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THE ATTOUCH-WETS TOPOLOGY
AND A CHARACTERISATION OF NORMABLE LINEAR SPACES

LUBICA HOLA

Let X and Y be metric spaces and C(X, Y) be the space of all continuous func-
tions from X to Y. If X is a locally connected space, the compact-open topology
on C(X, Y) is weaker than the Attouch-Wets topology on C(X, Y). The result
is applied on the space of continuous linear functions. Let X be a locally convex
topological linear space metrisable with an invariant metric and X* be a con-
tinuous dual. X is normable if and only if the strong topology on X* and the
Attouch-Wets topology coincide.

1. INTRODUCTION

Convex analysts all agree on the most appropriate convergence notion for sequences
of closed convex sets in finite dimensions: classical Kuratowski convergence of sets [13].
Convergence in this sense is stable with respect to duality: if {An} is a sequence of
closed convex sets in Rn Kuratowski convergent to A, we have the convergence of the
polar sequence {A^} to A0 [17].

Attempts to obtain a suitable infinite dimensional generalisation of this convergence
notion have focused on the notion of Mosco convergence [14, 15, 7]. Unfortunately,
this convergence does not work well without reflexivity. It appears now that the cor-
rect generalisation is the topology T of uniform convergence of distance functionals on
bounded sets. This topology is stable with respect to duality without reflexivity or
even completeness [6]. It seems particularly well-suited to problems involving estima-
tion, approximation, and optimisation [1, 2, 3, 4].

It is the purpose of this article to show the connections between standard con-
vergence notions for functions and convergence of their graphs with respect to the
Attouch-Wets topology.
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2. PRELIMINARIES

(X, d) will denote a metrisable space X with a compatible metric d. The open
<£-ball with centre xo G -X" and radius e > 0 will be denoted by Sd[xo, c], and the
e-parallel body (J Sd[a, e] for a subset A of X will be denoted by Sd[A, e\.

a€A

Let CL(X) be a family of nonempty closed subsets of a metric space (X, d). If
A G CL(X), the distance functional d(-, A) : X —> [0, co) is described by the familiar
formula d(x, A) = inf{d{x, a) : a € A}.

We shall denote by Taw(d) the topology on CL(X) of uniform convergence of
distance functionals on bounded subsets of X corresponding to a fixed metric d on X
(the Attouch-Wets topology). The topology Taw(d) is most naturally presented as a
uniform topology, determined by the uniformity Q.d on CL(X) with the countable base
of entourages {Vjfzo, n] : n 6 Z+}, where for each n

Vd[x0, n] = {(A, B): sup \d(x, A) - d(x, B)\ < 1/n}.
d(x, xo)<n

The point XQ is a fixed but arbitrary point of X, and the uniformity is independent

of its choice.

We will consider a uniformity Ej on CL(X) which has a countable base consisting

of all sets of the form

Ud[x0, n] = {(A, B): A nSd[x0, n] C Sd[B, 1/n] and

Bf\Sd[x0,n]c Sd[A, 1/n]}

where again Xo is a fixed but arbitrary point of X and n € Z+. This uniformity also

determines Tavt(d) [8].

Now let (X, d) and (Y, p) be metric spaces and let d x p denote the box metric on

XxY. U f: X-*Y isa. function, denote G(f) = {{x, f(x)): x £ X} the graph of / .

Denote C(X, Y) the family of all continuous functions from X to Y. We can identify

the members of C(X, Y) with their graphs and consider C(X, Y) as a subspace of

CL(X x Y) with the induced raw(d x p) topology.

It is easy to see from the definition of the uniformity S<*xp on CL(X x Y) that the

raw(d x p) topology on C(X, Y) is weaker than the Hausdorff metric topology [11].

In general Tav>(d x p) convergence of a sequence {/«} from C(X, Y) to / e

C(X, Y) does not imply pointwise convergence.

EXAMPLE 1: Let X = [0, 1] \ {1,1/2, . . .1/n, . . .} with the usual metric u.

Let / : X —* R be the zero function and let /„ = nx[o,i/n]nX • Evidently we have
Taw[u X «)-convergence of {/„} to / . But pointwise convergence of {/«} to / at 0
fails.

