THE ATTOUCH-WETS TOPOLOGY AND A CHARACTERISATION OF NORMABLE LINEAR SPACES

LUBICA HOLÁ

Let X and Y be metric spaces and C(X, Y) be the space of all continuous functions from X to Y. If X is a locally connected space, the compact-open topology on C(X, Y) is weaker than the Attouch-Wets topology on C(X, Y). The result is applied on the space of continuous linear functions. Let X be a locally convex topological linear space metrisable with an invariant metric and X^* be a continuous dual. X is normable if and only if the strong topology on X^* and the Attouch-Wets topology coincide.

1. Introduction

Convex analysts all agree on the most appropriate convergence notion for sequences of closed convex sets in finite dimensions: classical Kuratowski convergence of sets [13]. Convergence in this sense is stable with respect to duality: if $\{A_n\}$ is a sequence of closed convex sets in \mathbb{R}^n Kuratowski convergent to A, we have the convergence of the polar sequence $\{A_n^0\}$ to A^0 [17].

Attempts to obtain a suitable infinite dimensional generalisation of this convergence notion have focused on the notion of Mosco convergence [14, 15, 7]. Unfortunately, this convergence does not work well without reflexivity. It appears now that the correct generalisation is the topology τ of uniform convergence of distance functionals on bounded sets. This topology is stable with respect to duality without reflexivity or even completeness [6]. It seems particularly well-suited to problems involving estimation, approximation, and optimisation [1, 2, 3, 4].

It is the purpose of this article to show the connections between standard convergence notions for functions and convergence of their graphs with respect to the Attouch-Wets topology.

Received 6 July 1990

I wish to thank Professor Beer for discussions on this paper.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

12

2. Preliminaries

(X, d) will denote a metrisable space X with a compatible metric d. The open d-ball with centre $x_0 \in X$ and radius $\varepsilon > 0$ will be denoted by $S_d[x_0, \varepsilon]$, and the ε -parallel body $\bigcup_{a \in A} S_d[a, \varepsilon]$ for a subset A of X will be denoted by $S_d[A, \varepsilon]$.

Let CL(X) be a family of nonempty closed subsets of a metric space (X, d). If $A \in CL(X)$, the distance functional $d(\cdot, A) : X \to [0, \infty)$ is described by the familiar formula $d(x, A) = \inf\{d(x, a) : a \in A\}$.

We shall denote by $\tau_{aw}(d)$ the topology on CL(X) of uniform convergence of distance functionals on bounded subsets of X corresponding to a fixed metric d on X (the Attouch-Wets topology). The topology $\tau_{aw}(d)$ is most naturally presented as a uniform topology, determined by the uniformity Ω_d on CL(X) with the countable base of entourages $\{V_d[x_0, n] : n \in Z^+\}$, where for each n

$$V_d[x_0, n] = \{(A, B): \sup_{d(x, x_0) < n} |d(x, A) - d(x, B)| < 1/n\}.$$

The point x_0 is a fixed but arbitrary point of X, and the uniformity is independent of its choice.

We will consider a uniformity Σ_d on CL(X) which has a countable base consisting of all sets of the form

$$U_d[x_0,\,n] = \{(A,\,B)\colon A\cap S_d[x_0,\,n]\subset S_d[B,\,1/n] ext{ and } \ B\cap S_d[x_0,\,n]\subset S_d[A,\,1/n]\}$$

where again x_0 is a fixed but arbitrary point of X and $n \in \mathbb{Z}^+$. This uniformity also determines $\tau_{aw}(d)$ [8].

Now let (X, d) and (Y, ρ) be metric spaces and let $d \times \rho$ denote the box metric on $X \times Y$. If $f: X \to Y$ is a function, denote $G(f) = \{(x, f(x)): x \in X\}$ the graph of f. Denote C(X, Y) the family of all continuous functions from X to Y. We can identify the members of C(X, Y) with their graphs and consider C(X, Y) as a subspace of $CL(X \times Y)$ with the induced $\tau_{aw}(d \times \rho)$ topology.

