I

Introduction and
Overview of Turbulence

Introduction

In this chapter we first briefly recall, in Section 1, the derivation of the Navier—Stokes
equations (NSE) starting from the basic conservation principles in mechanics: con-
servation of mass and momentum. Section 2 contains some general remarks on turbu-
lence, and it alludes to some developments not presented in the book. For the benefit
of the mathematically oriented reader (and perhaps others), Section 3 provides a fairly
detailed account of the Kolmogorov theory of turbulence, which underlies many parts
of Chapters ITI-V. For the physics-oriented reader, Section 4 gives an intuitive intro-
duction to the mathematical perspective and the necessary tools. A more rigorous
presentation appears in the first half of Chapter II and thereafter as needed. For each
of the aspects that we develop, the present chapter should prove more useful for the
nonspecialist than for the specialist.

1 Viscous Fluids. The Navier—Stokes Equations

Fluids obey the general laws of continuum mechanics: conservation of mass, energy,
and linear momentum. They can be written as mathematical equations once a repre-
sentation for the state of a fluid is chosen. In the context of mathematics, there are
two classical representations. One is the so-called Lagrangian representation, where
the state of a fluid “particle” at a given time is described with reference to its ini-
tial position. The other representation (adopted throughout this book) is the so-called
Eulerian representation, where at each time ¢ and position X in space the state —in par-
ticular, the velocity u(x, ) — of the fluid “particle” at that position and time is given.
In the Eulerian representation of the flow, we also represent the density p(x, ) as
a function of the position x and time 7. The conservation of mass is expressed by the
continuity equation
ap
ar
The conservation of momentum is expressed in terms of the acceleration y and the

Cauchy stress tensor o'

+ div(pu) = 0. (1.1)

3
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2 I Introduction and Overview of Turbulence

Here y = (y1, 2, ¥3) and 6 = (0y;)i, j=1,2,3, componentwise in the 3-dimensional
case. Moreover, f = (f;, f2, f3) represents volume forces applied to the fluid.

The acceleration vector y = y(x, t) of the fluid at position x and time ¢ can be
expressed, using purely kinematic arguments, by the so-called material derivative

Du Ju
_ =— 4+ @ -V 1.
Y Dt ot (- Vu, (1-3)

or, componentwise,

_ ou i > ou i =123
yi_g_i_;ujf)_xj’ 1=1,2,3.
Inserting this expression into the left-hand side (LHS) of equation (1.2) yields the
term p(u - V)u, which is the only nonlinear term in the Navier—Stokes equations;
this term is also called the inertial term. The Navier—Stokes equations are among the
very few equations of mathematical physics for which the nonlinearity arises not from
the physical attributes of the system but rather from the mathematical (kinematical)
aspects of the problem.

Further transformations of the conservation of momentum equation necessitate
additional physical arguments and assumptions. Rheology theory relates the stress
tensor to the velocity field for different materials through the so-called stress—strain
law and other constitutive equations. Assuming the fluid is Newtonian, which is the
case of interest to us, amounts to assuming that the stress—strain law is linear. More
precisely, for Newtonian fluids the stress tensor is expressed in terms of the velocity
field by the formula

_ Bu,» auj . s 14
Gi_,'—M{a—xj-Fa—xi}‘l‘()»le“—P) ij> (1.4)
where p = p(x, ) is the pressure. Here, §;; is the Kronecker symbol and u, A are
constants. The constant u is called the shear viscosity coefficient, and 3A + 2 is the
dilation viscosity coefficient. For thermodynamical reasons, u > 0 and 31 + 2 >
0. Inserting the stress—strain law (1.4) into the momentum equation (1.2), we obtain

9
p{a—l;—l—(u-V)u}=,uAu+(,u+)»)Vdivu—Vp+f. (1.5)

Equations (1.1) and (1.5) govern the motion of compressible Newtonian fluids such
as the air at high speeds (Mach number larger than 0.5). If we also assume that the
fluid is incompressible and homogeneous, then the density is constant in space and
time: p(X, ) = po. In this case, the continuity equation is reduced to the divergence-
free condition:

diva = 0. (1.6)

Because the density is constant, we may divide the momentum equation (1.5) by p
and consider the so-called kinematic viscosity v = w/po; we may then replace the
pressure p and the volume force f by the kinetic pressure p/po and the mass den-
sity of body forces f/pq, respectively. In doing so, and taking into consideration the
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1 Viscous Fluids. The Navier—Stokes Equations 3

divergence-free condition (1.6), we obtain the Navier—Stokes equations for a viscous,
incompressible, homogeneous flow:

3
a—‘; —VAU+ (u-V)u+ Vp =T, (1.72)

V.u=0, (1.7b)

where, for notational simplicity, we represent the divergence of u by V - u. For all
pratical purposes, the density has actually been normalized to unity; even so, we may
sometimes replace (1.7a) by (1.5), remembering then that V-u = 0 and p is constant.

For more details on the physical aspects of fluid mechanics, we refer the reader to
the classical books of Batchelor [1988] and Landau and Lifshitz [1971].

It is readily accepted that the Navier—Stokes equations govern the motion of com-
mon fluids such as air or water, so we are faced with the persistent challenging ques-
tion of recovering from (1.7) such complex motions as that of smoke dispersion in
the air and the turbulent flow of a river around a bridge pillar.

The flow of fluids at the microscopic level is governed by phenomena in the realm
of statistical mechanics of fluids. The appropriate statistics is given by the solution
of the Boltzmann equation. That equation represents the evolution of the governing
distribution function, which is dependent on the position and velocity of the particles
colliding with one another as a result of thermal excitation at any finite temperature.
The collisions are described by an integral collision operator. In general, the colli-
sion operator represents simultaneous collisions among many particles, necessitating
the use of a many-particle distribution. As such, it is very complicated and essen-
tially impossible to evaluate precisely. Only in the case of dilute gases can one limit
oneself to considering the evolution of a single-particle distribution and to binary col-
lisions, since many body collisions are highly unlikely. In this idealized situation,
the collision operator can be approximated by first-order and second-order spatial
derivatives. The former is the familiar pressure gradient and the latter is the Laplac-
ian operating on the velocity, multiplied by a constant known as the viscosity. With
that approximation in hand, we can take the appropriate moments of the one-particle
Boltzmann equation and so derive first the conservation of mass equation and sec-
ond the conservation of momentum equation that we recognize as the NSE (when the
incompressibility condition is a valid assumption).

Although such a derivation has been carried out for dilute gases, a corresponding
exercise for liquids remains an open problem. This is because binary collisions play
arelatively minor role in liquids, which are much denser than gases and hence feature
collisions between clusters of particles. However, for practical reasons and lacking a
better option, we use the Navier—Stokes equations with a simple constant viscosity
as a reasonable model for liquid flows.

