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Condensed Domains

D. D. Anderson and Tiberiu Dumitrescu

Abstract. An integral domain D with identity is condensed (resp., strongly condensed) if for each pair

of ideals I, J of D, I J = {i j ; i ∈ I, j ∈ J} (resp., I J = i J for some i ∈ I or I J = I j for some

j ∈ J). We show that for a Noetherian domain D, D is condensed if and only if Pic(D) = 0 and D is

locally condensed, while a local domain is strongly condensed if and only if it has the two-generator

property. An integrally closed domain D is strongly condensed if and only if D is a Bézout generalized

Dedekind domain with at most one maximal ideal of height greater than one. We give a number of

equivalencies for a local domain with finite integral closure to be strongly condensed. Finally, we show

that for a field extension k ⊆ K, the domain D = k + XK[[X]] is condensed if and only if [K : k] ≤ 2

or [K : k] = 3 and each degree-two polynomial in k[X] splits over k, while D is strongly condensed if

and only if [K : k] ≤ 2.

1 Introduction

D. F. Anderson and D. E. Dobbs [4] introduced the concept of a condensed integral
domain. An integral domain D is condensed if for each pair of ideals I and J of D,

I J = {i j ; i ∈ I, j ∈ J}. They showed that a condensed domain D has Pic(D) = 0
and that a Noetherian condensed domain D has dim D ≤ 1. Also, they showed
that k[[X2, X3]], with k field, is a condensed domain. Later, Anderson, J. T. Arnold
and Dobbs [3] showed that an integrally closed domain is condensed if and only

if it is Bézout. Next, C. Gottlieb [9] introduced a class of condensed domains, the
strongly condensed domains. An integral domain D is strongly condensed (SC) if for
each pair of ideals I and J of D, either I J = I j for some j ∈ J or I J = i J for
some i ∈ I. Gottlieb showed that if (D, M) is a local domain whose integral closure

(D ′, M ′) is a DVR and a finite D-module with D/M = D ′/M ′ and D contains a
value-two element of D ′, then D is strongly condensed. Hence k[[X2, Xn]], k a field,
is condensed for any natural number n.

In Section 2 we study condensed domains. We begin by examining the role that

Pic(D) = 0 plays. In this regard, see Theorems 2.1 and 2.4 and Corollaries 2.3 and
2.5. Then, we characterize those field extensions k ⊆ K for which k + XK[[X]] is a
condensed domain (see Corollary 2.10).

In Section 3 we study strongly condensed domains. We give characterizations

for the general (resp., integrally closed, Noetherian, local) SC domains (see Proposi-
tion 3.3, Theorem 3.4, Corollary 3.6, Theorems 3.7 and 3.8 and Corollary 3.9). Also,
as an extension of the main result in [9], we give a number of equivalencies for a local
domain with finite integral closure to be SC (see Theorem 3.11).
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2 Condensed Domains

Let D be an integral domain and I, J ideals of D. We say that I, J is a condensed pair

(in D) if I J = {i j ; i ∈ I, j ∈ J}. Following [4], we say that D is condensed if I, J

is a condensed pair for every I and J. In [4], they proved that an integral domain D

is condensed if and only if every pair of doubly-generated ideals of D is condensed.
They also proved that any overring of a condensed integral domain is condensed.

An important result proved in the previously mentioned paper was that if D is
a condensed integral domain, then Pic(D) = 0. A related result is the following.

Recall that a domain is h-local if each nonzero ideal is contained in only finitely many
maximal ideals and each nonzero prime ideal is contained in a unique maximal ideal.
Hence a one-dimensional Noetherian domain is h-local. Also, a domain D is atomic,

if every nonzero nonunit of D is a product of irreducible elements (atoms). It is well
known that a Noetherian domain is atomic. Let D be a domain. Call a nonzero ideal
I of D (resp., a nonzero nonunit x ∈ D) unidirectional [2] if I (resp., xD) is contained
in a unique maximal ideal.

Theorem 2.1 Let D be an atomic domain. Then the following statements are equiva-

lent.

