Canad. Math. Bull. Vol. 46 (1), 2003 pp. 3-13

Condensed Domains

D. D. Anderson and Tiberiu Dumitrescu

Abstract. An integral domain D with identity is condensed (resp., strongly condensed) if for each pair
ofideals I, Jof D, 1] = {ij ;i € I,j € J} (resp., I] = i]J forsomei € [ or IJ = Ij for some
j € J). We show that for a Noetherian domain D, D is condensed if and only if Pic(D) = 0 and D is
locally condensed, while a local domain is strongly condensed if and only if it has the two-generator
property. An integrally closed domain D is strongly condensed if and only if D is a Bézout generalized
Dedekind domain with at most one maximal ideal of height greater than one. We give a number of
equivalencies for a local domain with finite integral closure to be strongly condensed. Finally, we show
that for a field extension k C K, the domain D = k + XK[[X]] is condensed if and only if [K: k] < 2
or [K: k] = 3 and each degree-two polynomial in k[X] splits over k, while D is strongly condensed if
and only if [K: k] < 2.

1 Introduction

D. E. Anderson and D. E. Dobbs [4] introduced the concept of a condensed integral
domain. An integral domain D is condensed if for each pair of ideals I and J of D,
I] ={ij;i €I j€ J}. Theyshowed that a condensed domain D has Pic(D) = 0
and that a Noetherian condensed domain D has dimD < 1. Also, they showed
that k[[X?, X?]], with k field, is a condensed domain. Later, Anderson, J. T. Arnold
and Dobbs [3] showed that an integrally closed domain is condensed if and only
if it is Bézout. Next, C. Gottlieb [9] introduced a class of condensed domains, the
strongly condensed domains. An integral domain D is strongly condensed (SC) if for
each pair of ideals I and J of D, either I] = Ij for some j € JorI] = i] for
some i € I. Gottlieb showed that if (D, M) is a local domain whose integral closure
(D', M’) is a DVR and a finite D-module with D/M = D’/M’ and D contains a
value-two element of D, then D is strongly condensed. Hence k[[X?, X"]], k a field,
is condensed for any natural number n.

In Section 2 we study condensed domains. We begin by examining the role that
Pic(D) = 0 plays. In this regard, see Theorems 2.1 and 2.4 and Corollaries 2.3 and
2.5. Then, we characterize those field extensions k C K for which k + XK[[X]] is a
condensed domain (see Corollary 2.10).

In Section 3 we study strongly condensed domains. We give characterizations
for the general (resp., integrally closed, Noetherian, local) SC domains (see Proposi-
tion 3.3, Theorem 3.4, Corollary 3.6, Theorems 3.7 and 3.8 and Corollary 3.9). Also,
as an extension of the main result in [9], we give a number of equivalencies for a local
domain with finite integral closure to be SC (see Theorem 3.11).
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2 Condensed Domains

Let D be an integral domain and I, J ideals of D. We say that I, ] is a condensed pair
(inD)ifI] = {ij;i € I, j € J}. Following [4], we say that D is condensed if I, |
is a condensed pair for every I and J. In [4], they proved that an integral domain D
is condensed if and only if every pair of doubly-generated ideals of D is condensed.
They also proved that any overring of a condensed integral domain is condensed.

An important result proved in the previously mentioned paper was that if D is
a condensed integral domain, then Pic(D) = 0. A related result is the following.
Recall that a domain is h-local if each nonzero ideal is contained in only finitely many
maximal ideals and each nonzero prime ideal is contained in a unique maximal ideal.
Hence a one-dimensional Noetherian domain is #-local. Also, a domain D is atomic,
if every nonzero nonunit of D is a product of irreducible elements (atoms). It is well
known that a Noetherian domain is atomic. Let D be a domain. Call a nonzero ideal
I of D (resp., a nonzero nonunit x € D) unidirectional [2] if I (resp., xD) is contained
in a unique maximal ideal.