The origin of viscosity imposes a limit on the domain of validity of the Navier—
Stokes equations. Thus phenomena on a length scale comparable to or smaller than
the collision mean free path in air at atmospheric pressure (say, 10~ cm) cannot be
described by a continuum model such as the NSE. Subsequently we will learn about
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some natural lengths that characterize the length scale region in which flow energy
dissipation is dominated by viscous phenomena. It will be important then to be sure
that we are still in the regime characterized by a continuum model of the flow. A
similar cautionary remark applies to the amplitude of fluctuations in turbulent flows:
once we are in a regime in which those fluctuations are comparable with thermally (fi-
nite temperature) induced fluctuations, the model based on Navier—Stokes equations
ceases to be relevant.

Nondimensional Form of the Navier—Stokes Equations

It is sometimes convenient, both for physical discussions and mathematical trans-
parency, to consider a nondimensional form of the conservation of momentum equa-
tion. For that purpose we introduce a reference length L, and a reference time 7 for
the flow, and we set

/

L
x=Lx, t=Ttx, p=P~Pyp, u=Ua, f:T—;f’,

where P, = Uf and U, = L, /T, are a reference pressure and a reference velocity,
respectively. By substitution into (1.7) we obtain for u’, p’, f’ the same equation but
with v replaced by Re™!, where Re is a nondimensional number called the Reynolds

number: LU
Re = —/—=. 1.8)
v

The value of the Reynolds number depends on the choice of the reference length and
velocity. Usually, if €2 (the domain occupied by the fluid) is bounded then L, can be
taken as the diameter of 2 or as some other large-scale length related to €2, such as
the width of a channel. The choice of U, (and hence of T) depends on the type of
forcing of the flow; it can be related to the forces applied at the boundary of €2 or to
a pressure gradient, for example. Various choices of L, and U, can be appropriate
for a given flow, leading to various definitions of the Reynolds number, but turbulent
flows result for all appropriate choices when Re is large. How large depends to some
extent on the shape of the domain occupied by the fluid. Once the shape of the do-
main 2 is fixed, however, rescalings in length (L) and velocity (U,) and changes in
viscosity (v) affect the equations only through the single parameter Re.

Hence, different experiments may lead to the same nondimensional equations. For
example, multiplying the velocity by 2 and dividing the diameter of the domain by
2 leaves the Reynolds number unchanged, so we can pass from one experiment to
another; this is the Reynolds similarity hypothesis constantly used in mechanical en-
gineering. At a given Reynolds number, flows remote from the boundaries of the
domain €2, irrespective of the latter’s shape, are similar owing to some universal-
ity properties of turbulent flows. Moreover, with flows around blunt bodies (say,
a sphere), as the body’s radius increases and the flow velocity and/or viscosity is
adjusted so as to maintain the Reynolds number constant, the flow throughout the
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modified flow domain remains similar. That is what has made possible the design of
aircraft by means of relatively small models tested in moderately sized wind tunnels.
In Chapter III, instead of the Reynolds number we will use another nondimen-
sional number: the Grashof number (see Section 13 in Chapter II).
A heuristic argument illustrating the significance of the Reynolds number emerges
by comparing the inertial and dissipation terms of the Navier—Stokes equations. The
inertial term (u - V)u has dimension

U;
L,
while the dissipation term has dimension
U,
vV—.
L
The inertial term dominates when
L,U,

Re=——>1
v

However, a much more subtle analysis that is valid at each length scale is made for
the Kolmogorov theory of turbulence.

By setting Re = 400 (i.e., v = 0), we obtain the case of inviscid flows. In this
case, the divergence-free condition is retained but the momentum equation changes,
resulting in the Euler equations for inviscid perfect fluids:

ad
a—l; +@-Vyu+Vp =f, (1.9a)
Vou=0. (1.9b)

Note that some of the difficulties encountered in studying turbulent behavior, a
largely inviscid regime, arise because the transition from Euler’s equations to the
Navier—Stokes equations necessitates a change from a first-order system to a second-
order one in space (V to A), which involves a singular perturbation.

2 Turbulence: Where the Interests of Engineers
and Mathematicians Overlap

Principal substantive questions related to turbulence have been raised since the begin-
ning of the twentieth century, and a large number of empirical and heuristical results
were derived — motivated principally by engineering applications. This includes the
work of Lamb [1957], mostly on addressing idealized inviscid flows; Prandtl [1904],
on eddy viscosity and boundary layers; Taylor [1935, 1937], on viscous flows; and
von Karman [1911, 1912], on the nature of the boundary layer.

At the same time, in mathematics there appears the pioneering work of Jean Leray
[1933, 1934a,b] on the Navier—Stokes equations. Leray speculated that turbulence is
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due to the formation of point or “line vortices” on which some component of the ve-
locity becomes infinite.! To enable dealing with such a situation, he suggested the
concept of weak, nonclassical solutions to the Navier—Stokes equations (1.7), and
this has become the starting point of the mathematical theory of the Navier—Stokes
equations to this day. We will consider this approach in Chapter IT and beyond. It is
noteworthy that, more generally, Leray’s ideas serve also as the starting point for sev-
eral important elements of the modern theory of partial differential equations. Even
today, despite much effort, Jean Leray’s conjecture concerning the appearance of sin-
gularities in 3-dimensional turbulent flows has been neither proved nor disproved.
Let us mention, however, the result of Caffarelli, Kohn, and Nirenberg [1982] (see
also Scheffer [1977]), which considerably extends an earlier result of Leray: Given
the possibility that the singular points are a fractal set (assuming that such a set exists),
the 1-dimensional Hausdorff measure of that set in space and time is 0. Hence the
occurence of smooth line vortices is not possible, explaining our quotation marks
around “line vortices.” Nevertheless, for all physical purposes this powerful mathe-
matical result leaves room for a tremendously complex set of singularities, and so we
remain far from closing the issues raised by Leray’s conjecture.

Before continuing with these historical notes, we remark in passing that engineers
are not directly affected by such purely mathematical issues; rather, they want to
calculate or measure certain physical quantities (forces, velocities, pressures, etc.).
Here, however, beside the possible occurrence of singularities, another critical aspect
of turbulence comes to mind: in a turbulent flow, many interesting quantities vary
rapidly in time and cannot be readily measured. In practice, all that can be measured
in laboratory experiments are averages (usually time averages). These averages are
well-defined, reproducible quantities. This leads to the concept of ensemble averages
underlying the conventional theory of turbulence, and to the concept of statistical so-
lutions of the Navier—Stokes equations (1.7). It leads also to the idea of ergodicity,
which is taken for granted by engineers. Loosely speaking, for all initial experimental
conditions and for all sorts of reasonable ensemble averages, the experiments always
yield the same measured results to within the accuracy of the measurements. We
address here those questions of direct interest to engineers: the need for statistical so-
lutions, the equivalence between ensemble averages and time averages (a question
addressed in Chapter IV), and the so far unchallenged issue of the axiomatic nature
of ergodicity.