(1) Every pair of comaximal ideals of D is condensed,

(2) Every pair of distinct maximal ideals of D is condensed,

(3) Each atom of D is unidirectional,

(4) D is h-local with Pic(D) = 0,

(5) every nonzero nonunit of D is a product of unidirectional elements,

(6) for each nonzero nonunit x ∈ D and each maximal ideal M containing x, xDM ∩D

is a principal unidirectional ideal.

Proof Let D be an arbitrary (not necessarily atomic) domain. The equivalence of
(4), (5) and (6) is given in [2, Corollary 3.6], (1) ⇒ (2) is clear and (4) ⇒ (1) is a
consequence of the lemma below.

(2) ⇒ (3). Let x be an atom of D. Suppose x is in two distinct maximal ideals
M and N . Then x ∈ M ∩ N = MN , so x = mn where m ∈ M and n ∈ N . A
contradiction. Finally, (3) ⇔ (5) is clear, provided D is atomic.

Lemma 2.2 Let D be an h-local domain with Pic(D) = 0 and let I, J be nonzero

ideals of D. If IDM , JDM is a condensed pair in DM for each maximal ideal M of D

containing I + J, then I, J is a condensed pair in D.

Proof Clearly, IDM , JDM is a condensed pair for each maximal ideal M of D not
containing I + J. Let 0 6= x ∈ I J. Let M1, . . . , Mn be the maximal ideals containing
x. Since IDMi

, JDMi
is a condensed pair, x = aibi for some ai ∈ IDMi

and bi ∈
JDMi

. By the equivalence (5) ⇔ (6) of Theorem 2.1, xDMi
= (Ai)Mi

(Bi)Mi
, where

Ai = aiDMi
∩ D, Bi = biDMi

∩ D are principal unidirectional ideals or equal to D.
Set A = A1 · · ·An, B = B1 · · ·Bn. Then the relations xD = AB, A ⊆ I, B ⊆ J hold
locally and hence globally. Since A and B are principal ideals, x = ab for some a ∈ I

and b ∈ J.

https://doi.org/10.4153/CMB-2003-001-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-001-2


Condensed Domains 5

Corollary 2.3 For a one-dimensional Noetherian domain D, Pic(D) = 0 if and only

if MN = {mn ; m ∈ M, n ∈ N} for all distinct maximal ideals M and N of D.

The next theorem essentially reduces the study of atomic condensed domains to
the local case.

Theorem 2.4 Let D be an atomic domain. Then D is condensed if and only if D is

h-local, Pic(D) = 0 and DM is condensed for each maximal ideal M of D.

Proof Apply Theorem 2.1 and Lemma 2.2.

Corollary 2.5 Let D be a Noetherian domain. Then D is condensed if and only if

Pic(D) = 0 and DM is condensed for each maximal ideal M of D.

For the next results we use the following notation. If k ⊆ K is a field extension
and V,W are k-subspaces of K, we set P(V,W ) = {vw ; v ∈ V, w ∈ W} and VW the

k-subspace of K generated by P(V,W ).

Proposition 2.6 For a field extension k ⊆ K, the following assertions are equivalent:

(a) the domain D = k + XK[[X]] is condensed,

(b) VW = P(V,W ) for all k-subspaces V,W of K, and

(c) For every α, β ∈ K, 1 + αβ = (a + bα)(c + dβ) for some a, b, c, d ∈ k.

Proof Clearly, if V is a k-subspace of K and n ≥ 1, then In(V ) = V Xn + Xn+1K[[X]]
is an ideal of D. Conversely, every nonzero proper ideal J of D has this form. Indeed,
let f ∈ J be of minimal order, say ord( f ) = n ≥ 1. Then Xn+1K[[X]] ⊆ f D ⊆ J.
Clearly, the set V consisting of 0 and all leading coefficients of the power series of J

having order n is a k-subspace of K and J ⊆ In(V ). Since Xn+1K[[X]] ⊆ J, we have
V Xn ⊆ J, so In(V ) ⊆ J. Thus J = In(V ). Now let V,W be nonzero k-subspaces
of K and n, m ≥ 1. An easy computation shows that In(V )Im(W ) = In+m(VW )
and { f g ; f ∈ In(V ), g ∈ Im(W )} = P(V,W )Xn+m + Xn+m+1K[[X]]. Hence the