But the following trivial Proposition is true:
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PROPOSITION 1 . Let (X, d) and (Y, p) be metric spaces, and let f, / i , / 2 l •..

be elements of C(X, Y). If for each x 6 X, {fn(x): n £ Z+} is a bounded set in

(Y, p), then raw[d x p) convergence of {/n} to f implies the pointwise convergence of

{/»} to / .

PROOF: Let x 6 X, e > 0. We fix (x0, y0) in X x Y to serve as centre for
d x p -balls in X xY. There is TV G Z+ such that

({*} x {/»(*): « € Z+}) USdXp[(x, /(x)), e] C Six,[(*o, yo), # ] .

The continuity of / at x implies that there is 0 < 6 < e such that p(f(x), f(z)) <
e/2 whenever cf(x, z) < £.

Put »/ = min{e/2, 6}. Let M e 2 + b e such that M > JV and M > Ifa. There is
Mo e 2 + such that for each n ~£ Mo we have

o), M).

It is easy to verify that p(fn(x), /(x)) < e for each n ^

3. MAIN RESULTS

D

THEOREM 1. Let (X, d) be a locally connected metric space and (Y, p) be a
metric space. Then the topology of uniform convergence on compact subsets of X on
C(X, Y) is weaker than the Taw(d x p) topology on C(X, Y).

The proof of Theorem 1 is based on the following lemma.

LEMMA 1. Let (X, d) and (Y, p) be metric spaces. Let f, fi, f2, ... € C(X, Y).
If for each x € X there is a neighbourhood Ox of x and there is N € Z+ such that
{fn- n Js N} is uniformly bounded on O,, then the convergence of {fn} to f in the
Taw(d X p) topology ensures uniform convergence of {fn} to f on compact subsets of
X.

PROOF OF LEMMA 1: We fix (xo, yo) in J x y to serve as centre for d x p -balls
in X X Y. By UdxP[(x0, yo), fc](G(/)) we mean the Taw(d x p) neighbourhood of / in
CL(X xY).

Let if be a compact set in X and e > 0. We show that there is k (E Z+ such that
for each n ^ k and for each x € K we have p{fn(x), f(x)) < e.

By assumption there is JV £ Z+ and a bounded open set G in X such that G D K
and {/„ : n ^ N} is uniformly bounded on G. Since / is uniformly continuous on
K there is 6 > 0 such that whenever z £ K and x g X and d(x, z) < 8 then
p(f{z),f(x))<e/2.
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Let M £ Z+ be such that U{G x /„(<?): n ^ N} C 5dXp[(a!o, J/o), M] . Pick an
integer £ such that L > max{M, 2/e, 1/5}. There is Nx £ Z+, Nx ^ N such that

(1) G ( / n ) £ ^ x p [ ( » o , Ito), i ] (G( / ) ) for each n > JVj.

Let x £ if and n ^ Ni. (1) guarantees the existence u £ X such that <£ x
p[{x, / n(x)) , (», /(»))] < 1/L, that is, d(x, u) <1/L<6 and /.(/„(*), /(«)) < e/2,
that is, p ( / n ( x ) , / ( x ) ) < e . D

PROOF OF THEOREM 1: Denote the topology of uniform convergence on compact
subsets of X on C(X, Y) by U. Suppose that U is not contained in TotI)(<£ x p). There
is U £ 14 such that U £ Taw(d x p). Thus there is / £ U with the following property

(*) for every Taw(d x p) neighbourhood V of , V <£ U.

Here (*) ensures the existence of a sequence {/n}, fn £ C(X, Y) n = 1,2, ... which
converges in the Taw[d x p) topology to / , but fails to converge in W to / .

We show that {/n} uniformly converges to / on compact subsets of X and that
will be a contradiction. By Lemma 1 it is sufficient to prove that for each a; £ X there
is a neighbourhood Ox of x and there is TV £ Z+ such that {/„: n ^ iV} is uniformly
bounded on Ox.

We fix (xo, l/o) in X x Y to serve as centre for d x p -balls in X xY. Let x £ X.
There is 6 (0 < S < 1) such that

(2) for each z £ Sd[x, 6] we have p(f(x), f(z)) < 1/2.

Let Ox be a connected neighbourhood of x such that Ox C Sd[x, 8/2] and let
6o be such that Sd[x, So] C Ox. We claim that there is N £ Z+ such that for each
n> N, MOx)cSp{f(x),2].

Suppose that for each n £ Z+ there is m ^ n such that

(3) fm(Ox) t Sp[f(x), 2].