We return to our brief overview of some highlights in the history of the studies
of turbulent flows. It is impossible to explore here all the aspects of that history.
Hence, with apologies to all whose important contributions are not mentioned here,
we limit ourselves to those aspects of the history most relevant to the subject of this
monograph.

' In fact, if such discontinuities occur then another question of physical nature needs to be
raised concerning the validity of the Navier—Stokes equations themselves; indeed, at very
short distances of order 1073 cm (the collision mean free path of the particles), the fluid
equations are no longer pertinent.
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Turbulent flows have mystified people for ages, as evidenced for example by
Leonardo da Vinci’s sketches of the turbulent wakes downstream of some bridge
columns. Beginning with careful experimental studies of flows under various exper-
imental conditions (Reynolds [1883, 1895]) and with the subsequent formulation of
the Navier—Stokes equations, turbulence became a subject of thorough scientific in-
quiry. For many years, two difficulties held the attention of various investigators. The
first was a technical mathematical obstacle: the presence of the inertial term (a qua-
dratic nonlinearity) precludes a straightforward use of the many available tools of
perturbation methods. The structure of the equations demands that, at any given step
in an approximation scheme, information from the next step is necessary. This had
led to many attempts at formulating the so-called closure schemes, where at some
step in the approximation sequence an assumption about the nature of the subsequent
term is made, thereby terminating that sequence. Such an assumption, usually jus-
tified in terms of intuitive physical arguments, was then used to break the impasse
in the approximation sequence. In principle, closure schemes by and large call for
unprovable assumptions beyond those composing the basis for the Navier—Stokes
equations. Some of the better-known closure schemes may be found in such texts as
Tennekes and Lumley [1972], Leslie [1973], and Lesieur [1997], although further at-
tempts (and controversies) in this area continue. As we shall find in the present work,
the invention of the so-called inertial manifolds in the context of the rigorous theory
of NSE (as well as of other nonlinear partial differential equations) opens the door to
mathematically more soundly based schemes for computational approaches, offering
an alternative to the conventional closure schemes.

The second obstacle to progress in the theory of turbulence was largely concep-
tual. Namely, how was it possible for a system described by perfectly deterministic
equations to exhibit behavior that was undeniably statistical in nature? This aspect
of turbulent flows, both from the experimental side and from the nascent theoretical
side, is dealt with at length in the monumental work of Monin and Yaglom [1975].
Hopf [1952], followed by Foias and Prodi [1976] (see also Foias [1972, 1973, 1974]),
studied an extension of Liouville’s theorem that in principle yields the probability
distribution function underlying the Navier—Stokes equation. Many of these efforts
rested on the experimental and theoretical work of Taylor [1935, 1937] and von Kar-
man and Howarth [1938], who clarified, on intuitive grounds, the nature of homoge-
neous isotropic turbulence. The simplifications resulting from the symmetries inher-
ent in this idealized form of turbulence yielded the well-known von Karman—Howarth
ordinary differential equation for the self-similar evolution of the two-point veloc-
ity correlation tensor. This idealization has also yielded Kolmogorov’s theory for
the spectrum of homogeneous isotropic turbulence in three dimensions (Kolmogorov
[1941a,b]) (and later Batchelor’s [1959] and Kraichnan’s [1967] corresponding re-
sults for turbulence in two dimensions), a subject of the next section. All of these
results were obtained without full understanding of the origin of the statistical na-
ture of turbulence. A significant breakthrough occurred in the 1960s and 1970s with
the discovery of stochastic instabilities in seemingly innocuous low-order ordinary
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differential equations (Lorenz [1963]) and in some nonlinear difference equations
(Feigenbaum [1980]). Subsequent research (Foias and Prodi [1976], Vishik and Fur-
sikov [1977a,b, 1978], Foias and Temam [1979]) on dynamical systems governed by
nonlinear partial differential equations revealed that such dynamical systems may
reside, in finite-dimensional function spaces, on compact attractors that may be char-
acterized by chaotic behavior.

It is now appropriate to reiterate a point hinted at earlier, namely, the essential
need for careful mathematical analysis when dealing with nonlinear entities such as
the Navier—Stokes equations. While much of our physical intuition serves us well in
the domain of linear phenomena modeled adequately by linear differential and par-
tial differential equations, it can fail us — with potentially disastrous consequences —
in nonlinear domains. A fairly instructive example, outside the realm of this book
but worth mentioning here, concerns modeling sonic flow transition as a boundary
value problem rather than (and more correctly) as an initial value problem (Greenberg
and Treve [1960]). Although this may appear to be unnecessary pedantry, it clearly
makes a lot of difference in the context of, say, nuclear reactor safety (Bilicki et al.
[1987]). Unlike the case in linear systems, in nonlinear systems small causes can lead
to very large effects indeed, as well as to qualitative differences. Because nonlinear
equations can have multiple, qualitatively different solutions (different basins of at-
traction), a small change in initial conditions can sometimes lead to radically different
time-asymptotic behavior. An even more dramatic, counterintuitive example is the
previously mentioned possibility of chaotic behavior in what at first sight seem to be
innocent deterministic systems (Lorenz [1963], Feigenbaum [1980], Smale [1967]).
Here is a class of problems in which necessarily limited computer “experiments” can
lead to misleading conclusions about the behavior of a system as a function of the
governing parameters. Only a thorough analysis of the system can reveal its true
nature. Occasionally, such an analysis will reveal, even without detailed numerical
computations, an unphysical aspect of the system (e.g., infinite energy density, de-
creasing entropy, or other pathologies), which is a clear alert to the flawed nature of
the system model.

In this work we concentrate on those aspects of turbulent fluid flows that can be rep-
resented in terms of so-called Sobolev spaces — that is, a class of functions satisfying
the given boundary conditions — and the given physical constraints, such as diver-
gence-free (incompressible) flow. The various norms (i.e., various integrals of some
seemingly abstract quantities) in these function spaces are in fact readily recognized
as tangible physical quantities that are more or less readily accessible to direct ex-
perimental observation. The relationships among these norms, and the rules for their
manipulations, reveal some aspects of the turbulent flows that justify many ad hoc
interpretations and inspire insights derived from direct observations of turbulence
while also revealing some hitherto unrealized ones. As such, these mathematical en-
deavors can serve to enlarge our intuitive horizons beyond the limits of linear theories
and models.
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3 Elements of the Theories of Turbulence
of Kolmogorov and Kraichnan

