BuLL. AUsSTRAL. MATH. Soc. 54c35, 54420
VoL. 44 (1991) [11-18]

THE ATTOUCH-WETS TOPOLOGY
AND A CHARACTERISATION OF NORMABLE LINEAR SPACES

Lusica HoL4

Let X and Y be metric spaces and C(X, Y) be the space of all continuous func-
tions from X to Y. If X is a locally connected space, the compact-open topology
on C(X,Y) is weaker than the Attouch-Wets topology on C(X, Y). The result
is applied on the space of continuous linear functions. Let X be a locally convex
topological linear space metrisable with an invariant metric and X* be a con-
tinuous dual. X is normable if and only if the strong topology on X* and the
Attouch-Wets topology coincide.

1. INTRODUCTION

Convex analysts all agree on the most appropriate convergence notion for sequences
of closed convex sets in finite dimensions: classical Kuratowski convergence of sets [13].
Convergence in this sense is stable with respect to duality: if {A,} is a sequence of
closed convex sets in R™ Kuratowski convergent to A, we have the convergence of the
polar sequence {A%} to A° [17].

Attempts to obtain a suitable infinite dimensional generalisation of this convergence
notion have focused on the notion of Mosco convergence [14, 15, 7]. Unfortunately,
this convergence does not work well without reflexivity. It appears now that the cor-
rect generalisation is the topology = of uniform convergence of distance functionals on
bounded sets. This topology is stable with respect to duality without reflexivity or
even completeness [6]. It seems particularly well-suited to problems involving estima-
tion, approximation, and optimisation [1, 2, 3, 4].

It is the purpose of this article to show the connections between standard con-
vergence notions for functions and convergence of their graphs with respect to the
Attouch-Wets topology.
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2. PRELIMINARIES

(X, d) will denote a metrisable space X with a compatible metric d. The open
d-ball with centre zo € X and radius ¢ > 0 will be denoted by S4[zg, €], and the

e-parallel body |J Sifa, €] for a subset 4 of X will be denoted by S4[4, ¢].
ea€A

Let CL(X) be a family of nonempty closed subsets of a metric space (X, d). If
A € CL(X), the distance functional d(-, 4) : X — [0, co) is described by the familiar
formula d(z, A) = inf{d(z, a) : a € A}.

We shall denote by 7,w(d) the topology on CL(X) of uniform convergence of
distance functionals on bounded subsets of X corresponding to a fixed metric d on X
(the Attouch-Wets topology). The topology Taw(d) is most naturally presented as a
uniform topology, determined by the uniformity 0q on CL(X) with the countable base
of entourages {Vi[zo, n] : n € Z*}, where for each n

Vi[zo, 7] = {(4, B): , sup |d(z, 4) — d(z, B)| < 1/n}.
z,z9)<n

The point z; is a fixed but arbitrary point of X, and the uniformity is independent
of its choice.

We will consider a uniformity X4 on C L(X) which has a countable base consisting
of all sets of the form

Ualzo, n] = {(4, B): AN Sa[zo, n] C S4[B, 1/n] and
BN S4[ze, n] C S4[4, 1/n]}
where again ¢ is a fixed but arbitrary point of X and n € Z*. This uniformity also
determines 74.,(d) [8].

Now let (X, d) and (Y, p) be metric spaces and let d X p denote the box metric on
XxY.If f: X - Y is afunction, denote G(f) = {(z, f(z)): z € X} the graph of f.
Denote C(X, Y) the family of all continuous functions from X to Y. We can identify
the members of C(X, Y) with their graphs and consider C(X,Y) as a subspace of
CL(X xY) with the induced Tow(d X p) topology.

It is easy to see from the definition of the uniformity ax, on CL(X x Y') that the
Taw(d X p) topology on C(X,Y) is weaker than the Hausdorff metric topology [11].

In general 74.,(d X p) convergence of a sequence {fn} from C(X,Y) to f €
C(X,Y) does not imply pointwise convergence.

ExampiE 1: Let X = [0,1]\ {1,1/2,...1/n,...} with the usual metric u.
Let f: X — R be the zero function and let f, = nx[o,1/njnx - Evidently we have
Taw(u X u)-convergence of {f.} to f. But pointwise convergence of {fp,} to f at 0
fails.

