
CHAPTER 1

Random Utility

1.1 THE ANALYST AND THE AGENT

The main character in this book is the analyst. She is a researcher: an econo-
metrician, an experimental economist, and so on. The analyst has access to
data about the behavior of an agent (or a population of agents) summarized
by a stochastic choice function (SCF) ρ. The analyst wants to understand ρ to
predict the agent’s behavior in a new situation, for example, forecast demand
for a new product. A benevolent analyst wants to be able to measure the agent’s
welfare.1

This book focuses on nonstrategic situations, where the data are, for exam-
ple, the occupational choices in a population or response frequencies in a
laboratory or field experiment. Our agents don’t play games with each other
or with the analyst. Of course, strategic interactions are prevalent in eco-
nomics, but it’s worthwhile to first see how much we can understand about
individual behavior. We assume that the analyst is passively studying the
agent. The analyst’s decisions (which will be unmodeled here) may ultimately
impact the agent as new products get introduced or new contracts or mecha-
nisms get designed, but our agents are not strategic enough to take this into
account.2

Many analysts model the agent as a utility-maximizing creature and make
various other more specific assumptions. Each model puts some restrictions
on the class of behaviors that are allowed. We will try to understand these
restrictions and the ways the various classes connect to each other.

Understanding the relationships between models is interesting in its own
right but can also serve some practical purposes. The analyst often has to pick
a particular model and it’s good to know what the possible trade-offs between
these models are.

1 I will refer to the analyst as “she/her,” or sometimes “us.” I use “they/them” for the agent(s).
2 In fact, the situation of the mechanism designer is similar to the situation of our analyst: She

has some information about behavior in various situations and picks a situation (mechanism)
to induce the agent to behave in a desired way.
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4 Random Utility

1.2 DETERMINISTIC CHOICE

We start with deterministic choice because this will be the basis for much of
what is to come in this book. This will also establish notation used throughout.

Let X be the set of all possible alternatives that our agent might be facing.
Typical elements are denoted x, y ∈ X and may stand for things such as brand
choices, employment status, number of children, market entry decisions, or
choosing which perceptual stimulus is stronger in a lab experiment.

The analyst observes the agent’s choices in multiple-choice situations. The
data of the analyst is a choice function that says what the agent does in each
situation. We will treat the choice function as observable to the analyst – we
will assume that she can collect this data by observing how people behave in
real life or by designing a lab or field experiment.

In decision theory and consumer theory, a choice situation is typically sum-
marized by the menu (a subset of X) the agent is choosing from (e.g., the actual
menu at the restaurant, or the set of insurance plans an employer offers, or the
budget set in consumer theory).

Let A be the collection of all nonempty and finite subsets of X, with typical
elements A, B, C, which we call menus.3 A single-valued choice function is a
mapping χ : A → X such that χ(A) ∈ A. That is, for each menu A ∈ A, the
analyst observes what is chosen. The condition χ(A) ∈ A just means that the
agent cannot choose items outside of the menu.

The “revealed preference” exercise of Samuelson (1938) seeks to ratio-
nalize such observations by preference maximization and to uncover the
preference relation from the observed data.

A binary relation � on X is a preference if it is:

• complete (x � y or y � x for all x, y ∈ X) and
• transitive (x � y and y � z implies x � z for all x, y, z ∈ X).

Moreover, the relation is a strict preference if it also satisfies the following
property:

• x � y and y � x implies x = y for all x, y ∈ X.

The last requirement (called antisymmetry) means that the agent is never
indifferent between two distinct options.

We say that a strict preference � represents χ whenever, for each A ∈ A,
χ(A) is the highest ranked element of A according to �. The key here is that

3 In introductory microeconomics and consumer theory, X is typically an infinite set of consump-
tion bundles (X = R

n+, where n is the number of goods) and the agent is choosing how much
of each good to consume (the menu is an infinite set). The analysis then quickly assumes dif-
ferentiability and convexity and characterizes optimality by first-order conditions. In discrete
choice theory, the analysis is somewhat different: The menu is finite (discrete) and the opti-
mality conditions are a set of inequalities instead of equalities. We allow X to be infinite, but
the menu will always be finite, although there is some work on stochastic choice with infinite
menus (see, e.g., Bandyopadhyay, Dasgupta, and Pattanaik (1999)).
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1.2 Deterministic Choice 5

the agent maximizes the same preference on X irrespective of which menu they
are facing. If the preference is allowed to depend on the menu, we can explain
every possible choice function and our model is not falsifiable (so there is no
way of testing if it’s true).

There are χs that cannot be represented by any �; they are sometimes
called “irrational,” “behavioral,” or “boundedly rational.”

The key test for deterministic preference maximization is known under
many names, such as Sen’s α condition (Sen, 1971), Arrow’s IIA (Arrow,
1959), or Chernoff’s condition (Chernoff, 1954). The axiom imposes consis-
tency conditions on choices from various menus.

