ ○ φ∆ ∣∂D2 is a constant
section of E∣M(1) ≅ M(1) × F5. _ese sections deûne elements of π1(U(2)) ≅ Z, and
the classes c1(σ), c1(τ) are represented by the cochains whose value on ∆ is precisely
that respective element.

It follows that c1(σ)− c1(τ) is represented by a cochain whose value on ∆ is given
by the ûrst Chern class of the U(2)-bundle ι∗V(5) over the 2-sphere d(σ , τ)(∆) ∈

π2(F5). Since c1(ι∗V(5)) = −2, this implies (∗).

_e following corollary is then immediate; see [8,_eorem 8.18].

Corollary 2.3 In the absence of 2-torsion in H2(M;Z), almost contact structures are
determined up to homotopy by the ûrst Chern class.

By completely analogous arguments, one can also prove the following homotopy
classiûcation of almost complex structures on 6-manifolds. Again, the third integral
Stiefel–Whitney class is the only obstruction to the existence of an almost complex
structure.

Proposition 2.4 LetW be a compact, oriented 6-manifoldwithW3(W) = 0. _ere is
a free and transitive action of H2(W ;Z) on the setA(W) of almost complex structures
on W . Write u ∗ σ ∈ A(W) for the image of σ ∈ A(W) under the action of u ∈

H2(W ;Z). _en c1(u ∗ σ) = c1(σ) + 2u.

Remark 2.5 Let M be a closed, connected 5-manifold with a subcritical ûlling W ,
i.e., a topological ûlling made up of handles of index at most two. Dually, W can
be obtained from M by attaching handles of index at least four. _e particular con-
sequences relevant to the discussion below are that the inclusion M → W induces
isomorphisms both on fundamental groups and on the second cohomology groups
(with any coeõcients).

With this observation, we can formulate a relation between the sets A(M) and
A(W). We have a restriction map A(W) → A(M) deûned by J ↦ J∣TM . Here, by
slight abuse of notation, J ↦ J∣TM denotes the almost contact structure on M given
by the coorientable hyperplane ûeld TM∩ J(TM)with the complex bundle structure
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given by J. _e isomorphism H2(W ;Z) ≅ H2(M;Z) in the following proposition is
understood to be the one induced by the inclusion map M →W .

Proposition 2.6 Let M be a closed, connected 5-manifold having a subcritical ûll-
ing W with W3(W) = 0. _en the restriction map A(W) → A(M), J ↦ J∣TM is an
equivariant bijection with respect to the respective actions of H2(W ;Z) ≅ H2(M;Z).

Proof _is is immediate from the construction of the action ofH2(M;Z) onA(M)

in the proof of Proposition 2.2 and the analogous construction forW to prove Propo-
sition 2.4, given that W is obtained from M by attaching handles of index at least
four.

3 Topology of Subcritically Stein Fillable 5-manifolds

We ûrst recall the two pertinent results from [4] in the form in which we need them.

_eorem 3.1 ([4, _eorem 1.5]) Let W be a compact manifold with boundary, of
dimension 2n ≥ 6, equipped with an almost complex structure J. IfW admits a handle
decompositionwith handles of index ≤ n only, then J is homotopic to a complex structure
J′ making (W , J′) a Stein domain. _e Stein structure can be chosen compatible with
the given handle decomposition.

_e second theorem dealswith subcritical Stein domains,wherewe have a decom-
position into Stein handles of index at most n − 1. Notice that the preceding theorem
says that if we start with a subcritical handle decomposition and an almost complex
structure, we can ûnd a subcritical Stein structure.

_eorem 3.2 ([4, _eorem 15.14]) Let W be a compact manifold with boundary,
of dimension 2n ≥ 6, equipped with almost complex structures J1 , J2 making (W , J1)
and (W , J2) subcritical Stein domains. If J1 and J2 are homotopic as almost complex
structures, they are homotopic as Stein structures.

In fact, Cieliebak–Eliashberg prove this theorem for so-called �exible Stein do-
mains [4, Deûnition 11.29], which by [4, Remark 11.30] includes all subcritical ones.

Proof of_eorem 1.1 Let (M , ξ) be a closed, connected, 5-dimensional contact
manifold with ûnite cyclic fundamental group, admitting a subcritical Stein ûlling
(W , J). _is Stein ûlling is made up of handles of index at most two, so W is sim-
ple homotopy equivalent to a ûnite 2-complex; see [11, p. 7]. Dually, as observed in
Remark 2.5,W can be obtained from M by attaching handles of index at least four.
For m ≥ 2 an integer, we write Xm for the m-fold dunce cap. _is complex is

obtained by attaching a 2-disc D2 to the circle S1 with an attaching map ∂D2 → S1 of
degree m. Equivalently, Xm can be obtained as a quotient space of D2 by identifying
each point x ∈ S1 = ∂D2 with its rotate through an angle 2π/m.
According to [7,_eorem 2.1], given two ûnite 2-complexes K ,K′ of the same Eu-