But the following trivial Proposition is true:
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PROPOSITION 1. Let (X, d) and (Y, p) be metric spaces, and let f, fi, fa, ...
be elements of C(X,Y). If for each = € X, {fn(z): n € Z*} is a bounded set in
(Y, p), then T44(d x p) convergence of {f,} to f implies the pointwise convergence of

{fn} to f.

PROOF: Let ¢ € X, € > 0. We fix (2o, y) in X x Y to serve as centre for
dx p-ballsin X xY. Thereis N € Z* such that

({2} x {fa(2): n € Z¥}) U Sax,l(=, f(2)), €] C Saxpl(z0, 30), N].

The continuity of f at z implies that thereis 0 < § < £ such that p(f(z), f(2)) <
€/2 whenever d(z, z) < §.

Put 7 = min{e/2, §}. Let M € Z* be such that M > N and M > 1/5. There s
Mgy € Z7 such that for each n > My we have

(G(fn): G(f)) € dep[(-’l!o, ‘yo), M]

It is easy to verify that p(f.(z), f(z)) < ¢ for each n > M,.

3. MAIN RESULTS

THEOREM 1. Let (X, d) be a locally connected metric space and (Y, p) be a
metric space. Then the topology of uniform convergence on compact subsets of X on
C(X,Y) is weaker than the 74.,(d X p) topology on C(X,Y).

The proof of Theorem 1 is based on the following lemma.

LEMMA 1. Let (X, d) and (Y, p) be metric spaces. Let f, fi, f2,... € C(X,Y).
If for each = € X there is a neighbourhood O, of ¢ and thereis N € Z% such that
{fn:n > N} is uniformly bounded on O, then the convergence of {fn} to f in the
Taw(d X p) topology ensures uniform convergence of {f,} to f on compact subsets of

X.

PROOF OF LEMMA 1: We fix (2o, yo) in X x Y to serve as centre for d x p -balls
in X XY . By Uaxpl(zo, o), k)(G(f)) we mean the 74,(d X p) neighbourhood of f in
CL(X xY).

Let K be a compact setin X and € > 0. We show that thereis k € Z* such that
for each n > k and for each z € K we have p(fn(z), f(z)) <e.

By assumption thereis N € Z% and a bounded open set G in X such that G D K
and {f, : » > N} is uniformly bounded on G. Since f is uniformly continuous on
K there is § > 0 such that whenever z € K and z € X and d(z, z) < § then

p(f(2), f(=)) <e/2.
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Let M € Z* be such that U{G x f,(G): n > N} C Saxpl(®o, ¥0), M]. Pick an
integer L such that L > max{M, 2/e, 1/6}. Thereis N; € Z*, N; > N such that

(1) G(fn) € Uaxpl(zo, w0), LI(G(f)) for eachn > Nj.

Let z € K and n > N,. (1) guarantees the existence u € X such that d x
pl(z, fa(z)), (u, f(v))] < 1/L, that is, d(z, u) < 1/L < § and p(fa(z), f(u)) < €/2,
that is, p(fa(z), f(z)) <. 0

PROOF OF THEOREM 1: Denote the topology of uniform convergence on compact
subsets of X on C(X,Y) by U. Suppose that U is not contained in 7,,(d x p). There
is U € U such that U ¢ 744(d X p). Thus thereis f € U with the following property

* for every 74w(d X p) neighbourhood V of ,V ¢ U.

Here (*) ensures the existence of a sequence {fr}, fn € C(X,Y)n =1,2,... which
converges in the 7,,(d X p) topology to f, but fails to convergein U to f.

We show that {f,} uniformly converges to f on compact subsets of X and that
will be a contradiction. By Lemma 1 it is sufficient to prove that for each z € X there
is a neighbourhood O, of z and thereis N € Z* such that {f,: n > N} is uniformly
bounded on O,.

We fix (2o, y0) in X XY to serve as centre for d X p -ballsin X xY. Let z € X.
There is § (0 < § < 1) such that

(2) for each z € Syfz, §] we have p(f(z), f(2)) <1/2.

Let O, be a connected neighbourhood of z such that O, C Sa[z, §/2] and let
8o be such that S4[z, 6] C O.. We claim that there is N € Z* such that for each
n 2 N, fa(Oz) C S,[f(=), 2].