There is M £ Z+ such that Sdxp[(x, f(x)), 3] C 5rfX/,[(a:o, Vo), M]. Let n0 £ Z+ be
such that no > max{l/5o, M}. The Taw{d X p) convergence of {/«} to / implies that
there is Ni £ Z+ such that for each n ^ Ni,

(4) (<?(/„), G(/)) £ IfcxpRxo, yo), n0].

Put A = {y £ F : p(f(x),y) = 2}. By (3) there is m ^ JVi and there
is u e Ox such that /m(u) ^ Sp[f(x), 2] and by (4) there is xm such that
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d x p((x, f(x)), (xm, fm(xm))) < l /n0 , that is, d(x, xm) < l/n0 < So; thus xm £ 0x.
The connectedness of Ox and continuity of fm imply that there is v £ Ox such that
fm(v) £ A.

(4) guarantees the existence of z such that d X p((z, f(z))(v, fm{v))) < l/n0,
that is, d(z, v) < So and thus d(z, x) < 8; but 2 = A>(/(x), /m(«)) < /3(/(x)) /( z)) +
p(/(z)> /m(«))) that is, 2 — (I/no) ^ /»(/(*)> /(•*))> and that is a contradiction to
(2). D

Example 1 shows that the assumption local connectedness of X in Theorem 1 is
essential.

Theorem 1 has a very useful consequence.

COROLLARY 1. Let {X, d) be a locally connected metric space and (Y, p) be a
metric space. Let / , / i , /a, . . . € C(X, Y). If {/„} converges to f in the raw(d x p)
topology, then {/n} is apointwise equicontinuous sequence. ({/»: n £ Z+} ispointwise
equicontinuous at x if for every e > 0 there is S > 0 such that p(fn{x), fn[z)) < £
whenever d(x, z) < 6 and n £ Z+.)

Let (X, d) be a metric space. A metric space (X, d) is called fc-compact if every
bounded subset of X has compact closure [12].

LEMMA 2 . Let (X, d) and (y, p) be metric spaces. Let (X, d) be a b-compa.ct
space. Then the roto(d X p) topology on C(X, Y) is weaker than uniform topology on
compact subsets of X on C(X, Y).

PROOF: For an easy proof see [8 Theorem 4.1 (a)]. 0

PROPOSITION 2 . Let {X, d) be a metric space. The following are equivalent:

(i) (X, d) is b-compact;
(ii) for every metric space (Y, p) the Taw(d x p) topology on C{X, Y) is

weaier than the topology of uniform convergence on compact subsets of
X on C{X, Y).

PROOF: (i) => (ii) is clear from Lemma 2.
(ii) => (i) Suppose there is a bounded set A in-X such that the closure A of

A is not compact. There is a sequence {xn} in A which has no cluster point in
X. Choose en for any n £ Z+ such that 0 < £n < 1/n and such that the family
{Sd[xn, £n] '•n £ Z+} is pairwise disjoint. Define gn from C(X, R) by

f 1 - (d(xn, x)/en) if a; £ Sd[xn, en]

[ 0 for other x.

The sequence {gn} is convergent to the function g: X —» R identically equal to 0
in the topology of uniform convergence on compact subsets of X. (If K is a compact
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set in X, then K meets only finitely many sets Sd[xn, e n ] ) It is easy to see that the
sequence {gn} fails to converge to g in the Taw(d x |-|) topology. D

THEOREM 2 . Let (X, d) be a locally connected b-compact metric space. Let
(Y, p) be a metric space. Then the raw(dx p) topology on C(X, Y) and the topology
of uniform convergence on compact subsets of X on C(X, Y) coincide.

COROLLARY 2 . Let (Y, p) be a metric space. Let un be the usual metric on
Rn (n = 1, 2, . . . ) . Then the Taw(un X p) topology on C(Rn, Y) and the topology of
uniform convergence on compact subsets of Rn on C(Rn, Y) coincide.

COROLLARY 3 . Let [X, d) be a locally connected compact metric space. Let
(Y, p) be a metric space. Then the raw(d x p) topology on C(X, Y) and the Hausdorff
metric topology on C(X, Y) coincide.

PROOF: For an easy proof see [9] and Theorem 2. D

Further relations between standard convergence notions and the Attouch-Wets con-
vergence may be obtained from [9].

4. APPLICATIONS

In the subsequent part of our paper we give some applications of previous results
to the space of continuous linear functions.