Theorem 2.1  Let D be an atomic domain. Then the following statements are equiva-
lent.

(1) Every pair of comaximal ideals of D is condensed,

(2) Every pair of distinct maximal ideals of D is condensed,

(3) Each atom of D is unidirectional,

(4) D is h-local with Pic(D) = 0,

(5) every nonzero nonunit of D is a product of unidirectional elements,

(6) for each nonzero nonunit x € D and each maximal ideal M containing x, xDp N D
is a principal unidirectional ideal.

Proof Let D be an arbitrary (not necessarily atomic) domain. The equivalence of
(4), (5) and (6) is given in [2, Corollary 3.6], (1) = (2) is clear and (4) = (1) is a
consequence of the lemma below.

(2) = (3). Let x be an atom of D. Suppose x is in two distinct maximal ideals
Mand N. Thenx € MNN = MN,sox = mnwherem € Mandn € N. A
contradiction. Finally, (3) < (5) is clear, provided D is atomic. [ |

Lemma 2.2 Let D be an h-local domain with Pic(D) = 0 and let I, ] be nonzero
ideals of D. If IDy;, JDy is a condensed pair in Dy for each maximal ideal M of D
containing I + ], then I, ] is a condensed pair in D.

Proof Clearly, ID);, JD) is a condensed pair for each maximal ideal M of D not
containing I + J. Let 0 # x € I]. Let My, ..., M, be the maximal ideals containing
x. Since IDy,, JDyy, is a condensed pair, x = a;b; for some a; € IDy;, and b; €
JDuy,. By the equivalence (5) < (6) of Theorem 2.1, xDy;, = (A;)u;, (Bi)u,, where
A; = aiDy; N D, B; = b;Dy;, N D are principal unidirectional ideals or equal to D.
Set A =A;---A,, B= B;---B,. Then the relations xD = AB,A C I, B C ] hold
locally and hence globally. Since A and B are principal ideals, x = ab for some a € I
andb e J. |
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Corollary 2.3  For a one-dimensional Noetherian domain D, Pic(D) = 0 if and only
if MN = {mn ; m € M,n € N} for all distinct maximal ideals M and N of D.

The next theorem essentially reduces the study of atomic condensed domains to
the local case.

Theorem 2.4  Let D be an atomic domain. Then D is condensed if and only if D is
h-local, Pic(D) = 0 and Dy is condensed for each maximal ideal M of D.

Proof Apply Theorem 2.1 and Lemma 2.2. ]

Corollary 2.5  Let D be a Noetherian domain. Then D is condensed if and only if
Pic(D) = 0 and Dy, is condensed for each maximal ideal M of D.

For the next results we use the following notation. If k C K is a field extension
and V, W are k-subspaces of K, we set P(V, W) = {vw;v € V,w € W} and VW the
k-subspace of K generated by P(V, W).

Proposition 2.6  For a field extension k C K, the following assertions are equivalent:

(a) the domain D = k + XK[[X]] is condensed,
(b) VW = P(V, W) for all k-subspaces V,W of K, and
(c) Foreverya,B € K, 1+ af = (a+ ba)(c+dp) for somea,b,c,d € k.

Proof Clearly, if V is a k-subspace of K and # > 1, then I,,(V)) = VX" + X" K[[X]]
is an ideal of D. Conversely, every nonzero proper ideal J of D has this form. Indeed,
let f € ] be of minimal order, say ord(f) = n > 1. Then X™IK[[X]] C fD C J.
Clearly, the set V consisting of 0 and all leading coefficients of the power series of |
having order # is a k-subspace of K and J C I,(V). Since X"*'K[[X]] C ], we have
VX" C J,s01,(V) C J. Thus ] = I,(V). Now let V, W be nonzero k-subspaces
of K and n,m > 1. An easy computation shows that I,(V)L,,(W) = L,,,(VW)
and {fg; f € I,(V),g € I,(W)} = P(V,W)X™™ + X" K[[X]]. Hence the
assertions (a) and (b) are equivalent. Clearly, (b) = (c). To prove the converse, let V,
W be nonzero k-subspaces of K. It suffices to show that viw;+v,w, € P(V, W), forall
nonzero vy, v, € Vandwy, wy € W. By (¢), 1+voaw, /viw; = (a+bvy /vi)(c+dw, /wy)
for some a, b, ¢, d € k, so viwy + v,wy = (avy + bvy)(cw; + dw,) € P(V,W). [ |

