
Mathematical Structures in Computer Science (2022), 32, pp. 44–110
doi:10.1017/S0960129522000160

PAPER

The role of linearity in sharing analysis
Gianluca Amato , Maria Chiara Meo and Francesca Scozzari∗

University of Chieti–Pescara, Pescara, Italy
∗Corresponding author. Email: francesca.scozzari@unich.it

(Received 12 May 2021; revised 30 December 2021; accepted 10 May 2022; first published online 14 June 2022)

Abstract
Sharing analysis is used to statically discover data structures which may overlap in object-oriented pro-
grams. Using the abstract interpretation framework, we show that sharing analysis greatly benefits from
linearity information. A variable is linear in a program state when different field paths starting from it
always reach different objects. We propose a graph-based abstract domain which can represent aliasing,
linearity, and sharing information and define all the necessary abstract operators for the analysis of a
Java-like language.

Keywords: Sharing analysis; linearity; aliasing; object-oriented programming

1. Introduction
In the context of static analysis of object-oriented programs, the aim of sharing analysis is to
discover when two data structures may overlap. For instance, this may happen in Java programs,
whose objects are stored in a shared memory called heap. Sharing information can be exploited
in program parallelization and distribution, since methods working on data structures that do
not overlap can be executed on different processors, using disjoint memory. Moreover, knowing
sharing information is very useful for improving other kinds of analyses like shape, pointer, class,
and cyclicity analysis.

Consider a class Tree with two fields l and r defined as follows:
class Tree { Tree l; Tree r; }

A concrete state in an object-oriented program is usually described by a frame, which is a map
from program variables to memory locations (or null), and a memory, which is a map from
locations to objects. Figure 1 shows two states with two variables x and y referring to two different
objects of class Tree. In the state of Figure 1A, the variables x and y share, since x.r.r.r and y.l.l
point to the same object.

Traditionally, sharing analysis has been designed in two different ways: set-sharing analysis and
pair-sharing analysis. In set-sharing analysis, we look for sets of variables which share a common
object, while in pair-sharing analysis we are only interested in discovering pairs of variables which
share. In this paper, we deal with field-sensitive pair-sharing properties.

We abstract concrete states into a new kind of graph we call Aliasing Linearity Pair Sharing
(ALPS) graph. For instance, the state in Figure 1A is abstracted into the ALPS graph in Figure 1A
where the dotted edges between two nodes encode the information that they share. All ALPS
graphs have at most two levels. The first level consists of nodes which are labeled with program
variables and may have both incoming and outgoing edges. Second level nodes are unlabeled, are

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160
https://orcid.org/0000-0002-6214-5198
https://orcid.org/0000-0002-2105-4855
mailto:francesca.scozzari@unich.it
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129522000160&domain=pdf
https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 45

(a) (b)

Figure 1. Two concrete states illustrating pair sharing.

connected by at least an incoming edge with first level nodes, and cannot have outgoing edges.
Edges are labeled with field names. Dotted edges encode sharing information and can connect
two nodes at any level.

As it is customary in the abstract interpretation theory (Cousot and Cousot 1977, 1992), the
correspondence between ALPS graphs and concrete states is given by a concretization function
that maps each graph to the set of all concrete states it abstracts. In this section, we try to describe
the main feature of ALPS graphs while remaining at an informal level. Precise definitions will be
given in the next sections.

1.1 Field-sensitive pair-sharing information
Sharing properties for logic programs has been studied extensively. The large literature on this
topic and the paper by Secci and Spoto (2005a) on object-oriented programs have been the starting
point for designing our abstract domain for sharing analysis.

We say that two locations share when it is possible to reach from them a common location.
Consider the concrete state depicted in Figure 1A. Here x and y are bound to two different data
structures which overlap, since x.r.r.r and y.l.l are bound to the same object: we say that x and
y share. In the abstract graph, we represent this information with an (undirected) dotted edge
between the two nodes. For instance, the sharing information in Figure 1A is captured by the four
dotted edges in Figure 2A. In the following, in order to keep the graphs as simple as possible, we
omit those dotted edges which can be inferred by other features of the graph. In this case, the only
nonredundant edge is the one between x.r and y.l, as shown in Figure 2B.