Axiom 1.1 (Sen’s α). If x ∈ A ⊆ B, then x = χ(B) implies x = χ(A).

This axiom says that if alternative x beats all things in a menu, it must also
beat all things in a subset of the menu.

Proposition 1.2. A choice function χ satisfies Sen’s α if and only if there exists
a strict preference relation that represents it. Moreover, � is unique.

A simple proof is, for example, in Osborne and Rubinstein (2020). The
assumption that A contains all menus can be relaxed as long as it contains all
pairs and triples.

Decision theorists are attracted to results like Proposition 1.2 because they
provide an exact translation between two languages:

• what is observable (the choice function χ) and
• what is a mathematical representation (the preference �).

This exact translation helps us understand the connections between the two
ways of describing choice. It also offers a test of “rationality”: If our agent
violates Sen’s α, then they cannot be maximizing a complete and transitive
preference.

To deal with indifferences, economists often consider a multivalued choice
correspondence χ : A→ A such that χ(A) ⊆ A. The idea behind multivalued
choice is that from any given menu, the agent sometimes chooses one alterna-
tive and sometimes another (the set of those choices must be a subset of the
menu). The analyst records both of these choices and interprets this as indiffer-
ence. For choice correspondences, an additional condition, known as Sen’s β,
is needed to characterize preference maximization. Conditions α and β com-
bined are called weak axiom of revealed preferences (WARP). For details, see
Chapter 2 of Kreps (1988) and Chapter 1 of Mas-Colell, Whinston, Green,
et al. (1995). We will not deal with choice correspondences because the the-
ory of stochastic choice provides a more precise way of modeling the situation
where the agent makes different choices from the same menu.

So far, we have two languages: the observables (choice function χ) and the
representation (preference relation �). To make the math easier, economists
often use yet another language to represent choices – the utility functions. This
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6 Random Utility

allows them to use familiar tools from optimization theory, such as first- and
second-order conditions, Hamilton–Jacobi–Bellman equations, and so on.

A preference � is represented by a utility function U : X → R whenever

x � y if and only if U(x) ≥ U(y).

We will interchangeably write U : X → R and U ∈ R
X for the same object,

thanks to the useful notation in mathematics that says that if X and Y are sets,
then YX is the collection of all functions from X to Y .

If � is complete and transitive and X is finite or countable, then a util-
ity representation of � always exists. A classic counterexample when X is
uncountable are lexicographic preferences. Since we often have to deal with
uncountable X, for example, consumption bundles (as in price theory) or
lotteries (Chapter 4), typically continuity is assumed to get a representation.4

For any preference, there is a multitude of utility representations: If U
represents �, then any monotone transform φ(U) also represents �.

Proposition 1.3. Functions U1, U2 represent the same preference � on X if
and only if there exists a strictly increasing function φ : R1 → R such that
U2(x) = φ(U1(x)) for all x ∈ X, that is, U2 = φ ◦ U1. Here R1 is the range of
U1 defined by {U1(x) : x ∈ X}.

This is called ordinal uniqueness, that is, utility is unique up to the order-
ing of alternatives but its scale does not have any meaning. In particular, if
u(x) − u(y) > u(z) − u(w), then we are tempted to say that x is preferred to
y “more intensely” than z is to w, but this statement does not have any mean-
ing in terms of choices because we can always take a different utility function
that represents the same preferences where the inequality is reversed. Later in
Section 4.1, we will see stricter “cardinal” uniqueness results.

1.3 STOCHASTIC CHOICE

As mentioned earlier, if the agent is alternating choices from the same menu,
the classical approach is to ignore the frequency of such choices and treat them
as indifferent. This means that a person who chooses x from menu {x, y} 99%
of the time and another person who chooses y 99% of the time are classified
as the same type.

In this book we will take the choice frequencies seriously and try to extract
information from them. To do this, we need to enrich the set of observables:
For each menu A and item x ∈ A, let ρ(x, A) be the frequency with which
a choice of x from A was observed.5 In reality, we will have a finite sample
of n observations, but we will think of ρ(x, A) as the limiting frequency as

4 For the finite and countable cases, see Propositions 3.2 and 3.3 of Kreps (1988). For
uncountable X, see Theorems 3.5 and 3.7 of Kreps (1988) or Chapter 9 of Ok (2014).

5 The recent paper of Ok and Tserenjigmid (2022) compares the choice-correspondence
approach to the choice-frequency approach.
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n →∞.6 A stochastic choice function collects these limiting frequencies as a
function of the menu.

For any finite set Z, let �(Z) denote the set of probability distributions over
Z, that is, functions p : Z → [0, 1] such that

∑
z∈Z p(z) = 1. For each menu A,

the values of ρ(·, A) form a probability distribution over A, so we can think of
the SCF as a map that takes a menu A and maps it into �(A).