Definition 2.7 We say that a field extension k C K is vs-closed if it satisfies any (and
hence all) of the equivalent conditions of the previous proposition.

Note that when k C K is vs-closed, [K : k] < 3. Indeed, if [K : k] > 4, there exist
a, f € K such that 1, o, 3, a3 are k-independent. Now, if k C K is vs-closed, then
1+ af = (a+ ba)(c+ dp) for some a, b, c,d € k, that is, (ac — 1) + bcac + ad( +
(bd — 1)ap = 0,s0ac = bd = 1and ad = bc = 0, hence 0 = abcd = 1, a
contradiction. Clearly, k C K is vs-closed, if [K : k] < 2.

We notice that the implication (a) = (b) in Proposition 2.6 holds in a more gen-
eral setting.

https://doi.org/10.4153/CMB-2003-001-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2003-001-2

6 D. D. Anderson and Tiberiu Dumitrescu

Proposition 2.8  If (A, M) is a quasilocal condensed domain and (B, N) a quasilocal
overring of A dominating A (i.e., N N A = M), then the residue field extension A/M C
B/N is vs-closed.

Proof Set k = A/M and K = B/N. Let o, 3 be nonzero elements of K. There
exist a,b,c € A\ {0} such that « = a/c+ Nand 8 = b/c+ N. Now ¢* +ab €
(cA+aA)(cA+DbA), so > +ab = (mc+na)(pc+qb) for some m, n, p,q € A. Dividing
by ¢? and taking mod N, we get 1 +a/3 = (m+iia)(p+4(3). Hence k C K is vs-closed.

|

Theorem 2.9 A field extension k C K is vs-closed if and only if [K:k] < 2 or
[K : k] = 3 and each degree-two polynomial in k[X] splits over k.

Proof By the paragraph after Definition 2.7, we may assume that [K:k] = 3. By
Proposition 2.6, k C K is vs-closed if and only if for every o, 3 € K\ k, V =
P(k + ko, k + k3) is a k-subspace of K. Since [K : k] = 3, this means V = K, because
V strictly contains k + ka. Let «, 3 be as above. Obviously K = k(a). Let f =
X? — pX*—nX —m be the minimal polynomial of v over k. Now {1, cv, &*} is a k-basis
of K, 50 3 = ey + e;a + e;0%, for some e, €1, e, € k. Since k+ kB = k+ k(ey o + e,a?)
it suffices to consider only the following two cases (a) 3 = ga + o with g € k and
(b) B = a. Consider the case (a). Since &> = m + na + pa?, every element of V has
the form

(a+ ba)(c +d(qo + az)) = ac + mbd + (qad + bc + nbd)a + (ad +(p+ q)bd) a?

with a, b, ¢,d € k. Hence V = K if and only if the following map is surjective:

0:k* -k, 6(a,b,c,d) = (ac+ mbd, qad + bc + nbd, ad + (p + q)bd) .
Clearly 6 = nu, where ju: k* — k* n: k* — k> are given by
w(a,b,c,d) = (ac,bd, ad, bc), n(u,v,w,x) = (u +mv,gw+x+nv,w+ (p+ q)v) .
The image of p is {(u,v,w,x) ; uv = wx}. Indeed, if uv = wx and w # 0,
then (u, v, w,x) = u(1,v/w, u, w), while (0,v,0,x) = (0, 1,x,v) and (1,0,0,x) =
w1(u, x, 1,0). The converse inclusion is obvious. Let 3,7, § € k. Solving in u, v, w, x
the system of equations n(u, v, w,x) = (3,7, §), we get

u=B—ms, v=s, w=0—(ptqs x=(pq+q —ms—3sq+y

with s € k arbitrary. So, in case (a), the surjectivity of  means there exists s € k such
that uv = wx. The equality uv = wx gives the equation in s,