Suppose that for each n € Z* there is m > n such that

(3) fm(0:) € S,[f(=), 2)-

There is M € Z% such that Six,[(z, f(z)), 3] C Saxpl(zo, ¥0), M]. Let ng € Z+ be
such that ng > max{1/6y, M}. The 74.,(d x p) convergence of {f,} to f implies that
there is Ny € Z% such that for each n > Ny,

(4) (G(fﬂ)a G(f)) € dep[(‘tOs yO)’ no]-

Put A = {y € Y: p(f(z),y) = 2}. By (3) there is m > N; and there
is u € O, such that fn,(u) ¢ S,(f(z),2] and by (4) there is z,, such that
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d x p((z, f(2)), (zmy fm(zm))) < 1/n, that is, d(z, 2,) < 1/no < & ; thus z,, € O-.
The connectedness of O, and continuity of f,, imply that there is v € O, such that
fm(v) € A.

(4) guarantees the existence of z such that d x p((z, f(2)) (v, fm(v))) < 1/ne,
that is, d(2, v) < 8¢ and thus d(z, z) < §; but 2 = p(f(z), fm(v)) < p(f(z), f(2))+
p(f(z), fm(v)), that is, 2 — (1/no) < p(f(z), f(2)), and that is a contradiction to
(2). 0

Example 1 shows that the assumption local connectedness of X in Theorem 1 is
essential.

Theorem 1 has a very useful consequence.

CoROLLARY 1. Let (X, d) be a locally connected metric space and (Y, p) be a
metric space. Let f, fi, f2, ... € C(X,Y). If {fn} converges to f in the T,,(d x p)
topology, then {f,} is a pointwise equicontinuous sequence. ({f,: n € Z*} is pointwise
equicontinuous at z if for every € > 0 there is § > 0 such that p(fa.(z), fa(2)) < €
whenever d(z, z) < § and ne Z*.)

Let (X, d) be a metric space. A metric space (X, d) is called b-compact if every
bounded subset of X has compact closure {12].

LEMMA 2. Let (X, d) and (Y, p) be metric spaces. Let (X, d) be a b-compact
space. Then the 1,u(d X p) topology on C(X,Y) is weaker than uniform topology on
compact subsets of X on C(X, 7).

PROOF: For an easy proof see [8 Theorem 4.1 (a)]. {

PROPOSITION 2. Let (X, d) be a metric space. The following are equivalent:

(1) (X, d) is b-compact;

(ii) for every metric space (Y, p) the T,w(d X p) topo]ogy on C(X,Y) is
weaker than the topology of uniform convergence on compact subsets of
X on C(X,Y).

PROOF: (i) = (ii) is clear from Lemma 2.

(ii) = (i) Suppose there is a bounded set A in-X such that the closure A of
A is not compact. There is a sequence {z,} in A which has no cluster point in
X. Choose e, for any n € Z* such that 0 < €, < 1/n and such that the family
{Salxn, €,) : n € Z*} is pairwise disjoint. Define g, from C(X, R) by

1~ (d(:c,., 2:)/5,;) ifze Sd[zn) en]
gn(z) =
0 for other z.

The sequence {g,,} is convergent to the function g: X — R identically equal to 0
in the topology of uniform convergence on compact subsets of X. (If K is a compact
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set in X, then K meets only finitely many sets S4[z,, €,].) It is easy to see that the
sequence {gn} fails to converge to g in the 74,(d X |-|) topology. 0

THEOREM 2. Let (X, d) be a locally connected b-compact metric space. Let
(Y, p) be a metric space. Then the 7..,(d x p) topology on C(X,Y) and the topology
of uniform convergence on compact subsets of X on C(X,Y) coincide.

COROLLARY 2. Let (Y, p) be a metric space. Let u, be the usual metric on
R* (n=1,2,...). Then the Tuw(un X p) topology on C(R™,Y) and the topology of
uniform convergence on compact subsets of R* on C(R™,Y) coincide.

COROLLARY 3. Let (X, d) be a locally connected compact metric space. Let
(Y, p) be a metric space. Then the Tow(d X p) topology on C(X,Y) and the Hausdorff
metric topology on C(X,Y) coincide.

ProorF: For an easy proof see [9] and Theorem 2. 0

Further relations between standard convergence notions and the Attouch-Wets con-
vergence may be obtained from [9].