assertions (a) and (b) are equivalent. Clearly, (b) ⇒ (c). To prove the converse, let V ,
W be nonzero k-subspaces of K. It suffices to show that v1w1+v2w2 ∈ P(V,W ), for all
nonzero v1, v2 ∈ V and w1, w2 ∈ W . By (c), 1+v2w2/v1w1 = (a+bv2/v1)(c+dw2/w1)

for some a, b, c, d ∈ k, so v1w1 + v2w2 = (av1 + bv2)(cw1 + dw2) ∈ P(V,W ).

Definition 2.7 We say that a field extension k ⊆ K is vs-closed if it satisfies any (and
hence all) of the equivalent conditions of the previous proposition.

Note that when k ⊆ K is vs-closed, [K : k] ≤ 3. Indeed, if [K : k] ≥ 4, there exist
α, β ∈ K such that 1, α, β, αβ are k-independent. Now, if k ⊆ K is vs-closed, then
1 + αβ = (a + bα)(c + dβ) for some a, b, c, d ∈ k, that is, (ac − 1) + bcα + adβ +
(bd − 1)αβ = 0, so ac = bd = 1 and ad = bc = 0, hence 0 = abcd = 1, a

contradiction. Clearly, k ⊆ K is vs-closed, if [K : k] ≤ 2.

We notice that the implication (a) ⇒ (b) in Proposition 2.6 holds in a more gen-
eral setting.
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Proposition 2.8 If (A, M) is a quasilocal condensed domain and (B, N) a quasilocal

overring of A dominating A (i.e., N ∩ A = M), then the residue field extension A/M ⊆
B/N is vs-closed.

Proof Set k = A/M and K = B/N . Let α, β be nonzero elements of K. There

exist a, b, c ∈ A \ {0} such that α = a/c + N and β = b/c + N . Now c2 + ab ∈
(cA + aA)(cA + bA), so c2 + ab = (mc + na)(pc + qb) for some m, n, p, q ∈ A. Dividing
by c2 and taking mod N , we get 1+αβ = (m̄+n̄α)( p̄+ q̄β). Hence k ⊆ K is vs-closed.

Theorem 2.9 A field extension k ⊆ K is vs-closed if and only if [K : k] ≤ 2 or

[K : k] = 3 and each degree-two polynomial in k[X] splits over k.

Proof By the paragraph after Definition 2.7, we may assume that [K : k] = 3. By

Proposition 2.6, k ⊆ K is vs-closed if and only if for every α, β ∈ K \ k, V =

P(k + kα, k + kβ) is a k-subspace of K. Since [K : k] = 3, this means V = K, because
V strictly contains k + kα. Let α, β be as above. Obviously K = k(α). Let f =

X3−pX2−nX−m be the minimal polynomial of α over k. Now {1, α, α2} is a k-basis

of K, so β = e0 + e1α + e2α
2, for some e0, e1, e2 ∈ k. Since k + kβ = k + k(e1α + e2α

2)
it suffices to consider only the following two cases (a) β = qα + α2 with q ∈ k and
(b) β = α. Consider the case (a). Since α3

= m + nα + pα2, every element of V has
the form

(a + bα)
(

c + d(qα + α2)
)

= ac + mbd + (qad + bc + nbd)α +
(

ad + (p + q)bd
)

α2

with a, b, c, d ∈ k. Hence V = K if and only if the following map is surjective:

θ : k4 → k3, θ(a, b, c, d) =

(

ac + mbd, qad + bc + nbd, ad + (p + q)bd
)

.

Clearly θ = ηµ, where µ : k4 → k4, η : k4 → k3 are given by

µ(a, b, c, d) = (ac, bd, ad, bc), η(u, v, w, x) =

(

u + mv, qw + x + nv, w + (p + q)v
)

.