Note that our graphs encode possible pair-sharing information: the presence of a dotted edge
means that the corresponding locations might share, while the absence of the dotted edge means
that the corresponding locations do not share for sure. Therefore, the graphs in Figure 2 are cor-
rect abstractions also for the concrete state in Figure 1B, although x.r and y.l do not share in the
latter.

1.2 Aliasing and nullness
ALPS graphs may encode definite nullness of variables and fields: a variable is null when it does not
appear as a label, while a field v.f is null when there is no edge labeled with f departing from the
node v. For example, in Figure 4 the field v1.r is null. Definite nullness means that when a node

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

46 G. Amato et al.

(a) (b)

Figure 2. Abstractions of the concrete states in Figure 1.

(a) (b) (c)

Figure 3. Three concrete states illustrating nullness and aliasing.

Figure 4. Abstraction of the concrete states in Figure 3. Both v1 and v2 are first level nodes,
even if there is an edge pointing to v1.

is null in the graph, then it has to be null in the corresponding concrete states, but the converse
is not true. For example, all the graphs in Figure 3 are correctly abstracted by Figure 4, since in
all of them v1.r is null, although v2.r is null in some states (Figure 3B and C) but not in others
(Figure 3A).

The graph also encodes definite weak aliasing: two variables or fields are weakly aliased when
they point to the same location or they point both to null. For instance, the variable v1 and the
field v2.l in the concrete state of Figure 3A are aliased, since they are bound to the same object.
ALPS graphs encode aliasing information by using a single node for abstracting both variables/-
fields. For example, in Figure 4, the same node is labeled by both v1 and the v2.l (more precisely,
the node v1 is reached by the edge labeled l departing from the node v2). Note that, due to the
definition of weak aliasing, v1 and v2.l are considered to be aliased even in the concrete state of
Figure 3C, hence Figure 3C is still correctly abstracted by Figure 4. Another example is in Figure 5.

We use the adjective weak to distinguish our treatment of aliasing by other proposals which
consider two identifiers to be aliased only if they point to the same non-null location (see, e.g.,
Pollet et al. 2001).

1.3 Linearity information
In the field of logic programming, the use of a linearity property has proved to be very useful
when dealing with sharing information (see Bagnara et al. 2005 for a comprehensive evaluation).
We show how the same idea can be reused to enhance sharing analysis of object-oriented pro-
grams. We propose a new combined analysis of sharing, aliasing, and linearity properties for

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 47

(a) (b)

Figure 5. Concrete and abstract states illustrating aliasing.

Figure 6. A concrete state illustrating nonlinearity.

Figure 7. Abstraction of the concrete state in Figure 6.

Java-like programs based on abstract interpretation, inspired by the corresponding domains on
logic programs.

We say that a location is nonlinear when there are two different paths starting from it and
reaching a common location. Consider for instance Figure 6. Starting from v5.r, we reach the
same object by either v5.r.r.l.r or v5.r.r.r.l. Therefore, we say that v5.r is nonlinear. It is easy
to note that also v5 is nonlinear. In general, whenever a field v.f is nonlinear, the variable v is
nonlinear too. We represent possible nonlinearity information by means of a double circle. For
instance, the concrete state for variables v5 and v6 in Figure 6 is abstracted as in Figure 7.

1.4 An example program
Linearity plays a key role in sharing analysis, since it allows us to propagate precise sharing infor-
mation when dealing with method calls. We show how the analysis works and the relevance of
linearity information with the help of the example program in Figure 8.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

48 G. Amato et al.

Figure 8. The example program.

(a) (b)

Figure 9. Two ALPS graphs for the example program.

We consider again the class Tree previously defined. The method makeTree defined in
Figure 8 (left) builds a complete tree of depth n, whose nodes are all distinct. Actually, with
a bottom-up static analysis using ALPS graphs, we can easily infer that, for any input n≥ 2,
makeTree returns a data structure which may be described by the graph in Figure 9A, where
the label out denotes the return value of the method. Since there are no undirected dotted edges
between out.l and out.r, it means that out.l and out.r do not share. Moreover, since there are
no double circles, everything is guaranteed to be linear. The latter property implies that, in any
concrete state approximated by the ALPS graph in Figure 9A, two different fields of the same
object can never share. In particular, we know that out.l.l and out.l.r do not share.

