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THETA FUNCTIONS AND MODULAR JETS

H. D. FEGAN(1)

I. Introduction

Let Γ be a subgroup of the modular group PSL(2,Z) then Γ acts
on the upper half plane H = {z e C: Im z > 0} and we can form the
Riemann surface M = H/Γ, see [3]. The complex line bundles on a
Riemann surface M form a group H\M, Θ*), see [4], and whenever we
raise a line bundle to a power it will be in this group. Let K denote
the canonical bundle on M then a modular form of weight v is a sec-
tion of the bundle $v. A modular w-jet is then a section of 3n{κlv)
the w-th jet bundle, see [7]. We can reformulate these ideas in the fol-
lowing terms. A modular form can be viewed as a function φ: H -> C
and a modular w-jet as a vector valued function φ: H-»Cn+ί both of
which satisfy a transformation law under the elements of Γ.

By a theta function we shall mean a function of the form θf{z)
= 27*02) exp (iπ\\λ\\2z) where the summation is over those λ lying in a
lattice LcR\ f is a polynomial in t variables and θf:H-+C is a func-
tion on the upper half plane. We shall restrict ourselves to the case
when L — Z* is the standard integer lattice and / is homogeneous of
degree 2n. By using the Fourier transform and Poisson summation
formula we can express θf(—l/z) as a sum of terms aj(z)θfj(z) for some
polynomials fj. This process can be iterated, applying it to θfj, and so
we obtain a vector valued function (θf(z),θf.(z), •••) which has a trans-
formation law under the map 2—> —1/2. Here the vector has possibly
infinitely many entries. In fact this iteration produces no new theta
functions after the first stage. More precisely we define a vector valued
function θf(z) = (arθr(z)) where ϋf:H ->Cn+1 and the r-th co-ordinate is
arθr(z). In this {ar} is a set of suitable constants and θr(z) = θfr(z) with
essentially fn_r = Δrf. If Γ(θ) is the subgroup of PSL(2?Z) generated
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by z -»z + 2 and z —> — 1/z then the question arises how Θf behaves under
the group Γ{0). There is the following result.

THEOREM 1.1. The vector valued function θs(z) defines a modular
jet.

We have already mentioned that modular jets can be viewed as vec-
tor valued functions with a certain transformation law and that theta
functions give rise to vector valued functions with transformation
laws. This theorem essentially says that these two transformation laws
are the same. As a corollary of this we obtain immediately the well
known result.

COROLLARY 1.2. The theta function θf(z) is a modular form if and
only if f is harmonic. If f has degree 2n then this form has weight
\t + 2n and multiplier (—l)n.

This was proved in a special case by Hermite in 1858, see [2],
In their paper, see [6], Kuga and Shimura introduce the notion of

a vector valued modular form. There are some similarities between
their results and ours. In particular they obtain a decomposition for
the space &'n of cusp ilίn-forms. We describe our decomposition by
giving a commutative diagram. The following notation is used; let
θn = [θf: deg / = 2ri\, Sn = {θf e θn: / is harmonic} and let Jn be the set
of modular w-jets where all the functions have the form Σf(X) exp (iπ p||2 z)
on H.

THEOREM 1.3. The following diagram commutes

where the maps are as follows. The vertical map θn -> ®^=0 Sm is de-
fined by taking the decomposition into harmonic components of a poly-
nomial The map an is given by an(βf) = θf, the modular n-jet defined
by θf as in Theorem 1.1, and the maps j n _ m : Sm —> Jn.m are given by
taking (n — m) jets. To give the maps β% we use local co-ordinates and
then
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βn (0o> •••,&») = '(0, , 0, β™n-mφ0, , β?,»φm) for suitable constants

β™r. Precise details of these are given in section V.

This result arises because there are two ways of obtaining a modular
jet from a theta function. One way is to use the result of Theorem 1.1
directly and obtain a single modular w-jet. The other way is to de-
compose the polynomial of the theta function into harmonic pieces and
then take the jet of each theta function which by Corollary 1.2 is a
modular form. These must then be compared and the comparison is
carried out by the maps β£.

There are a number of differences between our result and that of
Kuga and Shimura. Firstly the types of modular forms are different.
In particular modular forms which are theta functions can under cer-
tain conditions, see [8], be written as the sum of an Eisenstein series
and a cusp form and so can be modular forms which are not cusp forms.
In addition the decomposition of [6] takes place in the space &n of cusp
Mn forms while our decomposition is carried out at an earlier stage,
that is in Θn.

The methods which are used here can be adapted and used to study
the heat equation on a Lie group. When we do this we obtain the
asymptotic expansion of the trace of the heat kernel and direct proof
of Kostant's form of Macdonald's ψίunctions, see [1] and [5].