The image of µ is {(u, v, w, x) ; uv = wx}. Indeed, if uv = wx and w 6= 0,
then (u, v, w, x) = µ(1, v/w, u, w), while (0, v, 0, x) = µ(0, 1, x, v) and (u, 0, 0, x) =

µ(u, x, 1, 0). The converse inclusion is obvious. Let β, γ, δ ∈ k. Solving in u, v, w, x

the system of equations η(u, v, w, x) = (β, γ, δ), we get

u = β − ms, v = s, w = δ − (p + q)s, x = (pq + q2 − n)s − δq + γ

with s ∈ k arbitrary. So, in case (a), the surjectivity of θ means there exists s ∈ k such

that uv = wx. The equality uv = wx gives the equation in s,

(2.1) js2 + [β + (p + q)(γ − 2δq) + nδ]s + δ(δq − γ) = 0

whose leading coefficient j = q3 + 2pq2 + (p2 − n)q − pn − m = (p + q)3 −
m(p + q)2 −n(p + q)−m = f (p + q) is nonzero because f is the minimal polynomial
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of α over k, so it has no root in k. The case when β = α can be done similarly. Using
the same notation, we get η(u, v, w, x) = (u, w + x, v), (u, v, w, x) = (β, δ, s, γ − s)

and finally the degree-two equation

(2.2) s2 − γs + βδ = 0.

These two equations show that k ⊆ K is vs-closed if each degree-two polynomial in
k[X] splits over k. Conversely, if k ⊆ K is vs-closed, then equation (2.2) has roots in k

for every β, γ, δ ∈ k, so each degree-two polynomial in k[X] splits over k. We notice

that the “only if” part of our result is also a consequence of [3, Theorem 5].

Corollary 2.10 For a field extension k ⊆ K, the domain k + XK[[X]] is condensed

if and only if [K : k] ≤ 2 or [K : k] = 3 and each degree-two polynomial in k[X] splits

over k.

Example 2.11 Let B be the field of all complex numbers which can be constructed
by straight-edge and compass from 0 and 1 (see [12, page 210]). By [12, page 213],
each degree-two polynomial in B[X] splits over B and [B( 3

√
3) : B] = 3, so B +

XB( 3
√

3)[[X]] is a local condensed domain, cf. Corollary 2.10.

3 Strongly Condensed Domains

Let D be an integral domain and I, J ideals of D. We say that I, J is a strongly condensed

(SC) pair if I J = i J for some i ∈ I or I J = I j for some j ∈ J. Following [9], we
say that D is strongly condensed (SC) if I, J is an SC pair for every I and J. Obviously,
an SC domain is condensed and if D is SC, then so is each ring of quotients of D. A
rank-one non-discrete valuation domain is condensed and not SC, because in an SC

domain every idempotent ideal is principal. Let D be a domain with quotient field
K. If I is an ideal of D, we denote by I : I the overring of D consisting of all elements
x ∈ K with xI ⊆ I. It is the largest overring of D in which I is an ideal.

Lemma 3.1 Let D be a domain and I, J nonzero ideals of D.

(a) I J = i J for some i ∈ I if and only if the extension of I in J : J is a principal ideal

generated by some element of I. In this case, I : I ⊆ J : J.

(b) If I is a principal ideal of I : I, then I2
= iI for some i ∈ I.

Proof (a) Assume that I J = i J with 0 6= i ∈ I. We have (I/i) J = J, so I/i ⊆ J : J,

hence I ⊆ i( J : J), that is, I( J : J) = i( J : J). Also, I : I ⊆ I J : I J = i J : i J = J : J.
Conversely, if I( J : J) = i( J : J) with i ∈ I, then I J = i J because J( J : J) = J.

(b) If I = i(I : I) with i ∈ I : I, then i ∈ I and I2
= iI(I : I) = iI.

It is well known that the complete integral closure D̃ of a domain D is the union
of all I : I for I nonzero ideal of D.

Lemma 3.2 Let D be a domain and D̃ its complete integral closure. The set {I : I ;
I a nonzero ideal of D} is linearly ordered if and only if the set of intermediate rings

between D and D̃ is linearly ordered.
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Proof The “if” part is clear. For the converse, it suffices to see that whenever x, y ∈
D̃, the subrings D[x] and D[y] are comparable. Let x, y ∈ D̃. There exists a nonzero

d ∈ D such that I = dD[x] ⊆ D and J = dD[y] ⊆ D. Then I and J are ideals of
D. Moreover, I : I = D[x] : D[x] = D[x], because D[x] is a subring of D̃. Similarly,
J : J = D[y]. By hypothesis, I : I and J : J are comparable.