The useTree method in Figure 8 (right) calls makeTree and extracts two subtrees which do
not share. In detail, in the useTree method, since we know that t is linear, we can infer that tl is
linear too. Since tl is linear, its fields tl.r and tl.l do not share, and therefore right and left
do not share. Note that linearity of t is not needed to prove that t.l and t.r do not share (sharing
is enough for this). We need linearity when we want to go deeper and prove that t.l.l and t.l.r
do not share. Linearity of t is essential here in proving that left and right do not share. The
heap at the end of the useTree method may be described by the graph in Figure 9B.

Due to the interaction between sharing and linearity, different ALPS graphs may represent
the same set of concrete states. For example, adding a dotted edge between out.l and out.r in
Figure 9A does not allow them to share, since that would violate the linearity of out. In Section 5,
we will introduce a closure operator on graphs to deal with these interactions.

1.5 Plan of the paper
The rest of the paper is organized as follows. Section 2 summarizes the notations used through the
paper and describes our simple Java-like language. Section 3 defines the basic notions of reach-
ability, sharing, linearity, and aliasing. In Section 4, we introduce the domain of aliasing graphs,
which encodes weak aliasing for variables and fields. Then, in Section 5 we enrich aliasing graphs

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 49

with information regarding sharing and linearity, obtaining what we call ALPS graphs. Section 6
defines an abstract semantics (analysis) over ALPS graphs and states its correctness. Section 7 con-
tains a discussion about related work and Section 8 concludes. Appendix A contains all the proofs
of the properties and theorems in the paper.

This paper is an extended and revised version of Amato et al. (2015). With respect to the con-
ference version, this paper includes: (1) definitions for all the operators used in the abstract and
concrete semantics; (2) the notion of graphmorphism and closure; (3) all the proofs; and (4) many
new examples.

2. Preliminaries
2.1 Notations
We use a special notation for ordered pairs. The two components of an ordered pair are separated
by �. A definition of a pair s= a � b silently defines the pair of selectors s.a and s.b.

A total (partial) function f from A to B is denoted by A→ B (A� B, respectively). Given f :
A� B and x ∈A, we write f (x)=⊥ when f is undefined on x. The composition of functions f
and g is denoted by f ◦ g. The domain and range of f are, respectively, dom (f) and rng (f). We
denote by [v1 �→ t1, . . . , vn �→ tn] the function f such that dom (f)= {v1, . . . , vn} and f (vi)= ti
for i= 1, . . . , n. We denote by f [w1 �→ d1, . . . ,wm �→ dm] an update of f , with a possibly enlarged
domain. By f |s (f |−s), we denote the restriction of f to s⊆ dom (f) (to dom (f) \ s, respectively).

Given a set X, we denote by P(X) the powerset of X and with P2(X) those subsets of X of
cardinality 1 or 2. Given f :A� B, Y ∈P(B) and Z⊆P2(B), we denote by f−1(Y)= {a ∈A |
f (a) ∈ Y} and f−1(Z)= {{a, a′} ∈P2(A) | {f (a), f (a′)} ∈ Z}.

For an ordered set S �≤, if s ∈ S, then ↓ s= {s′ ∈ S | s′ ≤ s} is the downward closure of S. For a
preordered set S �≤, we say that s1, s2 ∈ S are equivalent, and we write s1 ∼ s2, when s1 ≤ s2 and
s2 ≤ s1. The set S/∼ of equivalence classes modulo ∼ is ordered by [s1]≤ [s2] iff s1 ≤ s2. We will
freely use preordered sets in the place where ordered sets are expected, implicitly referring to the
induced ordered set.

We recall now the basics of abstract interpretation fromCousot andCousot (1977, 1992). Given
two posets C �≤ and A �� (the concrete and the abstract domain), a Galois connection is a pair
of monotonic maps α : C �→A and γ :A �→ C such that γ ◦ α is extensive and α ◦ γ is reductive.
It is a Galois insertion when α ◦ γ is the identity map, that is, when the abstract domain does not
contain useless elements. This is equivalent to α being onto, or γ one-to-one.