Turbulent flows seem to display self-similar statistical properties at length scales
smaller than the scales at which energy is delivered to the flow. Kolmogorov [1941a,b]
argued that, at these scales, in three dimensions, the fluids display universal statisti-
cal features. Turbulent flow is conventionally visualized as a cascade of large eddies
(large-scale components of the flow) breaking up successively into ever smaller sized
eddies (fine-scale components of the flow; Onsager [1945]). Such a cascade, or flow
of kinetic energy from large to small scales, is taken to occur in a regime at lengths suf-
ficiently large for the effects of viscosity to be inconsequential. The apparent energy
dissipation — that is, the removal of energy from one length scale to a smaller one —
is solely due to the presence of the nonlinear (inertial) term in the Navier—Stokes
equations. The energy dissipation rate € = vk |Vu(x, 7)|* is assumed to be con-
stant in space and time. A further essential assumption is that the cascade proceeds so
that, at every length scale (or at every corresponding wavenumber), there is an equi-
librium between energy flowing in from above to a given scale and that flowing out
to a lower scale. Such a picture and the associated assumptions imply that, in this
range of length scales (or this range of wavenumbers), the energy density at a given
wavenumber can depend only on the energy dissipation rate € and the wavenumber
k itself. Then dimensional analysis alone yields S(x) = const. x €2/3/k*/3 for the
energy density. Such a cascade process cannot continue to arbitrarily small length
scales because, as the norm of the Laplacian operator increases with the decreasing
length scale, eventually the effects of molecular dissipation begin to dominate the
nonlinear inertial term. That length, denoted by £, is the endpoint of the inertial
range and the beginning of the dissipation range.

Let us determine £,. At each scale £ (or wavenumber ¥ = £7'), we can define by
dimensional analysis, through € and ¢, a natural time scale T and speed u. Indeed,
€ = 0%/13 gives T = (£*/€)/3 and u = £/t = (£€)'/3. Now, the dissipation length
£, is where the viscous term vAu starts to dominate, on average, the inertial term.

Hence,
A vu % ©-v) u? b4
vAu~ — ~ — > @-Vyu~ — ~ —.
02 dr L T2
Therefore,
02 1/3 V3 1/3
€2<vr:v<—> — 64/3<<—)
€ €
and

1)3 1/4
Ly = (;) . 3.1)

Kolmogorov thus inferred that, in 3-dimensional turbulent flows, the eddies of
length size sensibly smaller than £, are of no dynamical consequence. As we said,
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the length ¢, as defined by (3.1) is known as the Kolmogorov dissipation length. The

corresponding wavenumber,
| e \ V4
Ka = . = (E) ) (3.2)
d

is the Kolmogorov dissipation wavenumber.

The inertial range, within which inertial effects dominate, is the range ¢; < £ <
L4, where £1 = L is the wavelength at which energy is injected in the flow. To each
length £ in this range we can associate a Reynolds number Re, = u{/v; hence,

e \V4
Rez/4=£<7) .
>

The largest of these Reynolds numbers obtained for £ = the Kolmogorov macro-scale
length L, ~ L, is the Reynolds number Re of the flow. Hence, with (3.1),

( L. )4/3 3/4
Re=[— , or L,=Re’"{,. 3.3)
lq

This relationship leads naturally to the heuristic estimate of the number of degrees
of freedom in 3-dimensional flows, which is Re%*. As we shall see, this heuristic
estimate is actually an upper bound on the sufficient (but not necessary) number of
degrees of freedom in 3-dimensional turbulent flows.

We now present a somewhat more elaborate derivation (but one that is still divorced
from the Navier—Stokes equations) of the so-called Kolmogorov spectrum.

Let € denote the average of the energy per unit mass. Then, according to the Kol-
mogorov theory, the length £, at which the turbulent eddies are rapidly annihilated
by the viscosity should be a universal function of € and the kinematic viscosity v,
namely:

by = f(v,e€). (34)

In particular, f should be independent of the choice of units for space and time. Thus,
if we pass from x, 7 to X’ = £x and ¢’ = 7 then we should still have

= fo', €. (3.5)
Here v’ and €’ are not independent of v and ¢, and dimensional analysis yields
2 2
U =8ly, v = S—v, e = S—%e; (3.6)
T T
that is,
Ef(v.e) = fE v, £ %). 3.7
With the choices
52 1 5-2

1
= — and ===, (ie.,7 = (ev)l/2 and & = el v3/4),
T v T3 €
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the relation (3.7) becomes

1 p3\4
f(‘)s 6) = gf(la 1) ~ <_) .

€

Following Kolmogorov, one can also argue that the average energy per unit mass,
e 2, of the eddies of lengths between £/2 and £ (i.e., between the wavenumbers «
and 2«, where k = 1/£) should enjoy a similar universal property — namely,

ec2c = 8(€,K), (3.8)

provided that k < k4 (so that the effect of the viscosity can be neglected) and that «
is much larger than the wavenumber at which energy is pumped into the flow. Again
the universality of g implies that

E217%g(e, k) = g1 %, £ k),
whence, upon taking £ =k and 7 = €/3k2/3 | one obtains

e2/3
e =c——, 3.9
K,2K K2/3 ( )

where ¢ = g(1, 1), a universal constant.

Consider now the Navier—Stokes equations with periodic boundary conditions.
That is, we consider the solutions of equations (1.7) that are periodic in space with
period L in each direction. Using Fourier series expansions (see Sections 2 and 5 in
Chapter II for details), we can write

ux) = > et k=0, Gy =y (3.10)
keZ3\{0}

For k in (3.10), k = «|K| is the corresponding wavenumber, where x; = 27r/L. The
lowest wavenumber is «;. The component of u with wavenumbers between «" and

k" is
b= Y et (3.11)

K'<k<k"

The energy per unit mass and the enstrophy (square of vorticity) per unit mass are,

respectively,
2 A2
e P =Y i (3.12)
K'<k<k”
and
2 2 2i1a8 2
[T = SO | Nl P (3.13)
K'<k<k"

Note that u,, o = u.
Physicists and engineers assume that, for L > 1, the time averages of

lue e ()F and  kFuer e (2))? (3.14)
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exist (see Chapters IV and V). Note that the first average should be ¢, ,~, the aver-
age of energy per unit mass of the eddies of linear size between 1/x” and 1/«’. We
denote these averages by

(lerer ) and  kZ (e e (O)2). (3.15)

Moreover, it is also assumed that these values can be viewed (at least when « is
small) as integrals in the wavenumbers; that is,

/ S(k)dk and f Si(x) dk. (3.16)

Comparing (3.12) and (3.13) with (3.15), we see that if (3.16) makes sense then one
is led to the relation
Si(x) = k2S (k). (3.17)

The function S(k) (> 0) is called the energy spectrum of the turbulent flow pro-
duced by the driving force f in (1.7). Also, the driving force is assumed to have no
high-wavenumber components: f = f,, ¢, where k is comparable in size with « (the
lowest wavenumber).