Definition 1.4. An stochastic choice function (SCF) is a mapping

ρ : A→ �(X)

such that
∑

x∈A ρ(x, A) = 1 for all A ∈ A.

Sometimes not all menus are observed, in which case the domain of ρ is
smaller. For example, in experiments often there are just binary menus. To
simplify notation in this case, we will write ρ(x, y) := ρ(x, {x, y}) when x �= y
and define ρ(x, x) := 0.5.

In discrete choice econometrics the menu is often fixed but what varies
are the attributes of these alternatives. The first three parts of the book focus
on menu variation and the last part of the book focuses on attribute varia-
tion. However, the distinction between the two approaches is not clear cut; for
example, for lotteries, each alternative is characterized by a vector of attributes
(probabilities of each payoff).

If our analyst is observing a single individual who faces the problem repeat-
edly (as it happens in some within-subject experiments), then ρ(x, A) is the
fraction of times the agent chose x from A. Stochastic choice functions can also
capture population-level data. For example, McFadden (1974) studied trans-
portation choices of the Bay area population. In this situation, ρ(x, A) is the
fraction of the population choosing x from A. In such applications, choice has
two sources of stochastic variation: Individual randomness (how much choice
varies if a given person is sampled over and over again) and heterogeneity of
preferences (how much choice varies across people).

While it’s easy to imagine that preference heterogeneity leads to nontriv-
ial choice frequencies in the aggregate data, it’s less obvious why the choices
of a single individual should be stochastic. Yet, stochastic choice is routinely
observed. This was established first and foremost, in the context of discrim-
ination between perceptual stimuli (Fechner, 1860; Thurstone, 1927). The
following example discusses perception of weight, but similar experiments are
used in the study of other senses: hearing, touch, vision, and so on.7

6 Taking limiting frequencies as a primitive is routine in econometrics for the purpose of
estimation and identification of parameters. We will talk about this more in Chapter 2.

7 For example, in some experiments, in each trial the subject faces a screen where a fraction of
dots is moving in a coherent direction (left or right), while others are moving randomly, and
the agent is incentivized to guess the correct direction of motion (see, e.g., Newsome, Britten,
and Movshon (1989), Bogacz, Brown, Moehlis, Holmes, and Cohen (2006), and Drugowitsch,
Moreno-Bote, Churchland, Shadlen, and Pouget (2012)). A similar design was used by Dean
and Neligh (2023).
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Figure 1.1 An S-shaped psychometric function.

Example 1.5 (Perception Task). Let X = R+ be a collection of weights (the
weights all look the same, or the experimental subject’s view is obstructed).
The subject is facing a series of binary menus Ai := {xi, yi}, i = 1, . . . , n,
where xi, yi are drawn i.i.d. from some distribution π ∈ �(X). The subject is
tasked with picking the heavier of the two objects: There is a positive payoff
for a correct guess and zero for incorrect. The analyst records the subject’s
choice over many i.i.d. trials. In the limit, we get ρ(x, y).

It is interesting to examine ρ(x, y) as a function of x for a fixed value of the
reference weight y. This is called a psychometric function; in fact we have a
family of psychometric functions indexed by y. 	

Numerous experiments in psychology and psychophysics can be summa-
rized by the following stylized facts (see Woodrow (1933) and Gescheider
(1997)). First, psychometric functions are typically S-shaped. This means that
if x is close to y, it is hard for the subject to discriminate between them and
accuracy is low. If x is far from y, the accuracy improves. It is typical to use the
cumulative distribution function (CDF) of the normal distribution 
 to model
psychometric functions.

Another stylized fact is diminishing sensitivity: A given weight difference
between x and y may be big enough for the subject to notice when both x
and y are small, but not big enough when x and y are both large. One way
to state this stylized fact is to say that the family of psychometric functions
ρ(·, y) gets flatter as y grows.8 Diminishing sensitivity has been incorporated
into many psychological theories, such as Prospect Theory (Kahneman and
Tversky, 1979) and Salience Theory (Bordalo, Gennaioli, and Shleifer, 2012).

Yet another stylized fact is payoff-monotonicity, which says that the error
rate diminishes if the payoff for guessing correctly increases. There is some
debate about this between economists (who think that incentives matter) and
psychologists (who think they don’t).

8 This is often operationalized as the requirement that the interquartile range, depicted in
Figure 1.1 is an increasing function of y. This is related to the Weber–Fechner law, which
was originally formulated in terms of just noticeable differences, a theoretical construct that is
inconsistent with our first stylized fact (S-shaped psychometric functions).
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1.4 Representations 9

The final stylized fact is frequency-dependence, which says that ρ(x, y)
depends on the distribution π of weights across trials. Intuitively, this is
because the agent gets attuned to the range of weight variation, so that the
same weight difference can be perceptible if all weights in the experiment are
in some small range but may go unnoticed if the weights vary a lot from trial
to trial. Notice that frequency-dependence implies that we should more accu-
rately be talking about ρπ(x, y), where π is fixed in a given batch of trials and
the analyst runs several batches each with a different π .