(2.1) j52+[ﬁ+(p+q)('y—25q)+n6]s+5(5q—’y):0

whose leading coefficient j = ¢*> + 2pg® + (p> —n)q — pn —m = (p +q)* —
m(p+q)? —n(p+q) —m = f(p+q) is nonzero because f is the minimal polynomial
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of a over k, so it has no root in k. The case when 3 = « can be done similarly. Using
the same notation, we get n(u, v, w,x) = (u,w + x,v), (u,v,w,x) = (5,d,s,7 — )
and finally the degree-two equation

(2.2) s — s+ 36 = 0.

These two equations show that k C K is vs-closed if each degree-two polynomial in
k[X] splits over k. Conversely, if k C K is vs-closed, then equation (2.2) has roots in k
for every 3,7, 9 € k, so each degree-two polynomial in k[X] splits over k. We notice
that the “only if” part of our result is also a consequence of [3, Theorem 5]. ]

Corollary 2.10  For a field extension k C K, the domain k + XK[[X]] is condensed
ifand only if [K:k] < 2 or [K:k] = 3 and each degree-two polynomial in k[X] splits
over k.

Example 2.11  Let B be the field of all complex numbers which can be constructed
by straight-edge and compass from 0 and 1 (see [12, page 210]). By [12, page 213],
each degree-two polynomial in B[X] splits over B and [B(+/3):B] = 3, so B +
XB(v/3)[[X]] is a local condensed domain, cf. Corollary 2.10.

3 Strongly Condensed Domains

Let D be an integral domain and I, J ideals of D. We say that I, ] is a strongly condensed
(SC) pair it I] = i] for somei € I or IJ = Ij for some j € J. Following [9], we
say that D is strongly condensed (SC) if I, J is an SC pair for every I and J. Obviously,
an SC domain is condensed and if D is SC, then so is each ring of quotients of D. A
rank-one non-discrete valuation domain is condensed and not SC, because in an SC
domain every idempotent ideal is principal. Let D be a domain with quotient field
K. If I is an ideal of D, we denote by I: I the overring of D consisting of all elements
x € Kwith xI C I. It is the largest overring of D in which I is an ideal.

Lemma 3.1 Let D be a domain and 1, ] nonzero ideals of D.

(a) I] = i] for somei € I if and only if the extension of I in J: ] is a principal ideal
generated by some element of I. In this case, [:1 C J: J.
(b) IfIisaprincipal ideal of I : I, then I* = il for somei € L

Proof (a) Assume thatI]J = iJwith0 # i € I. We have (I/i)] = J,s01/i C J: ],
hence I C i(J:]), thatis, I(J:]J) = i(J:]). Also, I:1 C IJ:I] = iJ:i] = J:].
Conversely, if I(J: J) = i(J: J) withi € I, thenI] = i] because J(J: ]) = J.

(b) IfI =i(I:I)withi € I:I,theni € I and I> = iI(I:I) = il. [ ]

It is well known that the complete integral closure D of a domain D is the union
ofall I: I for I nonzero ideal of D.

Lemma 3.2 Let D be a domain and D its complete integral closure. The set {I:1 ;
I a nonzero ideal of D} is linearly ordered if and only if the set of intermediate rings
between D and D is linearly ordered.
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Proof The “if” part is clear. For the converse, it suffices to see that whenever x, y €
D, the subrings D[x] and D[y] are comparable. Let x, y € D. There exists a nonzero
d € Dsuchthat I = dD[x] C Dand ] = dD[y] C D. Then I and J are ideals of
D. Moreover, I:1 = D[x]:D[x] = Dlx], because D[x] is a subring of D. Similarly,
J: ] = D[y]. By hypothesis, I : I and J: ] are comparable. ]

The SC condition can be characterized in the following way.