So, according to Kolmogorov’s theory, we have (see (3.9))

2k €2/3
S dyx ’ch, (3.18)
at least as long as
KKKk KLKg. (3.19)
Taking the derivative in (3.18) yields
2ce?/3
Sk) —SQ2k) ~ EWSER
whence
2c 1 1 1 €23
~ m—+1 == - I
Sk) ~SQ2" k) + 3 (1 + 2573 + 21073 + 25’"/3)/(5/3 (3.20)

as long as 2"k < k4. For turbulent flows, ks > k| ~ k and so we may take m > 1

in (3.20). Then
2/3

S) ~C..<

’
(St (3.21)

where Cy = (2/3)c(1 —279/3)7L. The form (3.21) for the energy spectrum is called
the Kolmogorov energy spectrum of the turbulent flow. The constant Cj, is known as
the Kolmogorov constant in energy space (there is a similar relation in which a con-
stant Cx appears and takes the name of Kolmogorov constant in physical space; see
(5.26) in Chapter V). The empirical value of Cj, is of the order of unity. The range
of k in (3.19) for which (3.21) holds is the Kolmogorov inertial range.

It must be noted that the estimate (3.21) is really a time average, as the ampli-
tude of S(k) fluctuates wildly in time. Furthermore, it is only an approximation. In
reality, for a turbulent flow in a bounded domain, intermittency effects in the energy
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dissipation rate € result in small but measurable corrections to the simple expression
(3.21) (see e.g. Kolmogorov [1962] and Novikov and Stewart [1964]). These cor-
rections depend on the size (say, L,) of 2, thus destroying — to some extent — the
universality of turbulence.

As seen in the preceding, the arguments leading up to (3.21) are clearly divorced
from the NSE itself and are applicable solely to turbulent flows in three dimensions.
For flows in two dimensions (which, as stated earlier, are amenable to deep analy-
sis), we must turn to a phenomenological theory proposed by Batchelor [1959] and
Kraichnan [1967]. That theory is in the spirit of Kolmogorov’s approach but does not
parallel it because the physical situation is quite different; hence we offer a separate
exposition.

Two-dimensional flows are not commonly encountered in nature. Examples that
do come to mind are thin liquid films and (to within some approximation) the at-
mospheric layer on the surface of the Earth — although clearly the significant phe-
nomena (e.g., weather and climate changes) occur on scales within which the finite
thickness of that layer must be taken explicitly into account. However, some firm
mathematical results derived in the study of 2-dimensional flows appear to carry
over to some 3-dimensional flows, so it is instructive to follow what can be learned
about 2-dimensional flows. Moreover, further advances in functional analysis of the
Navier—Stokes equations in three dimensions may yield the necessary tools for solv-
ing some critical open problems. For now we turn to a summary of Kraichnan’s work
on the phenomenological theory of 2-dimensional turbulence.

We limit ourselves here to fluid flows in the plane, although much of the theory
could carry over to more general 2-dimensional manifolds. The principal physical dif-
ference between 2-dimensional and 3-dimensional flows is that, in the 2-dimensional
case, the vorticity (i.e., the curl of the velocity) has only one component —in the direc-
tion normal to the plane of the flow. This imposes a severe constraint on the kinematics
and the dynamics of the turbulence. For instance, in addition to the conservation of
energy, the flow must conserve enstrophy, that is, the integral of the square of the
vorticity over the flow domain must be constant. The nonlinear interactions may
be viewed in wavenumber (Fourier) space as three-wave interactions. They cannot
simultaneously satisfy the two conservation principles. Hence, the energy cascade
cannot coexist with the enstrophy cascade; they must occur in distinct portions of
the wavenumber domain. As a consequence, in the turbulent regime (large Reynolds
number) for the 2-dimensional case, there are two contiguous ranges: for wavenum-
bers lower than that at which the forcing of the flow is introduced there is an inverse
energy cascade, with small eddies coalescing into larger ones and with the cascade
terminating at a wavenumber determined by the size of the flow domain. The spec-
trum of the energy, S(k), in that domain is the same as the Kolmogorov spectrum.
Toward the higher wavenumbers, the principal cascading entity is the enstrophy —
that is, the successive breakup of the vortices into ever smaller ones, with the atten-
dant enstrophy dissipation rate 1 resulting from nonlinear interactions and not being
affected by the molecular viscosity above the Kraichnan cutoff length. According to
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14 I Introduction and Overview of Turbulence

Kraichnan, the two portions of the inertial range (i.e., the inverse cascade and the
enstrophy cascade) cannot overlap.

Using arguments based on dimensional analysis along the lines followed by Kol-
mogorov in the 3-dimensional regime, we can now determine the energy spectrum
in the enstrophy cascade region as well as the Kraichnan cutoff wavenumber. Note
first that the enstrophy dissipation rate has the dimension of (time)~3. Assuming
that, in the enstrophy cascade range, the energy spectrum depends only on 1 and the
wavenumber «, we then find that S(x) = const. x n?/3/«3. Similarly, it follows from
dimensional considerations that the Kraichnan cutoff wavenumber is given by

7 1/6
Ky = <F> : (3.22)

An extended treatment of turbulent flows in two dimensions is presented in Sec-
tion 5 of Chapter I'V.

4 Function Spaces, Functional Inequalities, and Dimensional Analysis

The mathematical theory of the Navier—Stokes equations is based on the use of func-
tion spaces, which are at the heart of the modern theory of partial differential equa-
tions. A formal presentation of the needed tools appears in Chapter II and thereafter
as needed. However, in this section we give an informal introduction and empha-
size that these spaces are not merely inventions of mathematicians; rather, they are
strongly related to the physics of the problem.

The Fundamental Function Spaces

Consider the domain € occupied by the fluid; Q is a domain of R3, which could
be the whole space R? in certain idealized cases. The first natural function space
is L2(), the space of square integrable functions on €2; we also have L%(Q)3, the
space of square integrable vector fields on 2. These spaces are endowed with a scalar
product, which we denote by

(u,v) = / u(x)v(x) dx
Q
in the scalar case and, similarly,

(u,v) = f u(x) - v(x) dx
Q

in the vector-valued case. To these scalar products correspond the following norms?

(mean square norms):

1/2 1/2
|u|=</|u(x)|2dx> , |u|=(/|ll(X)|2dX> .
Q Q

2 We will use the same notation | - | for the Euclidean norm in R? and R?® (and even C? and
C3), and also for various L? norms. This abuse of notation, for purposes of simplification,
does not lead to any confusion once the context is taken into account.
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The inner product and the corresponding norm are also related by the so-called
Cauchy—Schwarz inequality:

1/2 1/2
0] = mmumdxs(/m@W¢0 (fwmﬁ¢0 = Jullo
Q Q Q
4.1
for all u, v in L*($2). Similarly, for any u,v € L?(R2)*, we have
|(w, V)| < [u]|v]. (4.2)

Now, given the velocity vector field u of the fluid in €2,
u:xe Q- ux) eR3,

we see that the square of the L?-norm, |u|?, is merely twice the kinetic energy of the
flow (assuming that the density of the fluid has been normalized to unity):

<>—1f|<wd-—h|2
eu—ZQUX X—2u.