While it may be unsurprising that perception of physical stimuli is random,
there is a body of experimental evidence showing that economic choices are
random as well. Mosteller and Nogee (1951) were first to show that choices
between lotteries show substantial switching. This is true whether trials are
separated by days (Tversky, 1969; Hey and Orme, 1994) or minutes (Camerer,
1989; Ballinger and Wilcox, 1997; Agranov and Ortoleva, 2017; Agranov,
Healy, and Nielsen, 2023). This is true even in questions that offer dominated
options.

We will now discuss various reasons why individual choices fluctuate. Each
of them corresponds to a particular representation of ρ.

1.4 REPRESENTATIONS

The easiest case is population heterogeneity. For example, in the Hotelling
(1929) model, consumers’ or voters’ bliss points are distributed along a line.
More generally, we are given a probability distribution over utility functions
that specifies the frequency of each utility in the population. This is called a
random utility representation and our formal analysis of stochastic choice will
begin with it. Each individual’s utility function is deterministic, but choices
appear random to the analyst as she only observes aggregate data. This model
is at the heart of discrete choice econometrics. The heterogeneity of tastes is
important for firms (e.g., to choose the product mix, which is something they
can’t do based on knowing just the average demand) and to policymakers (who
care about distributional effects).

What about stochastic choices of a single agent? Here there are more
possible mechanisms, all of which will be discussed in detail later on:

1. Random utility. Instead of a distribution of utilities in the population, we
now have a distribution of utility realizations for a fixed agent.9 In perception
tasks, perceptions are random. For example, Thurstone (1927) assumed that
the perceived stimulus equals true stimulus plus a normally distributed error,
which leads to what is now known as the probit model. In choice tasks, the
tastes of the agent fluctuate from trial to trial.

2. Learning. Here the agent’s tastes are fixed, but their information evolves
as they learn new things. The agent gets a noisy signal of the true state of the
world and updates their beliefs using the Bayes rule. The agent’s information

9 This is similar to Harsanyi’s purification in game theory (Harsanyi, 1973a).
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10 Random Utility

is private and unobservable to the analyst, so observed choices are stochastic.
The main two variants of the model are when information is exogenous (pas-
sive learning) or chosen by the agent (active learning), also known as “rational
inattention.”

3. Random consideration. The agent’s tastes and information might be
fixed, but they may not always be paying attention to the same objects in the
menu. If the attention process is random, it will lead the agent to consider dif-
ferent subsets of the menu (called consideration sets) from trial to trial, thereby
generating random choices.

Notice that 2 and 3 offer two different models of attention (endogenously
choosing the information vs. being exogenously restricted to a subset of the
menu). We will treat them in separate chapters.

In all of these stories above, choices are actually deterministic from the
point of view of the agent. They know what their craving is today, or what
they learned so far, or which options they are considering. Observed choices
appear stochastic to the analyst as a result of the informational asymmetry
between the two characters. In the following two stories, choices are random
even in the agent’s eyes, so both our characters are on the same footing.

4. Trembling hands: The agent cannot perfectly control their choice: There
is a random implementation error or decision error. In some models, this error
is exogenous; however, in others, the agent may control mistakes at a cost.
Observed randomness is then the result of a balance between the importance
of choosing correctly and the cost of doing so.

5. Deliberate randomization. The agent likes to randomize. They view each
menu A as the set of probability distributions �(A) and pick a favorite distri-
bution according to some preference that may capture nonlinear probability
weighting, a wish to hedge their bets, or aversion to regret.

This book starts with random utility. This is by far the most popular model
to study population-level data: Almost all of discrete choice econometrics and
demand system theory stem from this model. Moreover, much of the classical
decision theory work on stochastic choice is about random utility. A good
understanding of this model is also a prerequisite for the other models.

1.5 RANDOM UTILITY

There are three equivalent ways to formulate the model mathematically: (1)
a probability distribution over preferences, (2) a probability distribution over
utility functions, and (3) a random utility function. It may seem like excessive
formalism to define all three here but going forward it will be convenient to
seamlessly switch between them, depending on the application or context, so
I want you to get comfortable with all three.

Let P be the set of all strict preferences over a finite set X. Let μ ∈ �(P)
be a probability distribution over strict preferences. Depending on our inter-
pretation of ρ, μ is either the distribution of preferences in the population or
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1.5 Random Utility 11

the probability that governs the evolution of the preferences of the individual.
For any A ∈ A and x ∈ A, let

N(x, A) := {� ∈ P : x� y for all y ∈ A}
be the set of preferences that rationalize the choice of x from A.