It is easy to see from the definition of the uniformity $\Sigma_{d\times\rho}$ on $CL(X\times Y)$ that the $\tau_{aw}(d\times\rho)$ topology on C(X,Y) is weaker than the Hausdorff metric topology [11].

In general $\tau_{aw}(d \times \rho)$ convergence of a sequence $\{f_n\}$ from C(X, Y) to $f \in C(X, Y)$ does not imply pointwise convergence.

EXAMPLE 1: Let $X = [0, 1] \setminus \{1, 1/2, \dots 1/n, \dots\}$ with the usual metric u. Let $f: X \to R$ be the zero function and let $f_n = n\chi_{[0, 1/n] \cap X}$. Evidently we have $\tau_{aw}(u \times u)$ -convergence of $\{f_n\}$ to f. But pointwise convergence of $\{f_n\}$ to f at 0 fails.

But the following trivial Proposition is true:

PROPOSITION 1. Let (X, d) and (Y, ρ) be metric spaces, and let f, f_1, f_2, \ldots be elements of C(X, Y). If for each $x \in X$, $\{f_n(x): n \in Z^+\}$ is a bounded set in (Y, ρ) , then $\tau_{aw}(d \times \rho)$ convergence of $\{f_n\}$ to f implies the pointwise convergence of $\{f_n\}$ to f.

PROOF: Let $x \in X$, $\varepsilon > 0$. We fix (x_0, y_0) in $X \times Y$ to serve as centre for $d \times \rho$ -balls in $X \times Y$. There is $N \in \mathbb{Z}^+$ such that

$$\left(\{x\}\times\{f_n(x)\colon n\in Z^+\}\right)\cup S_{d\times\rho}[(x,\,f(x)),\,\varepsilon]\subset S_{d\times\rho}[(x_0,\,y_0),\,N].$$

The continuity of f at x implies that there is $0 < \delta < \varepsilon$ such that $\rho(f(x), f(z)) < \varepsilon/2$ whenever $d(x, z) < \delta$.

Put $\eta = \min\{\varepsilon/2, \delta\}$. Let $M \in \mathbb{Z}^+$ be such that M > N and $M > 1/\eta$. There is $M_0 \in \mathbb{Z}^+$ such that for each $n \ge M_0$ we have

$$(G(f_n), G(f)) \in U_{d \times \rho}[(x_0, y_0), M].$$

It is easy to verify that $\rho(f_n(x), f(x)) < \varepsilon$ for each $n \geqslant M_0$.

3. MAIN RESULTS

THEOREM 1. Let (X, d) be a locally connected metric space and (Y, ρ) be a metric space. Then the topology of uniform convergence on compact subsets of X on C(X, Y) is weaker than the $\tau_{aw}(d \times \rho)$ topology on C(X, Y).

The proof of Theorem 1 is based on the following lemma.

LEMMA 1. Let (X, d) and (Y, ρ) be metric spaces. Let $f, f_1, f_2, \ldots \in C(X, Y)$. If for each $x \in X$ there is a neighbourhood O_x of x and there is $N \in Z^+$ such that $\{f_n \colon n \geqslant N\}$ is uniformly bounded on O_x , then the convergence of $\{f_n\}$ to f in the $\tau_{aw}(d \times \rho)$ topology ensures uniform convergence of $\{f_n\}$ to f on compact subsets of X.

PROOF OF LEMMA 1: We fix (x_0, y_0) in $X \times Y$ to serve as centre for $d \times \rho$ -balls in $X \times Y$. By $U_{d \times \rho}[(x_0, y_0), k](G(f))$ we mean the $\tau_{aw}(d \times \rho)$ neighbourhood of f in $CL(X \times Y)$.

Let K be a compact set in X and $\varepsilon > 0$. We show that there is $k \in \mathbb{Z}^+$ such that for each $n \ge k$ and for each $x \in K$ we have $\rho(f_n(x), f(x)) < \varepsilon$.

By assumption there is $N \in Z^+$ and a bounded open set G in X such that $G \supset K$ and $\{f_n : n \ge N\}$ is uniformly bounded on G. Since f is uniformly continuous on K there is $\delta > 0$ such that whenever $z \in K$ and $x \in X$ and $d(x, z) < \delta$ then $\rho(f(z), f(x)) < \varepsilon/2$.