We say that a ∈A is a correct approximation of c ∈ C when α(c)� a or, equivalently, c≤ γ (a).
An abstract operator f A :An �→A is correct w.r.t. f : Cn→ C if, given a1, . . . , an correct abstrac-
tions of c1, . . . , cn, we have that f A(a1, . . . , an) is a correct abstraction of f (c1, . . . , cn). This
is equivalent to f (γ (a1), . . . , γ (an))≤ γ (f A(a1, . . . , an)) for every tuple a1, . . . , an of abstract
objects.

2.2 The language
We use the Java-like object-oriented language defined by Secci and Spoto (2005a), which is a
normalized version of Java with downward casts, and which we extend with upper casts. The
details of the concrete semantics first appeared in a long version of the above paper (Secci and
Spoto 2005b) which is unpublished. Here we present the semantics for the sake of completeness.

2.2.1 Syntax
Each program has a set of identifiers Ide and a finite set of classes (or types)K ordered by a subclass
relation ≤ such that K �≤ is a poset. The set Ide includes the special identifiers this, res, out.
Since we do not allow multiple inheritance, for any class κ ∈K , the set {κ ′ | κ ′ ≥ κ} is a chain. In
the following, we assume that Ide and K have been fixed beforehand.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

50 G. Amato et al.

We use type environments to describe the identifiers in scope in a given program point. A
type environment is a map from a finite set of identifiers to the associated class. The set of type
environments is

TypEnv= {τ : Ide�K | dom (τ) is finite}.
We call variables the identifiers in dom (τ). Any class κ ∈K defines a type environment, also
denoted by κ , whichmaps the fields of κ (including both the fields defined in κ and those inherited
by the superclasses) to their types.

We require that fields cannot be redefined in subclasses. It means that if f ∈ dom (κ) and κ ′ ≤
κ , then f ∈ dom (κ ′) and κ ′(f)= κ(f). For consistency of notation, we write κ .f in place of κ(f)
for the type of the field f in the class κ .

Finally, we require the existence of a class� with no fields which is the common ancestor of all
other classes.

In the examples, we will describe the set of classes and the corresponding type environment
using a notation inspired by class definitions in Java.

Example 1. Classes in the example program in Section 1.4 may be described by the following
Java-like syntax:

class Tree { Tree l; Tree r; }
class Integer { }

Formally, we have K = {�, Tree, Integer} with a flat ordering. Moreover, Tree= [l �→
Tree, r �→ Tree] and Integer= [].

Expressions and commands are normalized versions of those in Java. Their syntax is the
following:

exp ::= null κ | new κ | v | v.f | (κ)v | v.m(v1, . . . , vn)
com ::= v := exp | v.f := exp | {com; · · · ;com}

| if v= w then com else com | if v= null then com else com

where κ ∈K , f ∈ Ide and v,w, v1, . . . , vn ∈ Ide \ {res} are distinct when they appear in the same
clause. Each method κ .m of a class κ is defined with a statement like

κ0 m(w1:κ1, . . . ,wn:κn) with wn+1:κn+1, . . . ,wn+m:κn+m is com

where w1, . . . ,wn,wn+1, . . . ,wn+m ∈ Ide are distinct and are not res nor this nor out. Their
declared types are κ1, . . . , κn, κn+1, . . . , κn+m ∈K , respectively. Variables w1, . . . ,wn are the for-
mal parameters of the method, and wn+1, . . . ,wn+m are its local variables. The method can
also use a variable out of type κ0 which holds its return value. We define body(κ .m)= com
and returnType(κ .m)= κ0. Overriding methods cannot change the formal parameters but may
specialize the return type.

Given a type environment τ , with an abuse of notation we denote with τ (exp) the static type of
an expression exp, defined as follows:

τ (v.f)= τ (v).f τ (new κ)= τ (null κ)= τ ((κ)v)= κ
τ (v.m(v1, . . . , vn))= returnType(τ (v).m).

Note that the static type of a field of class κ is recovered from the definition of κ , while the static
type of the return value of a method call is the return type of the method.