In the sequel, X will be a locally convex topological linear space metrisable with an
invariant metric d, with origin 0. X* will be a space of all continuous linear functions
from X to R. In the sequel, the product X x R will be understood to be equipped
with the box metric, denoted by d x \-\.

Let <S denote the strong topology on X*, that is if UCtA = {/ € X*: \f(x)\ <
t for every x £ A}, then <S is generated by the family {UEIA}, where e runs over all
positive reals and A runs over all linearly bounded sets in X. (A is a linearly bounded
set if for every neighbourhood V of 0 there is n > 0 such that xV ^ -̂  f°r every
X- Ixl >n.)

THEOREM 3 . Let X be a locally convex topological linear space metrisable
with an invariant metric d. Then the strong topology S on X* is weaker than the
raw{d x |-|) topology on X* .

PROOF: It is sufficient to prove that Taw(d x |-|) convergence of a sequence {/n}
from X* to / G X* implies S convergence of {/„} to / .

Since X is a locally connected metric space by Corollary 1 a family C = {fn •
n = 1, 2, . . .} U {/} is pointwise equicontinuous. From the pointwise equicontinuity of
C at 8 we have the following assertion: there is £o (0 < 5o < 1) such that for every
z G Sd[0, So], \f(z)\ ^ 1 and \fn(z)\ ^ 1 for every n G Z+.
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Put U = Sd[0, So] • We show that {/n} converges uniformly to / on U. Let e > 0.
The uniform continuity of / implies that there is S < So such that | / (x) — f(y)\ < e/2
whenever d(x, y) < S.

Put -q = min{e/2, 6). Let Jfe £ Z + be such that Jb > l/rj. The Taw(d x \-\)
convergence of {/n} to / implies that there is No G Z+ such that for every n ^ No
we have (<?(/„), G(f)) G Udx\.\[(0, 0), Jfc]. We show that for every n ^ No and every
x G U we have |/n(s:) - / (z) | < e.

Let n ^ JVo and x eU. There is 2 G X such that

rfxH((*,/»(x)), (*,/(*)))< 1/4,

that is \fn(x) - f(z)\ < 1/Jfc < e/2 and d(x, z) < 1/fc < S. Then |/(z) - / (x) | < e/2
and thus |/n(x) - f(x)\ < e.

From this observation the S convergence of {/n} to / is obvious. U

The following theorem gives a characterisation of normed linear spaces in the class
of locally convex topological h'near spaces metrisable with an invariant metric.

THEOREM 4 . Let X be a locally convex topological linear space metrisable with
an invariant metric d. X is normable if and only if the strong topology S on X* and
the Taw(d x | | ) topology on X* coincide.

PROOF: If X is a normed linear space, then by Theorem 4.3 in [5] the strong
topology <S on X* and the raw(d x |-|) topology on X* coincide.

Suppose X is not normable. There is fc G Z+ such that Sj\8, k] is not linearly
bounded. Put A = Sd[0, k]. There is an absolutely convex neighbourhood U of 6
with the following property: for each n G Z+ there is kn > n such that knU ~$ A.
Thus there is a sequence {xn} such that xn G A for each n G Z+ and xn £ knU for
each n G Z+. The absolute convexity of U implies that xn/n £ U for each n G Z+.
Without loss of generality we can also suppose that xn/n is not contained in the closure
U of U for each n £ Z+.

From the fundamental theorem of functional analysis [16] for each n G Z+ there is
a continuous linear function / „ : X —> R such that fn[xn/n) > 1 and |/n(x)| ^ 1 for
each x G U. For every n G Z+ put hn = / n / « - It is easy to verify that the sequence
{hn} converges to the zero function h in the strong topology S. We show that the
sequence {/»„} fails to converge to h in Taw(d x | | ) topology. There is S (0 < S < 1)
such that for every x, y G X with d(x, y) < S we have \hn(x) — hn(y)\ < 1/2 for every
n£ Z+. Put T] = min{6, 1/2, 1/Jfe}. Let M G Z+ be such that 1/M < T\. Then for
every n G Z+ we have (G(hn), G(h)) <£ Udx^[(0, 0), M). (Let n G Z+. The choice of
M and hn{xn) > 1 implies that (*„, 0) = (xn, h(xn)) <£ SdxU[G(hn), 1/M}.) D
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