II. Modular jets

We have indicated that a modular jet is a section of the %-jet bundle
Jn(κv) on H/Γ. However there are difficulties in taking the square root
of a line bundle which appear in our case since we shall require the
bundle **. Now when Γ = Γ(β) the Riemann surface H/Γ is homotopy
equivalent to a bouquet of circles, in fact the closed surface H/Γ is
the sphere S2. If ξ is a line bundle on M then there is a line bundle
η such that rf = ξ if and only if the Chern class C(ξ) is even. On the
closed Riemann surface S2 it is a fact that C(/t) = — 2, see [4], so the
bundle κh exists but κι does not. However when we are considering line
bundles on H/Γ then since H\H/Γ9Z) = 0 we have C(f) = 0 for all line
bundles and so we can find a line bundle A*. The difficulty here is that
these bundles are not unique. In general if M is a Riemann surface
of genus g then if C(ξ) is even there are 22g line bundles η such that
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γf — ξ. Thus on the closed surface H/I1 = S2 the square root of a line

bundle is unique but we cannot find all the roots which we require while

on the open surface H/Γ all square roots exist but these are not unique.

To deal with these difficulties we shall work with functions on H.

Let φ: H —> C be a modular form of weight v, so that φ(z + 2) = φ(z)

and φ(—l/z) = (z/i)vφ(z), with respect to Γ(θ). Notice that this is

equivalent to giving a section of a line bundle on H/Γ(θ) and when we

have to choose between different bundles we do this by specifying a sec-

tion of the bundle. Define the vector valued function φ: H —> Ck+1 by

(2.1) φ(z) = <(φ(z), φ'{z), . . . , φ«\z))

with φ(r)(z) = (d/dz)rφ(z). Equation (2.1) defines an injection ω:Jk(κiv)

—> Maps (ίf, Ck+1) by ω(jkφ(z)) = φ(z), jkφ{z) denoting the equivalence class

of functions having the same fc-jet at z as φ. By the definition of jet

bundles ω is independent of the choice of representative φ for jkφ. Define

a matrix A(z) = (ars(z)) for 0 < r, s < k, by

{v + s) (v + r - l)ir+s(z/i)v+r+s for r> s

(2.2) "rXz) = \ ^ m z / . y + 2 r f o r r = s

0 for r < s

where ίM is the binomial coefficient. Let S :z-+ —1/z and T: z —> z + 2

be generators of Γ(θ) and set M(S, z) = A(z) and M(T, z) — 1, the iden-

tity matrix. Since S and T generate Γ(θ) we have defined for each

zeH an action of Γiβ) on Cfc+1.

PROPOSITION 2.1. The vector valued function φ satisfies the trans-

formation law φ(γz) — M(γ,z)φ(z) for γeΓiθ).

Proof, We must show φ(γz) = M(γ, z)φ(z) for γ = S and γ = T.

This is clear for γ = T. For γ = S we must show

(r)(-l/s) = Σ f + β) (v + r -

which follows by induction and an elementary calculation, where r-th

( Λ, \ v+2r

— ) φ(r)(z).
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DEFINITION. Any vector valued function / : H —• Ck+ι satisfying the
transformation law f(γz) = M(γ, z)f(z) will be called a modular &-jet.

III. Theta functions

The classical theta function θ(z) = Σ exp (iπn2z) satisfies the trans-
formation laws

(3.1) β(z + 2) = θ(z) and θ(-l/z) = (z/i)*θ(z) .

Here the square root is chosen so that if z = i then (2/i)* = 1 and (z/i)*
is single valued for zeH. Equation (3.1) says that θ(z) is a modular
form of weight \ for Γ(0). We are interested in studying functions of
the form θf(z) = Σf(λ)eκp (iπ \\λ\\2 z) when / is a homogeneous poly-
nomial of degree 2n. Notice that the restriction deg / = 2n is not a
serious limitation since if / has odd degree then

Σf(λ) exp (iπ \\λ\\2 z) = Σf(-X) exp (iπ \\ -λ\\2 z) = -Σf(λ) exp (& ||jί||2 z) .

Thus ^/(̂ ) = —θf(z) and so ^(a;) = 0 when the degree of / is odd.
Changing notation replace / by fn and define /„_,(£) = Jsfn(ξ)/2ssl

where Δ = Σ(d/dξj)2 is the Laplacian and the indexing is chosen so that
deg/ r = 2τ. Let θr(z) — θfr(z) and let the constant ar be

ar = (2^ΐ)rr! (rc - r) ! v(v + 1) (v + r - 1) ,

with v =>\t. The vector valued function θf is defined by

θf(z) ='(

In the introduction in Theorem 1.1 we stated that θf gave rise to a
modular jet. This is now stated more precisely as

THEOREM 3.1. The vector valued function θf has the transforma-
tion law θfiγz) = M(γ, z)θf(z) for γ e Γ(θ) and M(γ, z) the same as in
Proposition 2.1.