Proposition 3.3  Let D be a domain and D its complete integral closure. Then D is SC
if and only if the following two conditions hold:

(a) every nonzero ideal I of D is a principal ideal of I : I, and
(b) the set of intermediate rings between D and D is linearly ordered.

Proof The “onlyif” part follows from Lemmata 3.1 and 3.2. Conversely, assume that
D satisfies the two conditions (a), (b). Let I, ] be nonzero ideals of D. By (a) and (b),
we may assume that I = i(I:I) forsomei € IandI:I C J:]. ThenI]J = i] by part
(a) of Lemma 3.1. [ |

For a domain D, let Maxp, (D) denote the set of principal height-one maximal
ideals of D. Note that D is a PID if and only if Max(D) = Maxp (D) or D is a
field. The following result shows that for a SC domain D, Max(D) \ Maxp, (D) has
at most one element. We say that Spec(D) is Noetherian if D satisfies the ascending
chain condition for the radical ideals. It is well known that this implies that each
radical ideal is a finite intersection of prime ideals and hence each proper ideal has
only finitely many minimal prime ideals.

Theorem 3.4 A domain D is SC if and only if either D is a PID or Spec(D) is Noethe-
rian, Max(D) = Maxp (D) U {M} and Dy is SC.

Proof The “only if” part. Let M and N be distinct maximal ideals of D. By Propo-
sition 3.3, we may assume that M: M C N:N. We claim that M is principal, so D
has at most one nonprincipal maximal ideal. Indeed, since D is SC, M? = mM for
some m € M, so M = \/mD and hence mD is M-primary. Then M = M(M : M) =
m(M : M) by the proof of Lemma 3.1(a). So M(N :N) = m(N : N) and hence MN =
mN, again by the proof of Lemma 3.1(a). Localizing at M, we get My, = mD)y, so
M = mD because mD is M-primary.

Now, assume that N is nonprincipal and M = mD is of height greater than one.
Hence N°m"D # 0. Soif 0 # y € N°m"D, then y(1/m") € D. So D[1/m] is an
overring of D contained in the complete integral closure as is N : N, hence they are
comparable, ¢f. Proposition 3.3. Now D[1/m] is not contained in N: N, for 1/m €
N:N gives (1/m)N C N and hence N C mN C M, a contradiction. So N:N C
D[1/m]. As done above, there exists an n € N such that N = n(N:N) and #D is
N-primary. Then ND[1/m] = nD[1/m]. Since m ¢ N, N = nD[1/m] N D = nD, a
contradiction.

https://doi.org/10.4153/CMB-2003-001-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2003-001-2

Condensed Domains 9

Finally, suppose that M = mD and N = nD are both principal of height greater
than one. Since the intersections of powers of mD and nD respectively are nonzero,
D[1/m] and D[1/n] are incomparable overrings contained in the complete integral
closure, a contradiction, cf. Proposition 3.3. The fact that Spec(D) is Noetherian
follows from [6, Theorem 3.1.11], because, as done above, for every ideal I of D,
VI =+/iD for somei € I.

The “if” part. Suppose there exists an ideal M as in the statement, otherwise D is
a PID, hence SC. Since Spec(D) is Noetherian, each ideal of D has only finitely many
minimal prime ideals. Let I be a nonzero ideal of D and pD, ..., p,D the principal
height-one maximal ideals containing I. Since each p;D has the intersection of its
powers equal to zero, we can write I = xI’ where x € D and either I’ = D or M is
the only maximal ideal containing I’. (For suppose I C piD,butI Z pi*'D. Then
I CpiDN---Npir = p}---piD. Take x = pi' ---p¥, so I C xD and hence
I = xI' where I’ D I. Since I’ € p;D, either I’ = D or M is the only maximal ideal
containing I'.)