Let $M \in Z^+$ be such that $\bigcup \{G \times f_n(G) : n \geq N\} \subset S_{d \times \rho}[(x_0, y_0), M]$. Pick an integer L such that $L > \max\{M, 2/\varepsilon, 1/\delta\}$. There is $N_1 \in Z^+$, $N_1 \geq N$ such that

(1)
$$G(f_n) \in U_{d \times \rho}[(x_0, y_0), L](G(f)) \quad \text{for each } n \geqslant N_1.$$

Let $x \in K$ and $n \geqslant N_1$. (1) guarantees the existence $u \in X$ such that $d \times \rho[(x, f_n(x)), (u, f(u))] < 1/L$, that is, $d(x, u) < 1/L < \delta$ and $\rho(f_n(x), f(u)) < \varepsilon/2$, that is, $\rho(f_n(x), f(x)) < \varepsilon$.

PROOF OF THEOREM 1: Denote the topology of uniform convergence on compact subsets of X on C(X, Y) by \mathcal{U} . Suppose that \mathcal{U} is not contained in $\tau_{aw}(d \times \rho)$. There is $U \in \mathcal{U}$ such that $U \notin \tau_{aw}(d \times \rho)$. Thus there is $f \in U$ with the following property

(*) for every
$$\tau_{aw}(d \times \rho)$$
 neighbourhood V of $V \not\subset U$.

Here (*) ensures the existence of a sequence $\{f_n\}$, $f_n \in C(X, Y)$ n = 1, 2, ... which converges in the $\tau_{aw}(d \times \rho)$ topology to f, but fails to converge in \mathcal{U} to f.

We show that $\{f_n\}$ uniformly converges to f on compact subsets of X and that will be a contradiction. By Lemma 1 it is sufficient to prove that for each $x \in X$ there is a neighbourhood O_x of x and there is $N \in Z^+$ such that $\{f_n : n \geq N\}$ is uniformly bounded on O_x .

We fix (x_0, y_0) in $X \times Y$ to serve as centre for $d \times \rho$ -balls in $X \times Y$. Let $x \in X$. There is δ $(0 < \delta < 1)$ such that

(2) for each
$$z \in S_d[x, \delta]$$
 we have $\rho(f(x), f(z)) < 1/2$.

Let O_x be a connected neighbourhood of x such that $O_x \subset S_d[x, \delta/2]$ and let δ_0 be such that $S_d[x, \delta_0] \subset O_x$. We claim that there is $N \in \mathbb{Z}^+$ such that for each $n \geq N$, $f_n(O_x) \subset S_\rho[f(x), 2]$.

Suppose that for each $n \in Z^+$ there is $m \geqslant n$ such that

(3)
$$f_m(O_x) \not\subset S_{\rho}[f(x), 2].$$

There is $M \in Z^+$ such that $S_{d \times \rho}[(x, f(x)), 3] \subset S_{d \times \rho}[(x_0, y_0), M]$. Let $n_0 \in Z^+$ be such that $n_0 > \max\{1/\delta_0, M\}$. The $\tau_{aw}(d \times \rho)$ convergence of $\{f_n\}$ to f implies that there is $N_1 \in Z^+$ such that for each $n \geq N_1$,

(4)
$$(G(f_n), G(f)) \in U_{d \times \rho}[(x_0, y_0), n_0].$$

Put $A = \{y \in Y : \rho(f(x), y) = 2\}$. By (3) there is $m \geqslant N_1$ and there is $u \in O_x$ such that $f_m(u) \notin S_\rho[f(x), 2]$ and by (4) there is x_m such that

 $d \times \rho((x, f(x)), (x_m, f_m(x_m))) < 1/n_0$, that is, $d(x, x_m) < 1/n_0 < \delta_0$; thus $x_m \in O_x$. The connectedness of O_x and continuity of f_m imply that there is $v \in O_x$ such that $f_m(v) \in A$.