ler characteristic χ(K) = χ(K′) and any isomorphism π1(K) → π1(K′), where the
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fundamental group is a ûnite subgroup of SO(3), there is a simple homotopy equiva-
lence K → K′ inducing the given isomorphism on fundamental groups. _is implies
that if π1(M) is the cyclic group of order m, the Stein ûlling W is simple homotopy
equivalent to the 2-complex Xm ∨r S2, where r ∶= χ(W) − 1. _us,W is a thickening
of this 2-complex in the sense of [11] or [16].
Because of 6 ≥ 2 ⋅ 2+ 1, 6-dimensional thickenings of a 2-complex are in the stable

range, and by [11, Lemma 11.29] or [16, Proposition 5.1], oriented thickenings of Xm∨r
S2 are classiûed up to diòeomorphism by [Xm ∨r S2 , BSO]. _is set of homotopy
classes is isomorphic to

[Xm ∨r S2 ,K(Z2 , 2)] ≅ H2
(Xm ∨r S2;Z2),

since the homotopy groups πk(BSO) coincide with those of the Eilenberg–MacLane
space K(Z2 , 2) for k ≤ 2. _e isomorphism

[Xm ∨r S2 , BSO] ≅ H2
(Xm ∨r S2;Z2)

is given by the second Stiefel–Whitney class, because this obstruction class detects the
non-trivial oriented R∞-bundle over S2; see [6, Lemma 8.2.5], for instance.

Write ♮ for the boundary connected sum ofmanifolds with boundary, and S2×̃D4

for the non-trivial D4-bundle over S2. In the case where m = 2n + 1 is odd, we have
H2(X2n+1;Z2) = 0, so a thickening of X2n+1∨r S2 is determined by the tangent bundle
over each of the r 2-spheres being trivial or not. _ere is a well-known diòeomor-
phism

S2
×̃D4

♮ S2
×̃D4

≅ S2
×̃D4

♮ S2
× D4

(see [5,Proposition 4.7]). _isdiòeomorphism can also be derived from the argument
we will use presently in the case where m is even. It follows that W diòeomorphic to

(L2n+1 × D3
) ♮r(S2

× D4
) or (L2n+1 × D3

) ♮(S2
×̃D4

) ♮r−1(S2
× D4

),

depending on whether W is spin or not. Since the inclusion M → W induces an
isomorphism on H2( ⋅ ;Z2), this proves part (i) of the proposition.

If m = 2n is even, we have H2(X2n ;Z2) = Z2, so there is now also a choice of two
thickenings over X2n . _e same argument as before shows that W is diòeomorphic
to

(L2n × D3
) ♮r(S2

× D4
)

ifW is spin, or, in the non-spin case, to one of the threemanifolds

W1,0 ∶= (L2n×̃D3
)#r(S2

× D4
),

W0,1 ∶= (L2n × D3
)#(S2

×̃D4
)#r−1(S2

× D4
),

W1,1 ∶= (L2n×̃D3
)#(S2

×̃D4
)#r−1(S2

× D4
).

_e manifolds W1,0 and W0,1 are not diòeomorphic, since there is no isomorphism
H2(W1,0;Z) → H2(W0,1;Z) of Z2n ⊕ Zr whosemod 2 reduction sends w2(W1,0) to
w2(W0,1); the same argument applies to the boundaries of thesemanifolds.

We claim, however, that W1,1 is diòeomorphic to W0,1; it suõces to prove this for
r = 1. Both manifolds are obtained from a 6-ball by ûrst attaching a 1-handle to pro-
duce S1×D5, and then a couple of 2-handles h1 , h2 ≅ D2×D4. In order to obtainW0,1,

https://doi.org/10.4153/CMB-2017-011-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-011-8


94 F. Ding,H. Geiges, and G. Zhang

we attach h1 by an attaching map φ1∶ ∂D2 ×D4 → ∂(S1 ×D5) that sends ∂D2 ×{0} to
a (2n,−1)-torus knot on

S1
× ∂D2

× {0} ⊂ S1
× ∂D2

× D3
⊂ ∂(S1

× D5
),

extended to an embedding of ∂D2×D4 with trivial framing. _e handle h2 is attached
by amap φ2 sending ∂D2 × {0} to a homotopically trivial circle in

S1
× ∂D2

× {0} ∖ φ1(∂D2
× D4) ,

extended to an embedding of ∂D2 × D4 with twisted framing, corresponding to the
non-trivial element of π1(SO(4)) = Z2.
By sliding h1 over h2 we get a diòeomorphic manifold where the framing of the

ûrst handle is now also twisted, in other words, the manifoldW1,1. _is proves part
(ii) of the proposition.
Finally, we come to the statement about the existence of subcritically ûllable con-

tact structures. LetM be one of the 5-manifolds in (i) or (ii), andW the corresponding
6-manifold discussed in the course of proving this classiûcation, with boundary M.
_is manifoldW admits an almost complex structure, since H3(W ;Z) = 0. By _e-
orem 3.1, any almost complex structures on W is homotopic to a subcritical Stein
structure. FromProposition 2.6 it follows that every homotopy class of almost contact
structures on M contains a subcritically Stein ûllable contact structure. According to
_eorem 3.2, the subcritically Stein ûllable contact structurewithin a given homotopy
class is unique up to isotopy, and its Stein ûlling is unique up to Stein homotopy.