The SC condition can be characterized in the following way.

Proposition 3.3 Let D be a domain and D̃ its complete integral closure. Then D is SC

if and only if the following two conditions hold:

(a) every nonzero ideal I of D is a principal ideal of I : I, and

(b) the set of intermediate rings between D and D̃ is linearly ordered.

Proof The “only if” part follows from Lemmata 3.1 and 3.2. Conversely, assume that
D satisfies the two conditions (a), (b). Let I, J be nonzero ideals of D. By (a) and (b),
we may assume that I = i(I : I) for some i ∈ I and I : I ⊆ J : J. Then I J = i J by part
(a) of Lemma 3.1.

For a domain D, let Maxp1(D) denote the set of principal height-one maximal

ideals of D. Note that D is a PID if and only if Max(D) = Maxp1(D) or D is a
field. The following result shows that for a SC domain D, Max(D) \ Maxp1(D) has
at most one element. We say that Spec(D) is Noetherian if D satisfies the ascending
chain condition for the radical ideals. It is well known that this implies that each

radical ideal is a finite intersection of prime ideals and hence each proper ideal has
only finitely many minimal prime ideals.

Theorem 3.4 A domain D is SC if and only if either D is a PID or Spec(D) is Noethe-

rian, Max(D) = Maxp1(D) ∪ {M} and DM is SC.

Proof The “only if” part. Let M and N be distinct maximal ideals of D. By Propo-

sition 3.3, we may assume that M : M ⊆ N : N . We claim that M is principal, so D

has at most one nonprincipal maximal ideal. Indeed, since D is SC, M2
= mM for

some m ∈ M, so M =

√
mD and hence mD is M-primary. Then M = M(M : M) =

m(M : M) by the proof of Lemma 3.1(a). So M(N : N) = m(N : N) and hence MN =

mN , again by the proof of Lemma 3.1(a). Localizing at M, we get MM = mDM , so
M = mD because mD is M-primary.

Now, assume that N is nonprincipal and M = mD is of height greater than one.
Hence ∩∞

1 mnD 6= 0. So if 0 6= y ∈ ∩∞
1 mnD, then y(1/mn) ∈ D. So D[1/m] is an

overring of D contained in the complete integral closure as is N : N , hence they are
comparable, cf. Proposition 3.3. Now D[1/m] is not contained in N : N , for 1/m ∈
N : N gives (1/m)N ⊆ N and hence N ⊆ mN ⊆ M, a contradiction. So N : N ⊆
D[1/m]. As done above, there exists an n ∈ N such that N = n(N : N) and nD is
N-primary. Then ND[1/m] = nD[1/m]. Since m 6∈ N , N = nD[1/m] ∩ D = nD, a
contradiction.
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Finally, suppose that M = mD and N = nD are both principal of height greater
than one. Since the intersections of powers of mD and nD respectively are nonzero,

D[1/m] and D[1/n] are incomparable overrings contained in the complete integral
closure, a contradiction, cf. Proposition 3.3. The fact that Spec(D) is Noetherian
follows from [6, Theorem 3.1.11], because, as done above, for every ideal I of D,√

I =

√
iD for some i ∈ I.

The “if” part. Suppose there exists an ideal M as in the statement, otherwise D is
a PID, hence SC. Since Spec(D) is Noetherian, each ideal of D has only finitely many
minimal prime ideals. Let I be a nonzero ideal of D and p1D, . . . , pnD the principal
height-one maximal ideals containing I. Since each piD has the intersection of its

powers equal to zero, we can write I = xI ′ where x ∈ D and either I ′ = D or M is
the only maximal ideal containing I ′. (For suppose I ⊆ psi

i D, but I 6⊆ psi +1
i D. Then

I ⊆ ps1

1 D ∩ · · · ∩ psn
n = ps1

1 · · · psn
n D. Take x = ps1

1 · · · psn
n , so I ⊆ xD and hence

I = xI ′ where I ′ ⊇ I. Since I ′ 6⊆ piD, either I ′ = D or M is the only maximal ideal

containing I ′.)