Without entering into the details of measure theory, we recall that L?($2) and
L?(Q)? are Hilbert spaces for these scalar products and norms. Also, for L?(£2) (and
the same is true for L?(2)?), the following characterizaton holds:?

u € L*(Q) if and only if there exists a sequence of smooth
functions u,, compactly supported in €2, such that |u,| (or e(u,))
remains bounded and u,, is converging to u (in the distribution
sense) as n — 00.

4.3)

Most of the spaces that we will consider are derived from the space L?(2) and from
another space that we will now introduce, the so-called Sobolev space H'!(S2).
In Chapter IT we will address the concept of enstrophy of a fluid velocity u =

(uy, uz2, u3), namely,
E(u) = Z /

i,j=1

8u,
ox;

By comparison with (4.3), a natural question is the following:

What can we say of a sequence of smooth velocity vector fields u,

4.4
such that E(u,,) remains bounded? “4

If © is bounded,* then one can prove that u, contains one (or more) subsequence(s)
that converge in the distribution sense to some limit u. This vector function u =
(uy, ua, uz) is in L2()3, as are its (distributional) first derivatives

ou i

PR .9 j = 1’ 27 3;
8XJ' J

3 The functions u,, in this characterization of L?(£2) are defined, say, by some kind of approx-
imation procedure.
4 If Q is not bounded, then we should also require that e(u,,) remain bounded as well.
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16 I Introduction and Overview of Turbulence

in fact,
E(u) <sup E(u,).
neN
We say that such a function u belongs to the Sobolev space H'(2)? (with a similar
definition for H'(2) in the scalar case). In some sense:

The space L2(2)? consists of all the vector fields u with finite
kinetic energy, and the space H 1(©)? consists of all the vector 4.5)
fields u with finite enstrophy.

From the mathematical point of view, the Sobolev spaces H'(Q2) and H Q)3 are
Hilbert spaces for the following inner products and norms (see Chapter II):

du 9
@ = 75 [ uoves dx+2/ 8;‘ 8;’
] ]
,v), = — | ux)-v(x)dx+ i / %%d
o Q et ox; 0x;

lully = [Qu, w)i17?, )l = [Qu, w),]"3,

where L is a typical length (e.g., the diameter of €2). In nondimensional variables,
L = 1. As with the space L?(2) and any other Hilbert space, we have the Cauchy—
Schwarz inequality, which in this context reads

[, o)1l < flullllvfl, [Qa, V)l < (lalldivi (4.6)

for all u, vin H'(Q) and all u, vin H'(Q)3.

Most function spaces that we consider are derived from these two physically obvi-
ous spaces, the space L2(R2)? of finite kinetic energy and the space H'(£2)? of finite
enstrophy. For instance, two central spaces V and H appear throughout the book; as-
suming for simplicity that 2 is bounded, a mathematically rigorous and physically
intuitive definition of the spaces V and H is as follows:

V is made up of all the limit points (in the distributional sense)

of all the possible sequences of smooth vector fields u, which

are divergence-free, which satisfy the boundary conditions of the 4.7
problem, and whose enstrophy remains bounded; that is, E(u,) <

const. < 00.

The space H is defined in a similar way, replacing the boundedness of the enstro-
phy by the boundedness of the kinetic energy: e(u,) < const. < co. More details
are given in Chapter II.

Functional Inequalities

The functions belonging to the space H'($2) (and to other related spaces) satisfy cer-
tain inequalities, which are called Sobolev inequalities in the mathematical literature.
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We make extensive use of these inequalities in the course of this book. Some of them
are proven by interpolation, others by appropriate direct methods (e.g., Gagliardo—

Nirenberg’s, Agmon’s, Ladyzhenskaya’s, and Poincaré’s inequalities). Our objective
here is twofold:

(i) to prove the Ladyzhenskaya and the Poincaré inequalities; and
(ii) to emphasize the physical invariance by dilatation or by change of scale of all
such inequalities.

The Ladyzhenskaya inequality may be described as follows. For a smooth, com-
pactly supported scalar function u in R?, we have

flu(x)|4dxf</ |u(x)|2dx)<f |Vu(x)|2dx>. (4.8)
RZ ]RZ RZ

In R3, we have

1/2 3/2
/|u(x)|4dx§</ |u(x)|2dx) </ |Vu(x)|2dx> ) (4.9)
]R3 ]R3 R3

In (4.8) and (4.9) — and in (4.10), (4.11), and (4.12) — the smoothness of the func-
tions u and g is assumed for the sake of simplicity, since these inequalities are valid
for more general (less smooth) functions.

Remark 4.1 Note the difference between space dimensions 2 and 3. It is this very
discrepancy between the two cases that induces many of the difficulties in the math-
ematical theory of the Navier—Stokes equations in space dimension 3.

That no dimensional constant appears in the RHS of (4.8) or (4.9) is due to the fact
that these inequalities are invariant by dilatation, or homothety (x +— AX), or (in
physical terms) that both sides of these inequalities have the same dimension:

U2L?
U*L? ~ UZLZ(T) for (4.8),

U2L3 3/2
U*L? ~ (U2L3)1/2<T> for (4.9).

Remark 4.2 This invariance of the inequality by dilatation (or homogeneity) is com-
mon to many functional inequalities. However, the lack of a multiplicative constant
in the RHS of (4.8) and (4.9) is not usual. In most cases, we know (we can prove) the
existence of a multiplicative constant in the right-hand side of the inequalities, which
in some cases may be obtained explicitly. In general, however, such constants can be
taken as of order unity.

We present now the proof of (4.8). The proof of (4.9) follows a similar idea and uses
(4.8). We start with the following inequality (of Agmon’s type) in space dimension I:

1/2 1/2
|g(x)|2§< fR |g<s>|2ds> ( /R |g’<s>|2ds> forall xeR,  (410)
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18 I Introduction and Overview of Turbulence

for any smooth function g with compact support in R. Since g has compact support,
there exists L > 0 sufficiently large such that g(x) vanishes for x outside (—L, L).
Then we can write

g2 =2 f #(© (€ de <2 / e @l ©)lde
and

L L
gx)? = —2[ 8(6)g'®) dé < 2[ lg®Ig' ()l ds.