Definition 1.6. ρ : A → �(X) is represented by a distribution over prefer-
ences if there exists μ ∈ �(P) such that ρ(x, A) = μ(N(x, A)) for all A ∈ A
and x ∈ A.

Notice that if we observe choices from only one menu, then any ρ has such
a representation. For all x ∈ A, we can just define the probability that x is
ranked highest in A to be equal ρ(x, A); the relative ranking of non-top items
does not matter. It is the nontrivial menu variation that gives content to the
representation.

1.5.1 Invariance of μ

The key assumption is that the distribution μ does not depend on the menu A –
it is a structural invariant of the model. If μ is allowed to depend on the choice
set in an arbitrary way, then any SCF ρ can be trivially explained (why?).

A possible complication occurs if the invariance assumption is actually
satisfied by the data-generating process but violated in the observed sample
because of the way the sample is collected. For example, the distribution
of preferences between two brands of orange juice can be different depend-
ing on whether the menu of choices is Whole Foods or Walmart because of
self-selection: Different people choose to go to these stores.

For now, we will assume that the data-generating process and our sample
are free of such effects. This assumption will let the analyst estimate μ based
on choices from some incomplete set of menus A∗ and predict choice from a
new menu A /∈ A∗, for example, when a new product is introduced.

1.5.2 Equivalent Definitions

A slightly different object than a distribution over preferences is a distribution
over utilities. Our set N becomes

N(x, A) := {U ∈ R
X : U(x) ≥ U(y) for all y ∈ A}

= {
U ∈ R

X : U(x) = max
y∈A

U(y)
}
.

Now N stands for the set of utility functions that rationalize the choice of x
from A.

When X is finite, it is without loss of generality to consider discrete mea-
sures over RX , but sometimes it is convenient to use continuous distributions
that admit a density. In general, let �(RX) be the set of Borel probability
measures over RX . (For the purpose of understanding this book, you can just
think of this as containing all discrete and continuous distributions.)
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12 Random Utility

Definition 1.7. ρ : A → �(X) is represented by a distribution over utilities
if there exists μ ∈ �(RX) such that ρ(x, A) = μ(N(x, A)) for all A ∈ A and
x ∈ A.

Yet another way to model this is to let utility be a random variable. Let
(�,F ,P) be a probability space, that is, F is a σ -algebra and P is a probability
measure. (If you are not familiar with measure-theoretic probability, you can
rely on your intuitive understanding of random variables.) Utility is a random
function, that is, Ũ : � → R

X is F-measurable. I will try to put a tilde on
every random variable (function, element, etc.). We can think of � as things
that are observable to the agent but unobservable to the analyst. The event N
is now written as

N(x, A) := {ω ∈ � : Ũω(x) ≥ Ũω(y) for all y ∈ A}
= {

ω ∈ � : Ũω(x) = max
y∈A

Ũω(y)
}
.

Definition 1.8. ρ : A → �(X) has a random utility representation if there
exists a random variable Ũ : � → R

X such that ρ(x, A) = P(N(x, A)) for all
A ∈ A and x ∈ A.

I have not made a distinction between the three different definitions of the
set N(x, A) and I will not do so in the future. I do make a notational distinction
between P, which is the probability measure on the probability space � that
caries the random utility Ũ, and μ, which is the probability distribution (a.k.a.
the law) of the random variable Ũ.

The following is an easy adaptation of Theorem 3.1 in Block and Marschak
(1960) (see also Regenwetter and Marley (2001)).

Proposition 1.9. The following are equivalent for a finite X:

(i) ρ is represented by a distribution over preferences,
(ii) ρ is represented by a distribution over utilities, and

(iii) ρ has a random utility representation.

Given this result, we will write ρ ∼ RU whenever any of the conditions
above holds.

Proof. (i) ⇒ (ii): Suppose that ρ is represented by a distribution over pref-
erences μ ∈ �(P). For each preference �, pick a utility function U� that
represents �. Define the distribution over utilities μ̂ ∈ �(RX) by setting
μ̂(U�) := μ(�) for all � ∈ P and μ̂(U) := 0 otherwise. We have

ρ(x, A) = μ({� ∈ P : x� y for all y ∈ A})
= μ̂({U� ∈ R

X : � ∈ P and U�(x) = max
y∈A

U�(y)})
= μ̂({U ∈ R

X : U(x) = max
y∈A

U(y)}).
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(ii) ⇒ (iii): Suppose that ρ is represented by a distribution over utilities
μ ∈ �(RX). Define � := R

X , F := B (the Borel σ -algebra), P := μ, and Ũ
be the identity function, that is, Ũω(x) := ω(x) for all ω ∈ R

X . Thus,

ρ(x, A) = μ({U ∈ R
n : U(x) = max

y∈A
U(y)})

= P({ω ∈ � : Ũω(x) = max
y∈A

Ũω(y)}).