(4) guarantees the existence of z such that $d \times \rho((z, f(z))(v, f_m(v))) < 1/n_0$, that is, $d(z, v) < \delta_0$ and thus $d(z, x) < \delta$; but $2 = \rho(f(x), f_m(v)) \le \rho(f(x), f(z)) + \rho(f(z), f_m(v))$, that is, $2 - (1/n_0) \le \rho(f(x), f(z))$, and that is a contradiction to (2).

Example 1 shows that the assumption local connectedness of X in Theorem 1 is essential.

Theorem 1 has a very useful consequence.

COROLLARY 1. Let (X, d) be a locally connected metric space and (Y, ρ) be a metric space. Let $f, f_1, f_2, \ldots \in C(X, Y)$. If $\{f_n\}$ converges to f in the $\tau_{aw}(d \times \rho)$ topology, then $\{f_n\}$ is a pointwise equicontinuous sequence. $(\{f_n : n \in Z^+\})$ is pointwise equicontinuous at x if for every $\varepsilon > 0$ there is $\delta > 0$ such that $\rho(f_n(x), f_n(z)) < \varepsilon$ whenever $d(x, z) < \delta$ and $n \in Z^+$.)

Let (X, d) be a metric space. A metric space (X, d) is called b-compact if every bounded subset of X has compact closure [12].

LEMMA 2. Let (X, d) and (Y, ρ) be metric spaces. Let (X, d) be a b-compact space. Then the $\tau_{aw}(d \times \rho)$ topology on C(X, Y) is weaker than uniform topology on compact subsets of X on C(X, Y).

PROOF: For an easy proof see [8 Theorem 4.1 (a)].

PROPOSITION 2. Let (X, d) be a metric space. The following are equivalent:

- (i) (X, d) is b-compact;
- (ii) for every metric space (Y, ρ) the $\tau_{aw}(d \times \rho)$ topology on C(X, Y) is weaker than the topology of uniform convergence on compact subsets of X on C(X, Y).

PROOF: (i) \Rightarrow (ii) is clear from Lemma 2.

(ii) \Rightarrow (i) Suppose there is a bounded set A in X such that the closure \overline{A} of A is not compact. There is a sequence $\{x_n\}$ in \overline{A} which has no cluster point in X. Choose ε_n for any $n \in Z^+$ such that $0 < \varepsilon_n < 1/n$ and such that the family $\{S_d[x_n, \varepsilon_n] : n \in Z^+\}$ is pairwise disjoint. Define g_n from C(X, R) by

$$g_n(x) = \begin{cases} 1 - (d(x_n, x)/\varepsilon_n) & \text{if } x \in S_d[x_n, \varepsilon_n] \\ 0 & \text{for other } x. \end{cases}$$

The sequence $\{g_n\}$ is convergent to the function $g: X \to R$ identically equal to 0 in the topology of uniform convergence on compact subsets of X. (If K is a compact

set in X, then K meets only finitely many sets $S_d[x_n, \varepsilon_n]$.) It is easy to see that the sequence $\{g_n\}$ fails to converge to g in the $\tau_{aw}(d \times |\cdot|)$ topology.

THEOREM 2. Let (X, d) be a locally connected b-compact metric space. Let (Y, ρ) be a metric space. Then the $\tau_{aw}(d \times \rho)$ topology on C(X, Y) and the topology of uniform convergence on compact subsets of X on C(X, Y) coincide.

COROLLARY 2. Let (Y, ρ) be a metric space. Let u_n be the usual metric on R^n (n = 1, 2, ...). Then the $\tau_{aw}(u_n \times \rho)$ topology on $C(R^n, Y)$ and the topology of uniform convergence on compact subsets of R^n on $C(R^n, Y)$ coincide.

COROLLARY 3. Let (X, d) be a locally connected compact metric space. Let (Y, ρ) be a metric space. Then the $\tau_{aw}(d \times \rho)$ topology on C(X, Y) and the Hausdorff metric topology on C(X, Y) coincide.

PROOF: For an easy proof see [9] and Theorem 2.

Further relations between standard convergence notions and the Attouch-Wets convergence may be obtained from [9].