Adding both identities, we obtain

L
gx)? < /ng(é)llg'(if)ldx = Alg(é)llg'(S)IdX-

Then, using the Cauchy—Schwarz inequality, we find (4.10).
We now prove the 2-dimensional Ladyzhenskaya inequality (4.8). We use the
Agmon inequality (4.10) twice, once in each space direction. We have

4 2 2
u(xy, x2)" = u(xy, x2)“u(xy, x2)

< [( / |u(§1,xz)|2dsl>( f |ug](sl,xz)|2dsl)
R R
12
( f |u(x1,sz>|2dsz)< / |M52(x1,§2)|2d§2)} .
R R
Thus,

1/2
/ / u (s, x0)* o dxs < / ( / (&, ) dé; / |ugl(s;1,x2)|2dsl) dx,
RJR R R R
1/2
f</|M(x1,€2)|2d52f|1152(x1,52)|2d§'2> dx;.
R R R

Using the Cauchy—Schwarz inequality, we obtain

//u(xl,x2)4dx1dx2
RJR
1/2 1/2
s(/fm(sl,xmzds]dxz) (f/msl(él,xz)ﬁdsldxz)
RJR RJR
1/2
( / / |u(x1,sz>|2dszdx1> ( / / |u;2(x1,sz>|2dszdxl)
RJR RJR
s(//|u(x1,x2>|2dx1dxz)(//|Vu(x1,xz>|2dx1dxz>,
RJR RJR

which proves (4.8). As mentioned earlier, the proof of (4.9) follows a similar idea:
one first writes u (xy, x2, x3)* as a product of two squares; then one applies the Agmon
inequality (4.10) with respect to one variable and the 2-dimensional Ladyzhenskaya
inequality (4.8) in the remaining two variables.
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With little effort we can now prove another fundamental (often used) inequality:
the Poincaré inequality.” We assume that u is smooth and that it vanishes outside a
bounded set; in fact, it suffices for u to vanish outside a slab, say —L/2 < x; < L/2.
In space dimension 2 (the proof is the same in any space dimension), we write (4.10)
in direction x; with x, fixed:

1/2
d & 1) .

1/2
u(xy, x2)? < (/Rwl,xznzdsl) (

Observing that the RHS of this inequality does not depend on x;, we integrate with
respect to xy, from —L/2 to L /2, and find

ff|u(xl,xz>|2dx,dx2
RJR
u
2L (€1 x)

1/2 2 1/2
<L / ( / |u(§1,x2>|2dsl> ( : da) dxs
rR\JR &

< (after using the Cauchy—Schwarz inequality and renaming the dummy variable)

ou
—(51, X2)

1/2 1/2
<L</ /Iu(x,,x2)| dx, dx2> (// x2) dxldxg) )
This implies the Poincaré inequality
1/2
(//|u(x1,x2)| dxldx2> <L<// X2) dxldxz) , (41D

as well as the following form, which is used more often:

1/2 1/2
(//|u(x1,x2)|2dxldx2) 5L(//|Vu(xl,x2)|2dx1dx2> . (4.12)
RJR RJR

The Poincaré inequality in higher dimensions can be proved similarly. In three di-
mensions, the form that we will often use reads

1/2 1/2
(/ |u(x)|2dx) §L<f |Vu(x)|2dx> . (4.13)
]R3 ]R3

Remark 4.3 (cf. Remark 4.2) Note that a coefficient L (with dimension of length)
appears in the RHS of (4.11) and (4.12). This length is given in the assumption on u
(it vanishes outside —L/2 < x; < L/2), and both sides of (4.11) and of (4.12) have
the same dimension, namely UL.

Another frequently used version of the Poincaré inequality (which we state without
proof) relates to functions u defined on a bounded domain 2 whose average on 2
vanishes. We will use this inequality in space dimension d = 2 or 3, but for any space
dimension d it reads as follows: There exists a constant ¢ = ¢(£2) such that

3> More precisely, we prove one of the forms of this inequality; another form (valid for space-
periodic functions) is given later in this section.
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20 I Introduction and Overview of Turbulence

/|u(x1,...,xd)|2dx1...dxd 5C(Q)/|Vu(x1,...,xd)|2dx1...dxd (4.14)
Q Q
for all functions u such that
f u(xy, ..., xqg)dxy...dxg = 0. (4.15)
Q

This inequality will be frequently used for space-periodic functions with zero av-
erage on the period 2. Note that the constant c(£2), which is not easy to determine,
has dimension L? (square of a length; see Remark 4.3). In the periodic case, we write
this constant more explicitly as c(Q2) = ¢(2)L?, where L is the smallest period. In
this case, the constant ¢(£2) depends only on the “shape” of €2, in the sense that it is
invariant under dilatation; see Remark 4.2.

More Inequalities

The methods of functional analysis employed throughout this volume rely heavily on
the use of some relatively simple and well-known inequalities, as well as on more so-
phisticated ones. For the convenience of the reader, we list here (without proof) all
inequalities in the first category. We shall then also list those in the second category —
namely, the Sobolev inequalities and some of their variants, which extend (4.8) and
(4.9) in various ways.

Schwarz’s inequality:

1 , b?
ab < —(ea”+ — (4.16)
2 g
for all real numbers a, b and all ¢ > 0.
Young’s inequality:
1 1,
ab < —a’” + —b" 4.17)
p p
foralla,b > Oandalll < p < oo, with p’ = p/(p—1) (i.e.,1/p+1/p’ = 1). Also,
befarp L 418
47 = T (4.18)

for all a, b, p, p’ as before and all ¢ > 0.
Holder’s inequality:

1/p ) 1/p’
/ u(x)v(x)dx < </|u(x)|pdx> </|v(x)|” dx) (4.19)
Q Q Q

for all measurable functions u and v for which the right-hand side is finite. Here, 1 <
p <00, p' = p/(p—1), and Q is an arbitrary open set in R?, d € N. Also,

/u(x)v(x) dx < sup|u(x)|/|v(x)|dx. (4.20)
Q xeQ Q

A weaker form of (4.20) involving the essential supremum of u appears in the sequel.
In addition to the inequalities just listed, we use extensively the Poincar€ inequalities
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(4.11), (4.12), and (4.14), as well as related forms of this inequality discussed in the
main text.

Lebesgue Spaces

We have recalled already the definition of the space L?(S2) of square integrable func-
tions on a domain €2 in R¢, d € N. This is one of the so-called Lebesgue spaces. More
generally, for any 1 < p < oo, we have the Lebesgue space L”(£2), which is the
space of measurable functions whose absolute value to the pth power is integrable:

/|u(x)|pdx < Q.
Q

This space is endowed with the norm

1/p
lull Loy = ( / |u<x>|"dx) . @20
Q

The space L%(2) is a particular case of the preceding spaces, and it is the only one
whose norm is associated with an inner product. Because of the frequent use of the
L?-norm, we denote it simply by | - | and denote the associated inner product by (-, -).

The limiting case p = oo can also be considered. The space L*>°(£2) is the space
of measurable functions that are uniformly bounded almost everywhere on 2. More
precisely, a measurable function ¥ = u(x) on 2 belongs to L*°(€2) if and only if
there is a number M > 0 such that |u(x)| < M for almost every x in 2 (i.e., except
on a set of measure zero). The smallest such M is the norm of u, which is denoted
llull oo () -

With those spaces in mind, the Holder inequality (4.19) reads as

@, v) < lull o 191l g (4.22)

for all u € LP(R2) and all v € LP'(Q), where p’ = p/(p — 1) (ie., 1/p + 1/p’ = 1),
1< p=<oo.