4. APPLICATIONS

In the subsequent part of our paper we give some applications of previous results
to the space of continuous linear functions.

In the sequel, X will be a locally convex topological linear space metrisable with an
invariant metric d, with origin 8. X* will be a space of all continuous linear functions
from X to R. In the sequel, the product X x R will be understood to be equipped
with the box metric, denoted by d x |-|.

Let S denote the strong topology on X*, thatis if U, 4 = {f € X*: |f(z)] <
€ for every z € A}, then S is generated by the family {U,, 4}, where € runs over all
positive reals and A runs over all linearly bounded sets in X . (4 is a linearly bounded
set if for every neighbourhood V of 8 there is n > 0 such that xV D A for every
x: |x|>n.)

THEOREM 3. Let X be-a locally convex topological linear space metrisable
with an invariant metric d. Then the strong topology & on X* is weaker than the
Taw(d X ||) topology on X*.

PROOF: It is sufficient to prove that 7,.,(d X |-|) convergence of a sequence {f,}
from X* to f € X* implies S convergence of {f,} to f.

Since X is a locally connected metric space by Corollary 1 a family £ = {fn :
n=1,2,...} U{f} is pointwise equicontinuous. From the pointwise equicontinuity of
L at 8 we have the following assertion: there is § (0 < §p < 1) such that for every
z € Sa4[B, &), |f(2)] £ 1 and |fa(2)] € 1 for every n € Z%.
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Put U = S§4[0, §y]). We show that {f,} converges uniformly to f on U. Let € > 0.
The uniform continuity of f implies that there is § < § such that |f(z) — f(¥)| < ¢/2
whenever d(z, y) < §.

Put 7 = min{e/2, 6}. Let k € Z* be such that k£ > 1/5. The 74u(d x |-|)
convergence of {f,} to f implies that there is Ny € Z+ such that for every n > Ny
we have (G(fa), G(f)) € Uix).(((, 0), k]. We show that for every n > Ny and every
z € U we have |f,(z) — f(z)]| <e.

Let n > Ny and z € U. Thereis z € X such that

d x II ((1:, fﬂ(z))i (z7 f(z))) < 1/k1

that is |fu(z) — f(2)] < 1/k < €/2 and d(z, z) < 1/k < §. Then |f(z) — f(z)] < ¢/2
and thus |f,(z) — f(z)| < €.

From this observation the S convergence of {fn} to f is obvious. 0

The following theorem gives a characterisation of normed linear spaces in the class
of locally convex topological linear spaces metrisable with an invariant metric.

THEOREM 4. Let X be a locally convex topological linear space metrisable with
an invariant metric d. X is normable if and only if the strong topology § on X* and
the Taw(d X ||) topology on X* coincide.

ProoF: If X is a normed linear space, then by Theorem 4.3 in [5] the strong
topology S on X* and the 7,4,(d x |-|) topology on X* coincide.

Suppose X is not normable. Thereis k € Z* such that S4[f, k] is not linearly
bounded. Put A = S4[8, k]. There is an absolutely convex neighbourhood U of 8
with the following property: for each n € Z% there is k, > n such that k,U 2 A.
Thus there is a sequence {z,} such that z, € A for each n € Z+ and z, ¢ kU for
each n € Z*. The absolute convexity of U implies that z,/n ¢ U for each n € Z*.
Without loss of generality we can also suppose that z,/n is not contained in the closure
U of U for each n € Z+.

From the fundamental theorem of functional analysis [16] for each n € Z* thereis
a continuous linear function f,: X — R such that f,(z,/n) > 1 and |fa.(z)] € 1 for
each z € U. For every n € Z* put h, = fu/n. It is easy to verify that the sequence
{hn} converges to the zero function h in the strong topology §. We show that the
sequence {h,} fails to converge to k in 7au(d X |-|) topology. There is § (0 < § <1)
such that for every z, y € X with d(z, y) < § we have |hy(z) — h,(y)]| < 1/2 for every
n € Z*. Put 7 = min{é, 1/2, 1/k}. Let M € Z* be such that 1/M < n. Then for
every n € Z% we have (G(hy), G(h)) ¢ Uax|.I(6, 0), M]. (Let n € Z*. The choice of
M and hn(z,) > 1 implies that (zn, 0) = (2n, h(2n)) € Sax|[G(ha), 1/M].) 0
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