Now, let I, ] be a pair of proper nonzero ideals of D. We show that I, ] is an
SC pair. We can assume that neither is principal. Moreover, as noted above, we can
assume that M is the only maximal ideal containing I N J. Since D) is SC, we can
assume that Iy i,y = 1]y for some i € I such that M is the only maximal ideal
containing iD (see argument given above). So the equality I] = i ] holds locally and
hence globally. ]

Remark 3.5 A condensed domain need not be h-local (take any non h-local Bézout
domain, for instance the ring of entire functions, ¢f. [8, page 147]), but a SC domain
is h-local.

We have already remarked that an integrally closed domain is condensed if and
only if it is Bézout [3, Main Theorem]. However, the case of an integrally closed do-
main D being SC is more delicate. Certainly an integrally closed SC domain being
condensed is Bézout. According to [6, Proposition 5.3.8], a valuation domain V is
strongly discrete (i.e., V has no nonzero idempotent prime ideals) if and only if for
each nonzero ideal I of V, I is a principal ideal in I:1. Consequently, by Proposi-
tion 3.3, an integrally closed quasilocal domain is SC if and only if it is a strongly
discrete valuation domain. Recall that a domain D is called generalized Dedekind if D
is a strongly discrete Priifer domain (i.e., Dy is a strongly discrete valuation domain
for each maximal ideal M of D) with Noetherian spectrum (see [6, Chapter 5]). By
[6, Lemma 5.8.2], each maximal ideal of a generalized Dedekind domain is invertible.
These remarks and Theorem 3.4 give the following result.

Corollary 3.6  Let D be an integrally closed domain. Then D is an SC domain if and
only if D is a Bézout generalized Dedekind domain with at most one maximal ideal of
height greater than one.

A. Facchini has shown [5, Theorem 5.3] that for every Noetherian tree X with a
least element there exists a generalized Dedekind domain D whose prime spectrum
(Spec(D), Q) is order isomorphic to X. Applying this theorem for appropriate trees
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(eg ({2, {1},{1,2},{3}}, Q) ), it follows there exist integrally closed SC domains
which are neither PIDs nor valuation domains.
We thank B. Olberding for suggesting the following theorem.

Theorem 3.7  Let D be an integral domain. Then D is an integrally closed SC domain
if and only if every proper ideal I of D has the form I = Pr where P is a prime ideal of D
andr € D.

Proof (=) We recall two results from [7]. A Priifer domain E is a generalized
Dedekind domain if and only if every divisorial I of E can be writtenasI = JP; - - - P,
where ] is an invertible ideal and Py, . . . , P, are pairwise-comaximal prime ideals [7,
Theorem 3.3]. Moreover, for a generalized Dedekind domain, every nonzero ideal is
divisorial if and only if every nonzero prime ideal is contained in a unique maximal
ideal [7, Proposition 3.6]. Now, let D be an integrally closed SC domain. By the
previous corollary, D a generalized Dedekind domain with at most one maximal ideal
which is not principal of height one. So the cited results apply.

(<) According to [14, Theorem 2.3], a domain whose every ideal can be written
as a product of invertible ideals and prime ideals is a strongly discrete h-local Priifer
domain. Hence so is our D. By [6, Corollary 5.4.10], D is a generalized Dedekind
domain. We next show that Pic(D) = 0. Let M be a maximal ideal of D. Since D
is a generalized Dedekind domain, M is invertible. Now M 2 = Pr for some prime
ideal P of D and r € D. Since M> C P, M = P. But M is invertible, so M = rD is
principal. Let I be an invertible ideal of D. Then I = Pr for some prime ideal P of D
and r € D. Now [ invertible gives P is invertible. But then P is maximal and so I = Pr
is principal. Suppose that D has two maximal ideals M and N of height greater than
one. Since M and N are principal, M’ = N,M" and N’ = N,N" are nonzero prime
ideals of D lying directly below M and N, respectively. Since D is h-local, M (resp.,
N) is the only maximal ideal containing M’ (resp., N’). Now M'N’ = Pr for some
prime ideal P of D and r € D. Since P 2 M'N’ and P cannot be principal (for then
M’ and N’ would be principal), P = M’ or P = N';sayP = M'. So M'N’ = M'r.
But then N'Dy = M’N’'Dy = M’rDy = rDy is principal, a contradiction. So D is
a generalized Dedekind domain with at most one maximal ideal that is not principal
of height one. By the previous corollary, D is SC. ]