Now, let I, J be a pair of proper nonzero ideals of D. We show that I, J is an
SC pair. We can assume that neither is principal. Moreover, as noted above, we can
assume that M is the only maximal ideal containing I ∩ J. Since DM is SC, we can

assume that IM JM = i JM for some i ∈ I such that M is the only maximal ideal
containing iD (see argument given above). So the equality I J = i J holds locally and
hence globally.

Remark 3.5 A condensed domain need not be h-local (take any non h-local Bézout
domain, for instance the ring of entire functions, cf. [8, page 147]), but a SC domain
is h-local.

We have already remarked that an integrally closed domain is condensed if and
only if it is Bézout [3, Main Theorem]. However, the case of an integrally closed do-
main D being SC is more delicate. Certainly an integrally closed SC domain being
condensed is Bézout. According to [6, Proposition 5.3.8], a valuation domain V is

strongly discrete (i.e., V has no nonzero idempotent prime ideals) if and only if for
each nonzero ideal I of V , I is a principal ideal in I : I. Consequently, by Proposi-
tion 3.3, an integrally closed quasilocal domain is SC if and only if it is a strongly
discrete valuation domain. Recall that a domain D is called generalized Dedekind if D

is a strongly discrete Prüfer domain (i.e., DM is a strongly discrete valuation domain
for each maximal ideal M of D) with Noetherian spectrum (see [6, Chapter 5]). By
[6, Lemma 5.8.2], each maximal ideal of a generalized Dedekind domain is invertible.
These remarks and Theorem 3.4 give the following result.

Corollary 3.6 Let D be an integrally closed domain. Then D is an SC domain if and

only if D is a Bézout generalized Dedekind domain with at most one maximal ideal of

height greater than one.

A. Facchini has shown [5, Theorem 5.3] that for every Noetherian tree X with a
least element there exists a generalized Dedekind domain D whose prime spectrum
(

Spec(D),⊆
)

is order isomorphic to X. Applying this theorem for appropriate trees
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(e.g.,
({

∅, {1}, {1, 2}, {3}
}

,⊆
)

), it follows there exist integrally closed SC domains
which are neither PIDs nor valuation domains.

We thank B. Olberding for suggesting the following theorem.

Theorem 3.7 Let D be an integral domain. Then D is an integrally closed SC domain

if and only if every proper ideal I of D has the form I = Pr where P is a prime ideal of D

and r ∈ D.

Proof (⇒) We recall two results from [7]. A Prüfer domain E is a generalized
Dedekind domain if and only if every divisorial I of E can be written as I = JP1 · · · Pn

where J is an invertible ideal and P1, . . . , Pn are pairwise-comaximal prime ideals [7,
Theorem 3.3]. Moreover, for a generalized Dedekind domain, every nonzero ideal is
divisorial if and only if every nonzero prime ideal is contained in a unique maximal
ideal [7, Proposition 3.6]. Now, let D be an integrally closed SC domain. By the

previous corollary, D a generalized Dedekind domain with at most one maximal ideal
which is not principal of height one. So the cited results apply.

(⇐) According to [14, Theorem 2.3], a domain whose every ideal can be written
as a product of invertible ideals and prime ideals is a strongly discrete h-local Prüfer
domain. Hence so is our D. By [6, Corollary 5.4.10], D is a generalized Dedekind

domain. We next show that Pic(D) = 0. Let M be a maximal ideal of D. Since D

is a generalized Dedekind domain, M is invertible. Now M2
= Pr for some prime

ideal P of D and r ∈ D. Since M2 ⊆ P, M = P. But M is invertible, so M = rD is
principal. Let I be an invertible ideal of D. Then I = Pr for some prime ideal P of D

and r ∈ D. Now I invertible gives P is invertible. But then P is maximal and so I = Pr
is principal. Suppose that D has two maximal ideals M and N of height greater than
one. Since M and N are principal, M ′

= ∩nMn and N ′
= ∩nNn are nonzero prime

ideals of D lying directly below M and N , respectively. Since D is h-local, M (resp.,

N) is the only maximal ideal containing M ′ (resp., N ′). Now M ′N ′
= Pr for some

prime ideal P of D and r ∈ D. Since P ⊇ M ′N ′ and P cannot be principal (for then
M ′ and N ′ would be principal), P = M ′ or P = N ′; say P = M ′. So M ′N ′

= M ′r.
But then N ′DN = M ′N ′DN = M ′rDN = rDN is principal, a contradiction. So D is

a generalized Dedekind domain with at most one maximal ideal that is not principal
of height one. By the previous corollary, D is SC.