Remark 3.3 (i) Let M be one of the 5-manifolds in_eorem 1.1 and ξ a subcrit-
ically Stein ûllable contact structure as just described. _en by [2,_eorem 5.3], any
symplectically aspherical ûlling is homotopy equivalent to the correspondingW , and
even diòeomorphic toW if theWhitehead group ofZm vanishes,which by [13, Corol-
lary 6.5] happens exactly for m ∈ {2, 3, 4, 6}.

(ii) From [7, _eorem B] one can derive the following stabilisation result. Let
(M , ξ) be a closed, connected contact 5-manifold with ûnite fundamental group, ad-
mitting a subcritical Stein ûlling (W0 , J0). _en any subcritical Stein ûlling of any
contact structure on M#S2 × S3 is simple homotopy equivalent to W0 ♮ S2 × D4. Ho-
motopically, the additional summand amounts to a one-point union with S2.

4 Uniqueness of Subcritically Stein Fillable 5-manifolds

Proof of_eorem 1.2 By the proof of [3,Proposition 7.4], the ûllingW is diòeomor-
phic to ♮r(S2×D4) or (S2×̃D4) ♮r(S2×D4),where r is the same non-negative integer
as in the description of M; this also follows from [2,_eorem 1.5].

_e theorem then follows by the same argument as the one we used at the end of
the proof of_eorem 1.1.

Proof of Corollary 1.3 (i) _is is an immediate consequence of_eorem 1.2. Alter-
natively, here is a more direct proof. Suppose that ξ is a contact structure on S5 that
admits a subcritical Stein ûlling (W , J). _ismeans that there is a contactomorphism
f ∶ (S5 , ξ)→ (∂W , ξJ), where ξJ denotes the contact structure induced by J.
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By [2, _eorem 1.2] or an earlier result of Oancea–Viterbo [14] (see the discus-
sion in [2, Section 3.3]), the manifold W is a simply connected homology ball, and
hence diòeomorphic to the standard ball D6 by [12, Proposition A, p. 108]. Choose
an orientation-preserving diòeomorphism G∶D6 →W .

Recall that any diòeomorphism of S5 can be extended to a diòeomorphism of D6;
this correspondswith the fact that there areno exotic 6-spheres, see [9] and [10, Corol-
lary VIII.(5.6)]. Let Φ∶D6 → D6 be an orientation-preserving diòeomorphism ex-
tending the diòeomorphism (G∣S5)−1 ○ f ∶ S5 → S5. Notice that the diòeomorphism
F ∶= G ○Φ∶D6 →W restricts to f on S5.

It follows that the subcritical Stein structure F∗ J on D6 induces the contact struc-
ture ξ on S5. Write Jst for the standard complex structure onD6 inducing the standard
contact structure ξst on S5. _e two complex structures F∗ J and Jst on D6 are homo-
topic as almost complex structures. _us, by _eorem 3.2, the respective induced
contact structures ξ and ξst on S5 are isotopic.

(ii) One way to prove this is by appealing to the results of Barden [1] on the clas-
siûcation and the diòeomorphisms of simply connected 5-manifolds, as nicely ex-
pounded in [8, Chapter VII]; see in particular [8,_eorem 7.16]. Under the assump-
tions of the corollary (and given the fact from [3] that simply connected 5-manifolds
admitting a subcritical Stein ûlling necessarily have torsion-free homology), there is
a diòeomorphism M2 → M1 that induces the given isomorphism on H2. _en argue
as in the proof of_eorem 1.2.

Here is an alternative argument for part (ii) of the corollary that avoids having to
cite the result of Barden on the diòeomorphisms of simply connected 5-manifolds.
_is argument is, in some sense, more constructive, since it reduces the problem to
the diagrammatic language of [5].

Wewant to show that any closed, simply connected contact 5-manifold (M , ξ) that
admits a subcritical Stein ûlling (W , J) also admits a subcritical Stein ûlling without
1-handles. _en the theorem follows from the corresponding result [5,_eorem 4.8],
which made precisely this additional assumption on the absence of 1-handles.
Again we use the fact (as in the proof of_eorem 1.2) that for a given M the topo-

logy of the ûlling W is known. As shown in the proof of [5, Proposition 4.5], for any
class c ∈ H2(W ;Z) that reduces modulo 2 to the Stiefel–Whitney classw2(W), there
is a subcritical Stein structure onW without 1-handleswith ûrstChern class c. (More-
over, the cited proposition shows directly that the contact structure induced on the
boundary is determined by c.)

In particular,we ûnd such a subcritical Stein structure J′ with c1(J′) = c1(J). Since
W is simply connected, the analogue of Corollary 2.3 shows that J and J′ are homo-
topic as almost complex structures. By _eorem 3.2, this implies that J and J′ are
actually Stein homotopic. _us, as claimed, the stipulation that there be no 1-handles
poses no restriction.
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