4. APPLICATIONS

In the subsequent part of our paper we give some applications of previous results to the space of continuous linear functions.

In the sequel, X will be a locally convex topological linear space metrisable with an invariant metric d, with origin θ . X^* will be a space of all continuous linear functions from X to R. In the sequel, the product $X \times R$ will be understood to be equipped with the box metric, denoted by $d \times |\cdot|$.

Let S denote the strong topology on X^* , that is if $U_{\varepsilon,A} = \{f \in X^* : |f(x)| < \varepsilon \text{ for every } x \in A\}$, then S is generated by the family $\{U_{\varepsilon,A}\}$, where ε runs over all positive reals and A runs over all linearly bounded sets in X. (A is a linearly bounded set if for every neighbourhood V of θ there is n > 0 such that $\chi V \supset A$ for every $\chi: |\chi| > n$.)

THEOREM 3. Let X be a locally convex topological linear space metrisable with an invariant metric d. Then the strong topology S on X^* is weaker than the $\tau_{aw}(d \times |\cdot|)$ topology on X^* .

PROOF: It is sufficient to prove that $\tau_{aw}(d \times |\cdot|)$ convergence of a sequence $\{f_n\}$ from X^* to $f \in X^*$ implies S convergence of $\{f_n\}$ to f.

Since X is a locally connected metric space by Corollary 1 a family $\mathcal{L} = \{f_n : n = 1, 2, \ldots\} \cup \{f\}$ is pointwise equicontinuous. From the pointwise equicontinuity of \mathcal{L} at θ we have the following assertion: there is δ_0 $(0 < \delta_0 < 1)$ such that for every $z \in S_d[\theta, \delta_0], |f(z)| \leq 1$ and $|f_n(z)| \leq 1$ for every $n \in \mathbb{Z}^+$.

Put $U = S_d[\theta, \delta_0]$. We show that $\{f_n\}$ converges uniformly to f on U. Let $\varepsilon > 0$. The uniform continuity of f implies that there is $\delta < \delta_0$ such that $|f(x) - f(y)| < \varepsilon/2$ whenever $d(x, y) < \delta$.

Put $\eta = \min\{\varepsilon/2, \delta\}$. Let $k \in Z^+$ be such that $k > 1/\eta$. The $\tau_{aw}(d \times |\cdot|)$ convergence of $\{f_n\}$ to f implies that there is $N_0 \in Z^+$ such that for every $n \geq N_0$ we have $(G(f_n), G(f)) \in U_{d \times |\cdot|}[(\theta, 0), k]$. We show that for every $n \geq N_0$ and every $x \in U$ we have $|f_n(x) - f(x)| < \varepsilon$.

Let $n \ge N_0$ and $x \in U$. There is $z \in X$ such that

$$d \times |\cdot| ((x, f_n(x)), (z, f(z))) < 1/k,$$

that is $|f_n(x) - f(z)| < 1/k < \varepsilon/2$ and $d(x, z) < 1/k < \delta$. Then $|f(z) - f(x)| < \varepsilon/2$ and thus $|f_n(x) - f(x)| < \varepsilon$.

From this observation the S convergence of $\{f_n\}$ to f is obvious.

The following theorem gives a characterisation of normed linear spaces in the class of locally convex topological linear spaces metrisable with an invariant metric.

THEOREM 4. Let X be a locally convex topological linear space metrisable with an invariant metric d. X is normable if and only if the strong topology S on X^* and the $\tau_{aw}(d \times |\cdot|)$ topology on X^* coincide.

PROOF: If X is a normed linear space, then by Theorem 4.3 in [5] the strong topology S on X^* and the $\tau_{aw}(d \times |\cdot|)$ topology on X^* coincide.

Suppose X is not normable. There is $k \in Z^+$ such that $S_d[\theta, k]$ is not linearly bounded. Put $A = S_d[\theta, k]$. There is an absolutely convex neighbourhood U of θ with the following property: for each $n \in Z^+$ there is $k_n > n$ such that $k_n U \not\supset A$. Thus there is a sequence $\{x_n\}$ such that $x_n \in A$ for each $n \in Z^+$ and $x_n \notin k_n U$ for each $n \in Z^+$. The absolute convexity of U implies that $x_n/n \notin U$ for each $n \in Z^+$. Without loss of generality we can also suppose that x_n/n is not contained in the closure \overline{U} of U for each $n \in Z^+$.