(iii) ⇒ (i): Suppose that ρ is represented by a random utility (�,F ,P, Ũ).
Suppose that with positive probability there is a tie between x and y; then

ρ(x, {x, y})+ ρ(y, {x, y})
= P({Ũω(x) ≥ Ũω(y)})+ P({Ũω(y) ≥ Ũω(x)})
= P({Ũω(x) > Ũω(y)})+ 2P({Ũω(x) = Ũω(y)})
+ P({Ũω(y) > Ũω(x)}) > 1,

which violates the definition of SCF. So it’s without loss of generality to
assume that there are no ties. For each strict preference �∈ P , define the
event E� := {ω ∈ � : Uω is represented by�}. Notice that E� ∈ F because
the set of utility functions U� that represents � is an open set – an intersection
of open sets of the form {U ∈ R

X : U(x) > U(y)} – and E� is the inverse
image of U� under a measurable function Ũ.

For any � ∈ P , define μ(�) := P(E�). Since there are no ties, μ ∈ �(P).
Therefore, we have

ρ(x, A) = P({ω ∈ � : Ũω(x) = max
y∈A

Ũω(y)})
= μ({�∈ P : x� y for all y ∈ A}).

Proposition 1.9 holds for countable X under appropriate definitions (see
Cohen (1980)). The equivalence between (ii) and (iii) holds for uncountable
X under appropriate technical conditions. For uncountable X, condition (i) is
typically modified because preferences are usually assumed to be continuous,
which implies that they have nontrivial indifference curves. We will talk more
about the infinite case later.

1.6 TIE BREAKING*

Material with an asterisk may be omitted at first reading. If ρ is represented by
a distribution over preferences, then ties are ruled out by construction because
only strict preferences are realized with positive probability. On the other hand,
distribution over utilities and RU in principle allow for ties. But in fact, for
choice probabilities to be well-defined, ties must occur with zero probability.
To see that, let Txy := {ω ∈ � : Ũω(x) = Ũω(y)} be the event in which
there is a tie between x and y. As we saw in the proof of Proposition 1.9 if
ρ has an RU representation, then it must be that P(Txy) = 0 for all x �= y;
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otherwise, ρ(x, y) + ρ(y, x) > 1 because we are double-counting the event
Txy. This means that RU with ties does not lead to a legitimate SCF. I will
refer to those RU without ties as as proper RU. Formally, Ũ is proper if for
any menu A ∈ A, with probability one Ũ has a unique maximizer on A.10

For various reasons it is sometimes convenient to allow for ties. Let’s take
a Ũ that is not proper. One possible way to define ρ based on Ũ is to use a
tiebreaker. For instance, we could assume that the agent uniformly randomizes
over the maximal elements of each menu (uniform tiebreaking). This two-stage
procedure (maximize Ũ, then break ties uniformly) gives us a well-defined
SCF.

A more general notion of tiebreaking was introduced by Gul and Pesendor-
fer (2006) in the supplement to their paper. A GP-tiebreaker is a random utility
function W̃ : �W → R

X that itself is proper. In a random utility representation
with a GP tiebreaker, the agent first maximizes Ũ and then uses W̃ to break the
ties. The state space is now �×�W because the tie breaker needs its own state
space, as the original one may not be rich enough to allow for a proper W.

Proposition 1.10. The following are equivalent when X is finite:

(i) ρ has a proper RU representation
(ii) ρ has an improper RU representation with uniform tiebreaking

(iii) ρ has an improper RU representation with a GP-tiebreaker.

Proof. (i) ⇒ (ii): If ρ has an RU representation, then ties occur with
probability zero, so it doesn’t matter how we break them.

(ii) ⇒ (iii): Uniform tie breaking is equivalent to GP tiebreaking where W̃
represents a uniform distribution over all strict orders over X.

(iii) ⇒ (i): First, rescale Ũ so that the utility gaps between any two distinct
items are larger than one. That is,

Ũω(x) �= Ũω(y) ⇒ |Ũω(x)− Ũω(y)| ≥ 1.

Then break any ties according to a rescaled version of W̃ so that we don’t
exceed these gaps, that is, for any ω, the maximum difference between two
values of Ũω is strictly less than 1. Finally, note that

ρ(x, A)=P
({

ω ∈ � : Ũω(x)+W̃ω(x)≥ Ũω(y)+W̃ω(y) ∀y∈ A
})

.

This result makes it sound like it is impossible to know whether randomness
in choice reflects the true preference variation or just tiebreaking. In Chapter 8
we will see that it is possible to draw a meaningful distinction between the two
in a dynamic model because the two sources of randomness enter differently
into the agent’s option value calculation (taste variation provides flexibility
whereas tiebreaking does not).

10 This property is sometimes called noncoincidence (Falmagne, 1983) or regularity (Gul and
Pesendorfer, 2006).
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Instead of using tiebreakers, other papers allow for indifferences by chang-
ing the primitive and studying stochastic choice correspondences or capacities:
Barberá and Pattanaik (1986); Gul and Pesendorfer (2013); Lu (2016); Lin
(2018); Piermont and Teper (2018). To a large extent this approach is “morally
equivalent” to assuming tie breakers and I view the choice between them as a
matter of convenience.