Recall that an integral domain D is said to be stable (or SV-stable in the termi-
nology of [6]) if each nonzero ideal I of D is invertible in I : I. Thus Proposition 3.3
gives that a SC domain is stable. Recall that a module is called serial if its submod-
ules are linearly ordered with respect to inclusion. The next result is a SC variant of
Corollary 2.5.

Theorem 3.8  Let D be a Noetherian domain. The following assertions are equivalent:

(a) DisSC,

(b) DisaPID or D has exactly one nonprincipal maximal ideal M and D, is SC, and

(¢) dimD < 1, Pic(D) = 0 and D' /D is a serial D-module, where D' is the integral
closure of D.
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Proof (a) < (b). Cf. Theorem 3.4.

(a) = (¢). By [4], dimD < 1. Also, Pic(D) = 0, ¢f. Theorem 2.4. By [15,
Lemma 2.1], each D-submodule of D’ containing D is a ring. By Lemma 3.2, we
deduce that D’ /D is a serial D-module.

(c) = (a). Since D’ /D is a serial D-module, condition (b) of Proposition 3.3 holds
for D. By [15, Theorem 3.2], D is stable, so, to verify condition (a) of Proposition 3.3,
it suffices to show that Pic(I:I) = 0 for each nonzero ideal I of D. But this follows
from [1, Theorem 12] and the remark following it. |

If m is a square free integer # 0, 1, then D = Z[/m] is SC if and only if its Picard
group is zero. Indeed, the factor D-module D’ /D has at most two elements, hence it
is serial, so Theorem 3.8 applies.

Let D be a Noetherian integral domain. D is said to have the two-generator prop-
erty if every ideal of D is generated by two elements. If D has the two-generator
property, then D is stable. The converse is true if D’ is a finite D-module, but not in
general, cf. [16, Example 5.4]. Now, let D be a one-dimensional Noetherian domain.
By [15, Theorem 3.2], D has the two-generator property if and only if D’ /D is a dis-
tributive D-module (i.e., (D’/D); is a serial Dy;-module for each maximal ideal M
of D). Consequently, if D is a SC Noetherian domain, then D has the two-generator
property. In the local case we obtain the following corollary.

Corollary 3.9 A local domain D is SC if and only if D has the two-generator property.

In particular, the characteristic-two case of Nagata’s example [13, Example 3,
page 205] of a local one-dimensional domain whose integral closure is not a finite
module is SC. Combining Corollary 3.9 with Theorem 2.4, we see that a domain D
having the two-generator property and Pic(D) = 0 is condensed.

Example 3.10 There exist domains D having the two-generator property and
Pic(D) = 0 (hence condensed) which are not SC. Indeed, let w = “2—‘/5 Then w
is the fundamental unit of the PID Z[w]. Combining [17, Theorem 4.1, Remark 4.7,
Proposition 4.8, Theorem 4.9], it follows that Z[2w] and Z[5w], hence also Z[10w],
have zero Picard group. Now Z[10w] has the two-generator property, but it is not SC
because its overrings Z[2w] and Z[5w] are integral over Z[10w] and not comparable.

If D is a local domain whose integral closure is finite over D, we get the following
result.