From the fundamental theorem of functional analysis [16] for each $n \in Z^+$ there is a continuous linear function $f_n \colon X \to R$ such that $f_n(x_n/n) > 1$ and $|f_n(x)| \le 1$ for each $x \in U$. For every $n \in Z^+$ put $h_n = f_n/n$. It is easy to verify that the sequence $\{h_n\}$ converges to the zero function h in the strong topology S. We show that the sequence $\{h_n\}$ fails to converge to h in $\tau_{aw}(d \times |\cdot|)$ topology. There is δ $(0 < \delta < 1)$ such that for every $x, y \in X$ with $d(x, y) < \delta$ we have $|h_n(x) - h_n(y)| < 1/2$ for every $n \in Z^+$. Put $\eta = \min\{\delta, 1/2, 1/k\}$. Let $M \in Z^+$ be such that $1/M < \eta$. Then for every $n \in Z^+$ we have $(G(h_n), G(h)) \notin U_{d \times |\cdot|}[(\theta, 0), M]$. (Let $n \in Z^+$. The choice of M and $h_n(x_n) > 1$ implies that $(x_n, 0) = (x_n, h(x_n)) \notin S_{d \times |\cdot|}[G(h_n), 1/M]$.)

REFERENCES

- [1] H. Attouch and R. Wets, Quantitative stability of variational systems: I, The epigraphical distance. Working paper, II ASA (Laxenburg, Austria, 1988).
- [2] D. Azé and J.P. Penot, Operations on convergent families of sets and functions, AVA-MAC report (Perpignan, 1987).
- [3] D. Azé and J.P. Penot, 'Recent quantitative results about the convergence of convex sets and functions', in *Functional analysis and approximation*, Editor P.L. Papini (Pitagora Editrice, Bologna, 1989).
- [4] G. Beer and R. Lucchetti, 'Convex optimization and the epi-distance topology'. (preprint).
- [5] G. Beer, 'A second look at set convergence and linear analysis', Rend. Sem. Mat. Fis. Milano (to appear).
- [6] G. Beer, 'Conjugate convex functions and the epi-distance topology', Proc. Amer. Math. Soc. (to appear).
- [7] G. Beer, 'On Mosco convergence of convex sets', Bull. Austral. Math. Soc. 38 (1988), 239-253.
- [8] G. Beer and A. Di Concilio, 'Uniform continuity on bounded sets and the Attouch-Wets topology', Proc. Amer. Math. Soc. (to appear).
- [9] G. Beer, 'On convergence of closed sets in a metric space and distance functions', Bull. Austral. Math. Soc. 31 (1985), 421-432.
- [10] R. Engelking, General topology (PWN n. 60, Warsaw, 1977).
- [11] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions: Lecture notes in mathematics 580 (Springer-Verlag, Berlin, Heidelberg, New York, 1975).
- [12] T. Hamlett and L. Harringhton, The closed graph and p-closed graph properties in general topology: AMS Contemporary Series 3 (American Mathematical Society, Providence, RI, 1981).
- [13] K. Kuratowski, Topology 1 (Academic Press, New York, 1966).
- [14] U. Mosco, 'Convergence of convex sets and of solutions of variational inequalities', Adv. in Math. 3 (1969), 510-585.
- [15] U. Mosco, 'On the continuity of the Young-Fenchel transform', J. Math. Anal. Appl. 35 (1971), 518-535.
- [16] A. Robertson and W. Robertson, Topological vector spaces (Cambridge University Press, 1964).
- [17] R. Wijsman, 'Convergence of sequences of convex sets, cones and functions II', Trans. Amer. Math. Soc. 123 (1966), 32-45.

Department of Probability and Mathematical Statistics MFF UK, 842 15 Bratislava Czechoslovakia