We require expressions, commands, and methods to be well-typed, according to the standard
definition in Java. We also require that all casts are explicit, so that in any assignment v := exp
(resp. v.f := exp) the types of v (resp. v.f) and exp coincide. The same is required for formal and
actual parameters. This is not a limitation since we allow upward and downward casts.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 51

Figure 10. A concrete state with variables v7, v8.

Figure 11. Abstraction of the concrete state in Figure 10.

2.2.2 Semantics
The semantics of the language is defined by means of frames, objects, and memories defined as
follows:

Frameτ = {φ | φ ∈ dom (τ)→ Loc∪ {null}}
Obj= {κ � φ | κ ∈K , φ ∈ Frameκ}

Memory= {μ ∈ Loc�Obj | dom (μ) is finite}
where Loc is an infinite set of locations. A frame binds identifiers to locations or null. A memory
binds such locations to objects, which contain a class tag and the frame for their fields. A new
object of class κ is new(κ)= κ � φ, with φ(v)= null for each v ∈ dom (κ).

Example 2. Let τ = [v7 �→ Tree, v8 �→ Tree] and consider the state depicted in Figure 10, whose
abstraction is in Figure 11. We have that φ = [v7 �→ l0, v8 �→ l1] and

μ= [l0 �→ Tree � [l �→ l2, r �→ l3], l1 �→ Tree � [l �→ l4, r �→ null],
l2 �→ Tree � [l �→ null, r �→ null], l3 �→ Tree � [l �→ null, r �→ l5],
l4 �→ Tree � [l �→ l6, r �→ null], l5 �→ Tree � [l �→ null, r �→ l7],
l6 �→ Tree � [l �→ l7, r �→ null], l7 �→ Tree � [l �→ null, r �→ null]] .

Our language is strongly typed, which means that the static type of an expression should be
consistent with its runtime type. We formalize here the notion of type correctness for a frame and
a memory.

Definition 3 (Types of locations). Let φ ∈ Frameτ , μ ∈Memory, and l ∈ dom (μ), we write τ (l)=
μ(l).κ for the runtime type of location l.

If v is a variable, the object associated with v should be of a subtype of the static type of v. This
leads to the definition of weak correctness:

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

52 G. Amato et al.

Definition 4 (Weak τ -correctness). Let φ ∈ Frameτ andμ ∈Memory. We say that φ � μ isweakly
τ -correct if for every v ∈ dom (φ) such that φ(v) �= null we have φ(v) ∈ dom (μ) and τ (φ(v))≤
τ (v).

We strengthen the correctness notion of Definition 4 by requiring that it also holds for the
fields of the objects in memory.

Definition 5 (τ -correctness). Let φ ∈ Frameτ and μ ∈Memory. We say that φ � μ is τ -correct
and write φ � μ : τ , if

(1) φ � μ is weakly τ -correct and,
(2) for every o ∈ rng (μ), o.φ � μ is weakly o.κ-correct.

We call state a pair φ � μ which is τ -correct for some type environment τ . The set of τ -correct
states is

�τ = {φ � μ | φ ∈ Frameτ , μ ∈Memory, φ � μ : τ }.
Example 6 (Noncorrect state). Let τ ∈ TypEnv= [u �→ Tree, v �→ Tree,w �→ Integer], φ ∈
Frameτ = [u �→ l0, v �→ null,w �→ l1] and μ ∈Memory such that μ(l1)= Integer � [] and
μ(l0)= Tree � [l �→ l0, r �→ l1]. This may be depicted graphically as follows:

Tree
l r

null Integer

u v w

It turns out that φ � μ is weakly τ -correct, but it is not τ -correct, since the right child of u points
to an integer node instead of a tree node.

The semantics of an expression is a partial map E I
τ �exp� :�τ ��τ+exp from an initial to a

final state, containing a distinguished variable res holding the value of the expression, where
τ + exp= τ [res �→ τ (exp)].