Proof. Clearly θf(z + 2) = θf(z) and so the result is trivially true
for γ = T. To complete the proof we must investigate how θr(z) trans-
forms under S:z-*> —1/z. The method used to do this is to take
Fourier transforms and use the Poisson summation formula.

DEFINITION. If g e ¥, Schwartz space, the Fourier transform of g
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is g(ξ) = e2*ίξ'*g(x)dx. The Poisson summation formula is then

Σg(ξ) = Σg(n) .

To apply this we need the following result.

PROPOSITION 3.2. Let g(λ) — /O0exp(«rP||2z) then

where Jf is the operator

Proof. In the special case #U) = exp(iτr||Λ||22) an elementary calcu-
lation shows that

(3.2) g(ξ) = («/ί)-*' exp (~iττ ||f tf/z) .

Now let /U) = Σaaaλ
a using multi-indices and g(λ) = f(λ)exp(ίπ \\λ\\2 z)

then the Fourier transform is

(3.3) g(ξ) = ( 2 ^ ) - 2 ^ / i ) - i % α ϊ i -A-V exp (~iπ \\ξf/z) .

For convenience let u = —2πi/z. We now introduce the Hermite
polynomials with parameter tί and give some results about them.

DEFINITION. The fc-th Hermite polynomial with parameter u is
hk(x,u)— u-}cexiρ(--iux2)(d/dx)ίcexiρ(iux2). With this definition we can
write equation (3.3) in the form

g(ξ) = (2πir2%z/ir^u2nΣaaaha(ξ9n)exv(-iπ\\ξ\\2/z) .

In this the notation is interpreted so that if a — (alf , at) then ha(ξ, u)
= «̂i(f iyu) ' * β̂,(&> ̂ ) Thus we introduce the Hermite operator Jf on
polynomials so if f(X) = W then ^/(f) = Σaaaha(ξ, u). It is a fact,
which will be shown later, that

To complete the proof of Theorem 3.1 we apply the result of Proposi-
tion 3.2 and the Poisson summation formula to Θr(z). Recall that

exp (iπ \\λ\\2 z)βrr! .
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Hence

(3.4) θr(z) = (z/i)-^+*H-2rΣξ3nJn-rf(ζ)/2n-r(n - r)!) exp (-fo ||f \\2/z) ,

which upon substituting for Jί? gives

(3.5) (2πyθr(-l/z) = (z/W £ (n " SV--27r)s(z/ir*05(z) .

Now let ar = (2τri)rr! (w - r) ! v(v + 1) . (v + r - 1) with v = \l then if

θs{z) = tiflfβjfc)* ,αn0nGs)) we find from equation (3.5) that

where A(z) is defined in equation (2.2). This completes the proof of
Theorem 3.1.

COROLLARY 3.3. If f is a homogeneous polynomial of degree 2n
then θf(z) is a modular form if and only if f is harmonic and then this
form has weight 2n + \ί and multiplier (—l)w.

Proof. We apply equation (3.4) in the case r = n and we find that
θf(z) is a modular form if and only if / is an eigenvalue of ^ , in which
case θf is a modular form with weight 2n + \ί and multiplier (—ΐ)nc,
c being the eigenvalue corresponding to /. It follows from the defini-
tion of Jf that Jff = of if and only if c = 1 and / is harmonic. By
the multiplier of a modular form φ of weight v we mean the constant
C such that

IV. The Hermite operator

Recall the definition of the fc-th Hermite polynomial with parame-
ter u, hk(x9 u) = 2T*exp(—%ux2)(d/dx)k exipQux2). The results about
there are easily proved and so we shall leave many of the details to the
reader. The main result is the following.

LEMMA 4.1. hk(x, u) = Jf(xk) where jff = Σrά
rf/(2uYr\ with Δ

= (d/dx)2.

Proof. It is easy to show that hk(x, u) satisfies the recurrence rela-

tion
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(4.1) uhk+ι(x, u) = —h k (x, u) + xuhk(x, u) .
dx

Now ho(x, u) = 1 and h^x, u) — x so the result is trivially true for k = 0

and 1. The proof can be completed by showing that Jί?(xk) satisfies the

recurrence relation (4.1) and using induction.