Recall that an integral domain D is said to be stable (or SV-stable in the termi-
nology of [6]) if each nonzero ideal I of D is invertible in I : I. Thus Proposition 3.3
gives that a SC domain is stable. Recall that a module is called serial if its submod-

ules are linearly ordered with respect to inclusion. The next result is a SC variant of
Corollary 2.5.

Theorem 3.8 Let D be a Noetherian domain. The following assertions are equivalent:

(a) D is SC,

(b) D is a PID or D has exactly one nonprincipal maximal ideal M and DM is SC, and

(c) dim D ≤ 1, Pic(D) = 0 and D ′/D is a serial D-module, where D ′ is the integral

closure of D.
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Proof (a) ⇔ (b). Cf. Theorem 3.4.

(a) ⇒ (c). By [4], dim D ≤ 1. Also, Pic(D) = 0, cf. Theorem 2.4. By [15,
Lemma 2.1], each D-submodule of D ′ containing D is a ring. By Lemma 3.2, we
deduce that D ′/D is a serial D-module.

(c) ⇒ (a). Since D ′/D is a serial D-module, condition (b) of Proposition 3.3 holds
for D. By [15, Theorem 3.2], D is stable, so, to verify condition (a) of Proposition 3.3,
it suffices to show that Pic(I : I) = 0 for each nonzero ideal I of D. But this follows
from [1, Theorem 12] and the remark following it.

If m is a square free integer 6= 0, 1, then D = Z[
√

m] is SC if and only if its Picard
group is zero. Indeed, the factor D-module D ′/D has at most two elements, hence it

is serial, so Theorem 3.8 applies.

Let D be a Noetherian integral domain. D is said to have the two-generator prop-

erty if every ideal of D is generated by two elements. If D has the two-generator
property, then D is stable. The converse is true if D ′ is a finite D-module, but not in
general, cf. [16, Example 5.4]. Now, let D be a one-dimensional Noetherian domain.
By [15, Theorem 3.2], D has the two-generator property if and only if D ′/D is a dis-

tributive D-module (i.e., (D ′/D)M is a serial DM-module for each maximal ideal M

of D). Consequently, if D is a SC Noetherian domain, then D has the two-generator
property. In the local case we obtain the following corollary.

Corollary 3.9 A local domain D is SC if and only if D has the two-generator property.

In particular, the characteristic-two case of Nagata’s example [13, Example 3,
page 205] of a local one-dimensional domain whose integral closure is not a finite
module is SC. Combining Corollary 3.9 with Theorem 2.4, we see that a domain D

having the two-generator property and Pic(D) = 0 is condensed.

Example 3.10 There exist domains D having the two-generator property and

Pic(D) = 0 (hence condensed) which are not SC. Indeed, let ω =
1+

√
5

2
. Then ω

is the fundamental unit of the PID Z[ω]. Combining [17, Theorem 4.1, Remark 4.7,

Proposition 4.8, Theorem 4.9], it follows that Z[2ω] and Z[5ω], hence also Z[10ω],
have zero Picard group. Now Z[10ω] has the two-generator property, but it is not SC
because its overrings Z[2ω] and Z[5ω] are integral over Z[10ω] and not comparable.

If D is a local domain whose integral closure is finite over D, we get the following
result.

Theorem 3.11 Let (D, M, k) be a local domain whose integral closure D ′ is a finite

D-module. The following assertions are equivalent:

(a) D is SC,

(b) D is stable (equivalently, I, I is an SC pair for every ideal I of D),

(c) D has the two-generator property,

(d) D is Gorenstein and M, M is an SC pair,

(e) D ′
= D + Dθ for some θ ∈ D ′,
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(f) D ′/MD ′ is isomorphic to one of the following k-algebras: k—in this case D = D ′ is

a DVR, a quadratic field extension of k, k × k, or k[X]/(X2).