Higher-Order Sobolev Spaces

A number of technical function spaces will be introduced as needed, especially in
Chapter I1. However, at this point we would like to mention the higher-order Sobolev
spaces H™(S2), which are central in the mathematical theory of partial differential
equations.

For any domain 2 in R¢, which may be bounded or unbounded (possibly Q = R%)
and whose boundary 32 may or may not be smooth:® for integer m > 1, we denote
by H™(£2) the space of square integrable real functions u on €2 whose distributional
derivatives of orders up to m are also square integrable. In mathematical notation,

6 Let us mention that there are some difficulties with nonsmooth domains, a question that is
not addressed in this monograph.
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H™) = {u e L*(Q); D e L*(Q), [«] < m},

where o = («y, ..., a4) € Nis a multi-integer, [¢] = o1 + -+ - + oy, and D* is a
short notation for

ot taa

a;‘ll - a)‘j‘; :

We endow this space with the following inner product and norm:

el 22y = (@t ) ey}
@, W)y = Y % > /Q D%u(x)D*v(x) dXx. (4.23)
k=0 [w]=k
Here, L is a typical length scale associated with €2; we introduced it in (4.23) to make
the RHS dimensionally homogeneous. In the mathematical context we usually use
nondimensional variables, and then L = 1. The space H™(£2) is the Sobolev space
of order m; it is a Hilbert space for the inner product ((-, -)) g»(g) and the associated
norm.
Of course, for m = 1, we recover the space H'(S2) previously mentioned. Note
that, like H'(Q) (see (4.3) and after), we can say that

u € H™(R2) if and only if there exists a sequence of smooth
functions u;, compactly supported in €2, such that [|u; || gm(q)
remains bounded and u; is converging to u (in the distribution
sense) as j — 00.

(4.24)

Sobolev spaces based on the Lebesgue spaces LP(€2) for any 1 < p < oo can also
be defined. They are very important in the mathematical theory of partial differential
equations, but they will not be necessary for our purposes in this monograph.

Sobolev Embeddings and Inequalities

An important property of Sobolev spaces are the Sobolev embeddings, based on in-
equalities similar to (4.8) and (4.9), which are generally called the Sobolev inequali-
ties. For instance, (4.8) implies that, in space dimension 2,

H'(R?*) c LY(R?);

such inequalities are valid more generally for any (smooth but not necessarily
bounded) domain  C R?, and imply similarly for such a domain that

H'(Q) c LY ().
In the same manner, in space dimension 3, (4.9) implies that
H'(RY) c L*RY)

and, for any (smooth but not necessarily bounded) domain Q C R?,
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HY(Q) c LY(Q).
In general, for 1 <m < d/2, where d is the space dimension,
H"(Q) C LY(Q), (4.25)

where 1/qg = 1/2 —m/d. For m = d/2 (e.g., for the important case of d = 2 and
m = 1), the functions in H™(£2) belong to L9(S2}), for any finite ¢ (1 < g < o0) and
for any bounded and smooth subdomain 2y, of 2. The Sobolev embedding (4.25) is
derived from an inequality similar to (4.8)—(4.9) that is also invariant by dilatation
(dimensionally invariant):

1/q 1/2
(f lu(x)|? dx) <c(m,d, Q) E (/ |D"‘u(x)|2 dx) , (4.26)
R4 Rd

[a]=m

where the constant c(m, d, €2) depends on m, d, and the shape of 2. Note that both
sides of this inequality have the dimension of UL%/? = UL¥?~™ and the constant
c(m, d, 2) is a constant that has no dimension.

Remark 4.4 Unlike for (4.8) and (4.9), the constant c(m, d, 2) in (4.26) is very
difficult to obtain; and the proof of (4.26) is much more involved than that of (4.8)
and (4.9). The interested reader can learn more about Sobolev spaces in the books of
Adams [1975], Lions and Magenes [1972], and Mazja [1985]; see also a summary in
Temam [1997, Chap. II].

Remark 4.5 By interpolation, one can supplement the embedding (4.25) with a
large collection of similar inequalities. Indeed, using the Holder inequality (4.19), it
is easy to show that

d(g—r) d(r—2)

Lr o)) s
(f |u(x)|’dx) 5(/ |u<x)|2dx>( )</ |u(x>|qu)( EE7)
Rd R4 R4

when 2 < r < ¢g. Hence, with (4.26),

1/r
(/ lu(x)|” dx)
R4
d(g—r) dq(r—2)

5c(m,d,£2)</ |u(x)|2dx)r(q_2>(2/ |D°‘u(x)|2dx)m. (4.28)
R‘l ]Rd

[a]l=m

Compact Mappings, the Rellich Lemma, and Compact Sobolev Embeddings

‘We conclude this section with a more technical nonintuitive concept: compact embed-
dings and the Rellich lemma, showing that certain Sobolev embeddings are compact.
The Sobolev embedding (4.25) is continuous, which is equivalent to saying that the
following inequality holds (cf. (4.26)):

lull Loy < cllullamg)
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for some constant ¢ independent of u. This means that the identity operator is contin-
uous from H™(2) into L9(€2). This holds under the condition that 1/g = 1/2 —m/d,
for1 <m < d/2 orin the critical case m = d/2 as just explained. When the domain
Q2 is bounded, L9(2) is included in L?($2) for any p < ¢. For simplicity, we consider
only the case m = 1. Then, if 2 is bounded and smooth, we have the embedding

HY(Q) c LP(Q)

for 1/p > 1/2 — 1/d. The Rellich lemma (see e.g. Adams [1975]) asserts that this
embedding is not only continuous but also compact. This means that a bounded set
in H'(R) is precompact as a subset of L?(2). One of the important consequences of
this property is that any sequence {u,},en of functions whose norms in H'(S) are
uniformly bounded contains a subsequence {u,lj} jen that converges in the norm of
L?(R) to some element 1 in H'($2). The usual notation for compact embedding is

H'(Q) cc LP(Q), (4.29)

for 1/p > 1/2 — 1/d and for Q2 bounded and smooth. This important result is often
invoked in this monograph, especially for proving that the Stokes operator has a
compact inverse, whence we deduce the existence of an orthonormal basis of eigen-
functions of the Stokes operator (see Section 6 in Chapter II).

Alternatively, saying that the embedding (4.29) is compact means that any sequence
weakly convergent in H!(Q) is strongly convergent in L?(2) for such values of p,
that is, convergent in the L”(€2) norm. See Appendix A.l in Chapter II for some
explanations on weak convergences.
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