Since the series defining ^f are exponential series we can apply this

lemma one variable at a time to obtain the result

LEMMA 4.2. Let #? denote the Hermite operator of the previous

section, that is Jf(Σaaaλ
a) = Σaaaha(ξ, u), then if f is a homogeneous

polynomial in & variables

This result was used in the previous section.

We also used the fact that the homogeneous polynomial eigenfunc-

tions of ^f were the harmonic polynomials and these have eigenvalue

c = 1. This follows most clearly when we consider how 3f is related

to the grading on the space V of polynomials. Let Vά be the subspace

of V given by Ys = {/ e V: deg f = j} Now jf preserves the associated

filtration but not the grading. More precisely we have the following

list of properties of Jf. The natural projections of V are denoted by
P y _> γ

PROPOSITION 4.3. The Hermite operator af:V->V satisfies the fol-

lowing.

a) ^(θ"=o Vj) c ®5=0 Vj for each k.

b) If fe V2j and g e V2j+ι then

0 if r is odd [0 if r is even .

c) ^Ί0y=o^,; is non singular for each k.

d) // / is symmetric so is

Proof. These all follow from elementary calculations which are left

to the reader.

The result about the eigenfunctions of JP is now stated in the fol-

lowing.

COROLLARY 4.4. Let f be a polynomial eigenfunction of jf so
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= Cf then C = 1 and if deg / = n so f = Jn + Λ-i + + /o wftere

fj is homogeneous of degree j then fά is harmonic.

Proof. This follows by applying Proposition 4.3 to each of the com-

ponents of / in turn, starting with the highest fn.

V. The decomposition theorem

In this section we shall prove Theorem 1.3. To begin we define

the spaces we are considering Θn = {θf: f is homogeneous of degree 2ri\,

Sn = {θf eθn: f is harmonic} and Jn = {θf: θf eθn}. The result we shall

prove is then

THEOREM 5.1. The following diagram commutes

0 Sm ^ ^ • 0 Jn_m
m = 0 m-0

In this the map an is given by an(θf) = θf. The vertical map θn

—* ©m=o Sm comes from the harmonic decomposition of / more precisely

if f(X) = Σr2(n-m)gm(X) where r2 = iπ\\λ\\2 and gm is harmonic and homo-

geneous of degree 2m then θf(z)-* ΣΘQm(z). The maps j m are defined by

tak ing ra-jets so iegm(z)->Ijn_megm(z) where jmφ = '(φ,φ', •• ,φim)). I t

only remains to define the map β%: Jm-> Jn. Let

Ωm (2πi)nm! 81 v(v + 1) . 0 + 2n - m - 1)
p = —(s — n + m)! (v + s) (v + n + s — m — 1)

where as before v — \ί then

βniφoy ' - ' , φ m ) = * ( 0 , ' , 0 , β™,n-τnφ*> ' " f βn,nφm)

The proof of Theorem 5.1 is essential a direct calculation. We shall

indicate the main steps in this and leave the details to the reader.

Firstly observe that it is sufficient to prove the result in the case f(X)

_. r2in~m)gm(λ) when the result becomes

Uf\Z) = pn Jn-mUgm\z)

This is sufficient since ocn(θf+g) = anθf + anθg and θf+g = θf + θg. Next
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observe that there is the formula

Δr2kgm = 2πίk(4m + 2k + I - 2)r2k~2gm ,

where gn is a harmonic polynomial homogeneous of degree 2m. This
formula is a consequence of Euler's theorem from elementary analysis,
namely Λ grad gm = 2mg(λ). The coefficients /J£. of the map β% were
chosen to make the diagram commute and this can be checked directly
by using the above two facts.

REFERENCES

[ 1 ] H. D. Fegan, The heat equation and modular forms, J. Diff. Geom., to appear.
[ 2 ] Ch. Hermite, Quelques formules realtives a la transformation des functions ellip-

tiques, J. Math. Pures AppL, 3 (1858), 26-36.
[ 3 ] R. C. Gunning, Lectures on modular forms, Princeton University Press, Prince-

ton, 1962.
[ 4 ] , Lectures on Riemann surfaces, Princeton University Press, Princeton, 1967.
[ 5 ] B. Kostant, On Macdonald's 17-function formula, the Laplacian and generalized

exponents, Advances in Math., 20 (1976), 179-212.
[ 6 ] K. Kuga and G. Shimura, On vector differential forms attached to automorphic

forms, Jap. Math. Soc, 12 (1960), 258-270.
[ 7 ] R. S. Palais, Introduction to global non-linear analysis, Benjamin, New York, 1968.

1968.
[ 8 ] J. P. Serre, A course in arithmetic, Springer-Verlag, New York, 1973.

Rice University

https://doi.org/10.1017/S0027763000018213 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000018213