The issue of ties gets even more subtle when X is “large.” Notice that there
is another way to define ties: Let T := {ω ∈ � : Ũω(x) = Ũω(y) for some
x �= y}. This is the event that there is a tie between some elements of x. Note
that T = ⋃

x �=y Txy so if X is finite then P(T) = 0 iff P(Txy) = 0 for all
x �= y. But with uncountable X, this new definition is too strong. For exam-
ple, when X is multidimensional and all utilities considered are continuous,
then we are forced to have P(T) > 0 because all continuous preferences have
well-behaved indifference curves, so for any fixed utility function there will be
many points that are indifferent to each other. However, for any two specific
points, the probability that they will be indifferent could well still be zero.

1.7 ADDITIVE RANDOM UTILITY

There is an equivalent way of writing random utility, called additive random
utility (ARU). This involves writing Ũ(x) = v(x) + ε̃(x), where v : X → R

is a deterministic utility function, called the “representative utility” or “sys-
tematic utility” and ε̃ : � → R

X is a “random utility shock,” which is private
information of the agent.

ARU is the workhorse model in discrete choice econometrics, where the
focus is on estimating the function v based on observations of ρ. In game
theory, ARU is used as a model of smoothed best responses (Fudenberg and
Levine, 1998; Hofbauer and Sandholm, 2002).

If X is finite, then I will say that the distribution of ε̃ is smooth if it has
a density. For infinite X, it is smooth if for any menu A = {x1, . . . , xn} the
joint distribution of (ε̃(x1), . . . , ε̃(xn)) has a density. The following definition
is based on McFadden (1973).

Definition 1.11. ρ : A → �(X) has an additive random utility (ARU) rep-
resentation if it has an RU representation with Ũ(x) = v(x) + ε̃(x), where
v : X → R is deterministic and the distribution of ε̃ is smooth.

Note well that the distribution of ε̃ is independent of the menu: For each A
we just select the corresponding coordinates.

The smoothness assumption guarantees that we have a proper RU repre-
sentation, as it implies that ties occur with probability zero. It is worthwhile to
notice though that there are proper RU representations which are of the form
Ũ(x) = v(x)+ ε̃(x) where ε has a discrete distribution (take, for example, the
one constructed in the proof of (i) ⇒ (ii) in Proposition 1.9). McFadden’s
(1973) general definition does not require the existence of a density, but as
the following result shows, this assumption is without loss of generality. That
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is, even if we have a discrete distribution over utilities, we can “smoothify” it
without affecting the choice probabilities.

Proposition 1.12. If X is finite then ρ ∼ RU if and only if ρ ∼ ARU.

The construction used in the following proof shows that it is also without
loss of generality to assume that ε̃ has finite moments.

Proof. Let ρ ∼ ARU, then by definition ρ ∼ RU. Conversely, assume now
that ρ ∼ RU. By Proposition 1.9, there exists a probability distribution μ over
strict preferences P such that ρ(x, A) = μ(N(x, A)). Let n be the cardinality of
X and for any � ∈ P and i = 1, . . . , n let x�(i) denote the ith ranked element
of X.

Define v(x) = 0 for all x ∈ X. We need to find a probability measure P over
R

X such that P(A�) = μ(�) for each event of the type

A� = {ε ∈ R
X : ε(x�(1)) > ε(x�(2)) > · · · > ε(x�(n))}.

To do so, for each � take a probability measure with finite moments and
density γ� and support equal to the closure of A�, for example, a trun-
cated Normal probability distribution. Define our probability measure P by
its density

γ (·) =
∑

�∈P

μ(�)γ�(·).

This measure has finite moments and a density.

ARU representations derive their strength from several powerful parametric
special cases where the distribution of ε is i.i.d. The most predominant is the
extreme value distribution, which leads to logit.

Definition 1.13. ρ : A → �(X) has a logit representation if it has a ARU
representation where ε̃(x) are i.i.d. across x with the Type I Extreme Value
(TIEV) distribution, with CDF G(ε) = exp(− exp(−ε)).11

Another well-known model is probit, where the distribution of ε̃ is Normal.
We will look more at i.i.d. parameterizations in Chapter 3.

Often times it is assumed that the density in an ARU representation not
only exists, but is everywhere positive. This ensures that all items are chosen
with a positive probability (because arbitrarily large shocks can elevate even
dominated alternatives).

Axiom 1.14 (Positivity). ρ(x, A) > 0 for any x ∈ A.

This property is important since keeping all probabilities positive leads
to a nondegenerate likelihood function, which facilitates estimation of v.