Definition 7 (Semantics of expressions). Let τ describe the variables in scope and I be an
interpretation. The semantics for expressions E I

τ �exp� :�τ ��τ+exp is defined as

E I
τ �null κ�(φ � μ)= φ[res �→ null] � μ
E I
τ �new κ�(φ � μ)= φ[res �→ l] � μ[l �→ new(κ)] with l ∈ Loc \ dom (μ)

E I
τ �v�(φ � μ)= φ[res �→ φ(v)] � μ

E I
τ �v.f�(φ � μ)=

{
φ[res �→ φ(v).f] � μ if φ(v) �= null
⊥ otherwise

E I
τ �(κ)v�(φ � μ)=

⎧⎪⎨⎪⎩
φ[res �→ φ(v)] � μ if φ(v)= null or

φ(v) �= null and {τ (φ(v)), κ} is a chain
⊥ otherwise

E I
τ �v.m(v1, . . . , vn)�(φ � μ)=

{
φ[res �→ φ′(out)] � μ′ if φ(v) �= null
⊥ otherwise

with φ′ � μ′ = I(τ (v).m)(σ †) and σ † = [this �→ φ(v),w1 �→ φ(v1), . . . ,wn �→ φ(vn)] � μ.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 53

The semantics of a command is a partial map from an initial to a final state: C I
τ �com� :�τ �

�τ . We assume that τ in both E I
τ �_� and C I

τ �_� does not contain the variable res.

Definition 8 (Semantics of commands). Let τ describe the variables in scope, I be an interpretation
and

setVarvτ = λ(φ � μ) ∈�τ .φ|−res[v �→ φ(res)] � μ

setFieldv.fτ = λ(φ � μ) ∈�τ .
{
φ|−res � μ[l �→μ(l)[f �→ φ(res)]] if φ(v)= l �= null
⊥ otherwise.

The semantics for commands C I
τ �com� :�τ ��τ is defined as

C I
τ �v := exp�= setVarvτ+exp ◦ E I

τ �exp�
C I
τ �v.f := exp�= setFieldv.fτ+exp ◦ E I

τ �exp�
C I
τ

�
if v= w then com1

else com2

�
(φ � μ)=

{
C I
τ �com1�(φ � μ) if φ(v)= φ(w)

C I
τ �com2�(φ � μ) if φ(v) �= φ(w)

C I
τ

�
if v= null then com1

else com2

�
(φ � μ)=

{
C I
τ �com1�(φ � μ) if φ(v)= null

C I
τ �com2�(φ � μ) if φ(v) �= null

C I
τ �{com1; . . . ;comp}�= (λσ ∈�τ .σ) ◦C I

τ �comp� ◦ · · · ◦C I
τ �com1�.

The identity function λσ ∈�τ .σ in the semantics of the sequence of commands is needed when
p= 0.

Each method κ .m is denoted by a partial function from input to output states and an interpre-
tation I maps methods to partial functions on states, such that I(κ .m) :�input(κ .m) ��output(κ .m),
with the type environments:

input(κ .m)= [this �→ κ ,w1 �→ κ1, . . . ,wn �→ κn]
output(κ .m)= [out �→ κ0,w′1 �→ κ1, . . . ,w′n �→ κn] and
scope(κ .m)= input(κ .m)∪ output(κ .m)

∪ [wn+1 �→ κn+1, . . . ,wn+m �→ κn+m]

where w′1, . . . ,w′n are fresh variables used to keep track of the actual parameters. Each w′i is auto-
matically assigned to the same value of the corresponding wi at the beginning of the method
execution, and it is never changed later.

Example 9. Consider the method makeTree in Section 1.4. We have that

input(Tree.makeTree)= [this �→ Tree, n �→ Integer]
output(Tree.makeTree)= [out �→ Tree, n′ �→ Integer]
scope(Tree.makeTree)= input(Tree.makeTree)∪ output(Tree.makeTree)∪ [m �→ Integer].

The denotational semantics of a program is the least fixpoint of a transformer on interpretations
which maps an interpretation I into a new interpretation I′ evaluating the bodies of the methods
in I from an input state where local variables are bound to null. If κ .m is defined as

κ0 m(w1:κ1, . . . ,wn:κn) with wn+1:κn+1, . . . ,wn+m:κn+m is com

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

54 G. Amato et al.

we have

I′(κ .m) = (λφ � μ ∈�scope(κ .m). φ|dom (output(κ .m)) � μ) ◦ C I
scope(κ .m)�body(κ .m)�◦

(λφ � μ ∈�input(κ .m). φ[out �→ null,w′1 �→ φ(w1), . . . ,w′n �→ φ(wn),
wn+1 �→ null, . . . ,wn+m �→ null] � μ) .