Theorem 3.11  Let (D, M, k) be a local domain whose integral closure D' is a finite
D-module. The following assertions are equivalent:

(a) DisSC,

(b) D is stable (equivalently, I, 1 is an SC pair for every ideal I of D),
(¢) D has the two-generator property,

(d) D is Gorenstein and M, M is an SC pair,

(e) D' =D+ D@ for some 6 € D/,
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(f) D'/MD’ is isomorphic to one of the following k-algebras: k—in this case D = D' is
a DVR, a quadratic field extension of k, k x k, or k[X]/(X?).

If (D', M’ K) is local, then the preceding assertions are also equivalent to:

(g) Discondensed and [K : k] # 3,
(h) K = k and D contains a value-two element of D’ or [K : k] = 2 and D contains a
value-one element of D'.

Proof Clearly (a) < (c). Cf. Corollary 3.9.

(b) & (¢). Cf. [16, Theorem 2.4] (the paranthetical form of (b) comes from our
assumption that D’ is semi-local, so I': I is semi-local for each nonzero ideal I).

(c) & (e). Cf. [10, Theorem 2.3].

(c) & (d). Cf. [15, Theorem 3.2].

(f) = (e). In each one of these cases [D'/MD’: k] < 2, so [10, Proposition 1.1]
applies.

(b) = (f). By [11, Theorem 6], each D-submodule of D’ containing D is a ring,
each k-subspace of D'/MD’ is a ring. After an application of [11, Lemma 5], it
suffices to notice that if D’/MD’ is a local ring with square zero radical and residue
field k, then it is an k-epimorphic image of k[X]/(X?).

(a) = (g). Because (a) is equivalent to (e).

(g) = (h). By Proposition 2.8 applied for D C D’, [K:k] < 3,s0 [K:k] < 2.
Since D is condensed, it contains a value-two element of D', ¢f. [9, Proposition 1]. So,
it suffices to show that if [K : k] > 2 and D is condensed, then D contains a value-one
element of D’. Let § € D’ such that K = k(f). Let x be a prime element of D’.
Since D’ is a finite D-module, there exists N such that xND’ C D. In D we consider
the ideals I = (xN, 2V and J = (&, 0xM™). Then (1 + 0)x*Nt1 = xNTIN 4
xN(0xN*1) € I]. Since D is condensed, (1 +0)x*N*1 = (fxN + gxN*1) (ha +i0xNH1),
for some f, g, h,i € D. Hence (1 + 0)x = (f + gx)(h +i0x),so f € xD’ or h € xD’'.
Assume that f = xf’ with f' € D’. Then1+ 60 = (f' + ¢)(h + ifx) and f’ & xD’,
otherwise 1+ 0 = gh € k, a contradiction. Now, assume that h = xh’ with h’ € D'.
Then 1+ 6 = (f + gx)(h’' +i0) and h’ & xD’, otherwise 1 + 0 = fif € kf, again a
contradiction. Consequently, f or h has value one in D’.

(h) = (f). Assume that K = k and D contains a value-two element of D’. Then
MD’ contains the square of the prime element g of D’. Since K = k, the k-algebra
morphism k[X] — D’/MD’ sending X to q + MD’ is surjective, hence D'/MD’
is an epimorphic image of k[X]/(X?). Thus D’/MD’ is either k[X]/(X?) or k. If
[K :k] = 2 and D contains a value-one element of D, then D’/MD’ = K. We note
that the first case of implication (h) = (a) was proved in [9, Proposition 6]. [ |

By the proof of implication (g) = (h) in Theorem 3.11, if k C K is a proper field
extension and n > 2, then k + X"K[[X]] is not condensed.

We end by giving an example of a local condensed domain that is not SC; thus
answering a question raised by Gottlieb [9].

Example3.12 Let B C B(+/3) be the field extension in Example 2.11. Then B +
XB(v/3)[[X]] is a local condensed domain which is neither SC nor Gorenstein.
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