11 TIEV, which is also known as the Gumbel distribution, is actually a whole class of distribu-
tions with mean and variance parameters. However, in economics TIEV typically means this
particular member of the family.
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Moreover, as argued by McFadden (1973), positivity cannot be refuted based
on any finite data set.12

There are two interpretations of ε: (1) preference heterogeneity that is
unobserved by the analyst (after conditioning on observable characteristics
of the agent), or (2) mistakes/errors on the part of the agent. The difference
between the interpretations is that in the first case the preference shocks are
embraced by the agent (her tastes do actually change from time to time), while
in the second case these shocks lead to choices that the agent disagrees with.
While in predictive applications of the static model the two interpretations are
largely equivalent, they differ when it comes to normative evaluations and have
different predictions for dynamic behavior.

A case that is somewhat in between the two is one of imperfect perception.
In the following example the agent sometimes makes mistakes, but they are
doing the best they can given their imperfect information. As we will see in
Chapter 5 this behavior is Bayes-optimal, so the shocks are embraced by the
agent (ex ante) despite sometimes leading to errors.

Example 1.15 (Law of Comparative Judgment). Recall Example 1.5 with
weight perception. Thurstone (1927) introduced the probit model to capture
such behavior. Suppose that for each weight x the agent forms a subjective,
imperfect, and random perception γ (x)+ ε̃(x), where γ is a strictly increasing
function (typically assumed to be logarithmic) and ε̃(x) ∼ N (0, σ 2

ε ) are i.i.d.
across x. Faced with items x and y, the agent chooses item x if γ (x) + εx ≥
γ (y)+ εy and chooses y otherwise. A simple calculation reveals that

ρ(x, y) = 


(
γ (x)− γ (y)

σε

√
2

)

.

Thus, Thurstone’s model leads to S-shaped psychometric functions. It is easy
to see that by setting γ (x) = log x the model explains diminishing sensitivity.
However, it does not explain frequency-dependence because the distribution
of ε is independent of the distribution of menus {x, y}.

Finally, the model cannot explain payoff-monotonicity either. This is
because γ (x) is not the payoff from choosing x, but instead a subjective per-
ception of x. The magnitude of the payoff for guessing correctly does not enter
Thurstone’s formula. One can view his model as “probit in perceptions” as
opposed to “probit in payoffs.”13 	

12 Positivity does not imply that ε has positive density (see Example A.1 in the Appendix). Li
(2021) shows how to strengthen Positivity to ensure that there exists a ARU representation
with positive density.

13 One could imagine a “probit in payoffs,” where it’s the payoffs that get distorted. Let v > 0 be
the payoff of guessing correctly. Then for x > y we have Ũ(x) = v + εx and Ũ(x) = 0 + εy.
This leads to payoff-monotonicity, but induces a psychometric function that is a step function
(as opposed to S-shaped), so we cannot capture the first two stylized facts. We will need a
more fancy model to capture all the stylized facts simultaneously.
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While in the most general case RU and ARU coincide, they can lead to very
different predictions if the utility is restricted to some specific family. Suppose
that our analyst has a theory that the utility function belongs to some class U .
RU and ARU suggest different approaches to building a stochastic model. We
can either randomize over utilities u ∈ U or fix a deterministic utility v ∈ U
and add stochastic ε̃, where which belongs to some class of distributions E .
As we saw before, with U and E unrestricted, these two approaches lead to the
same class of ρ. But when U and E have more structure, often the two induced
classes of ρ are disjoint because v+ε does not belong to U . We will see several
instances of this: In Chapter 4, we will show that ARU with i.i.d. ε leads to
“unreasonable” comparative statics in the risk aversion parameter. In Chapter
8, we will show it leads to “unreasonable” option value. In Chapter 10, we will
see that it leads to “unreasonable” patterns of substitution.

1.8 SOCIAL SURPLUS

Our analyst often wants to evaluate the agent’s welfare. Under RU the natural
way to do this is to set

V(A) := E

[

max
x∈A

Ũ(x)

]

.

This function captures the expected utility from the best item in the menu.
McFadden (1973) called it the social surplus.14

This function is key for dynamic optimization, where the agent evaluates
how their current actions impact their own future welfare (Chapters 8 and 12).
It also enters into nested logit, where decisions are similarly made in stages
(Section 3.4).

Under ARU, we have

V(A) := E

[

max
x∈A

v(x)+ ε̃(x)

]

.

This formula makes sense only if we interpret ε as unobservable preference
shocks. If we think of them as decision errors of the agent, then there is no
reason for them to enter welfare. In this case, it may be more appropriate to
treat them as just driving behavior, but evaluate welfare using the undistorted
preferences. For example, a formula a la Strotz (1955) would look like:

V(A) =
∑

x∈A

v(x)ρ(x, A).

A theory of stochastic choice along these lines has been developed by Ke
(2018).

14 This should be called “consumer surplus” because the social surplus also includes the firms.
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