If (D ′, M ′, K) is local, then the preceding assertions are also equivalent to:

(g) D is condensed and [K : k] 6= 3,

(h) K = k and D contains a value-two element of D ′ or [K : k] = 2 and D contains a

value-one element of D ′.

Proof Clearly (a) ⇔ (c). Cf. Corollary 3.9.

(b) ⇔ (c). Cf. [16, Theorem 2.4] (the paranthetical form of (b) comes from our
assumption that D ′ is semi-local, so I : I is semi-local for each nonzero ideal I).

(c) ⇔ (e). Cf. [10, Theorem 2.3].
(c) ⇔ (d). Cf. [15, Theorem 3.2].

(f) ⇒ (e). In each one of these cases [D ′/MD ′ : k] ≤ 2, so [10, Proposition 1.1]
applies.

(b) ⇒ (f). By [11, Theorem 6], each D-submodule of D ′ containing D is a ring,
each k-subspace of D ′/MD ′ is a ring. After an application of [11, Lemma 5], it

suffices to notice that if D ′/MD ′ is a local ring with square zero radical and residue
field k, then it is an k-epimorphic image of k[X]/(X2).

(a) ⇒ (g). Because (a) is equivalent to (e).
(g) ⇒ (h). By Proposition 2.8 applied for D ⊆ D ′, [K : k] ≤ 3, so [K : k] ≤ 2.

Since D is condensed, it contains a value-two element of D ′, cf. [9, Proposition 1]. So,
it suffices to show that if [K : k] ≥ 2 and D is condensed, then D contains a value-one
element of D ′. Let θ ∈ D ′ such that K = k(θ̄). Let x be a prime element of D ′.
Since D ′ is a finite D-module, there exists N such that xN D ′ ⊆ D. In D we consider

the ideals I = (xN , xN+1) and J = (xN , θxN+1). Then (1 + θ)x2N+1
= xN+1xN +

xN (θxN+1) ∈ I J. Since D is condensed, (1 + θ)x2N+1
= ( f xN + gxN+1)(hxN + iθxN+1),

for some f , g, h, i ∈ D. Hence (1 + θ)x = ( f + gx)(h + iθx), so f ∈ xD ′ or h ∈ xD ′.
Assume that f = x f ′ with f ′ ∈ D ′. Then 1 + θ = ( f ′ + g)(h + iθx) and f ′ 6∈ xD ′,

otherwise 1̄ + θ̄ = ḡh̄ ∈ k, a contradiction. Now, assume that h = xh ′ with h ′ ∈ D ′.
Then 1 + θ = ( f + gx)(h ′ + iθ) and h ′ 6∈ xD ′, otherwise 1̄ + θ̄ = f̄ īθ̄ ∈ kθ̄, again a
contradiction. Consequently, f or h has value one in D ′.

(h) ⇒ (f). Assume that K = k and D contains a value-two element of D ′. Then

MD ′ contains the square of the prime element q of D ′. Since K = k, the k-algebra
morphism k[X] → D ′/MD ′ sending X to q + MD ′ is surjective, hence D ′/MD ′

is an epimorphic image of k[X]/(X2). Thus D ′/MD ′ is either k[X]/(X2) or k. If
[K : k] = 2 and D contains a value-one element of D ′, then D ′/MD ′

= K. We note

that the first case of implication (h) ⇒ (a) was proved in [9, Proposition 6].

By the proof of implication (g) ⇒ (h) in Theorem 3.11, if k ⊂ K is a proper field
extension and n ≥ 2, then k + XnK[[X]] is not condensed.

We end by giving an example of a local condensed domain that is not SC; thus
answering a question raised by Gottlieb [9].

Example 3.12 Let B ⊂ B( 3
√

3) be the field extension in Example 2.11. Then B +
XB( 3

√
3)[[X]] is a local condensed domain which is neither SC nor Gorenstein.
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