3. Reachability, Sharing, Linearity, and Aliasing
We formalize here the concepts of reachability, sharing, linearity, and aliasing for objects. In a
later section, we will use these concepts to introduce the new abstract domain ALPS. The following
definition will simplify notation later.

Definition 10 (Fields of locations). Given σ = φ � μ ∈�τ , l ∈ dom (μ), f an identifier and f̄=
f1, . . . , fn a possibly empty sequence of identifiers, when they exist we write

• l.f for μ(l).φ(f), the location reachable from l through the field f;
• l.f̄ for l.f1.fn; if f̄ is empty, l.f̄= l.

Every time we use these notations, we implicitly require that the conditions guaranteeing their
existence are satisfied. The following proposition states very simple results relating types and
states.

Proposition 11. Given σ = φ � μ ∈�τ , f an identifier and l, l′ ∈ dom (μ), then:

(1) l.f exists iff τ (l).f exists;
(2) if l.f exists and l.f �= null, then τ (l.f)≤ τ (l).f.

These properties essentially derive from the τ -correctness of σ . In particular, (2) means that
the actual type of the object pointed to by a field is a subtype of the formal type of the field.

Definition 12 (Sharing and linearity for locations). Given σ = φ � μ ∈�τ and l1, l2 ∈ dom (μ),
we say that:

(1) l1 and l2 share in σ when there are f̄1, f̄2 such that l1.f̄1 = l2.f̄2 �= null;
(2) l1 is nonlinear in σ when there are f̄1 �= f̄2 such that l1.f̄1 = l1.f̄2 �= null; otherwise, l1 is

said to be linear.

Note that, for any location l ∈ dom (μ), we have that l shares with itself.

Example 13. Consider the state σ = φ � μ in Example 2. We have that l0 and l1 share in σ , since
l0.r.r.r= l1.l.l.l= l7, while l2 and l4 do not share. Moreover, all the locations are linear.

If l.f= l′ it means that l′ is reachable from l. If we ignore the field f, we obtain the standard
notion of reachability.

Definition 14 (Reachability relations). Given σ = φ � μ ∈�τ and l, l′ ∈ dom (μ), we write

• l−→σ l′ iff there is a field f such that l′ = l.f;
• l ∗−→σ l′ iff there is a sequence of fields f̄ such that l′ = l.f̄.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 55

Moreover, we denote by RLocσ (l)= {l′ ∈ dom (μ) | l ∗−→σ l′} the set of locations reachable from l ∈
dom (μ). By convention, we assume RLocσ (l)=∅ for l /∈ dom (μ).

Example 15. Consider the state σ = φ � μ in Example 2. We have that:
RLocσ (l0)= {l0, l2, l3, l5, l7} RLocσ (l4)= {l4, l6, l7}
RLocσ (l1)= {l1, l4, l6, l7} RLocσ (l5)= {l5, l7}
RLocσ (l2)= {l2} RLocσ (l6)= {l6, l7}
RLocσ (l3)= {l3, l5, l7} RLocσ (l7)= {l7}

Using reachability we may give an alternative characterization of sharing between locations.

Proposition 16. Given σ = φ � μ ∈�τ and locations l1, l2 ∈ dom (μ), we have that l1 shares with
l2 iff RLocσ (l1)∩ RLocσ (l2) �= ∅.

An analogous characterization for linearity is not possible, since we need to discern among
different ways of reaching the same location.

Using reachability, we refine our definition of interpretation, by requiring that a method
does not access locations L of the input state which are not reachable from the actual parame-
ters. Programming languages such as Java and that of Section 2.2 satisfy these constraints. This
restriction will let us prove the correctness of method calls in the abstract semantics.

Definition 17 (Interpretation). An intepretation I maps methods to partial functions on
state, that is, I(κ .m) :�input(κ .m) ��output(κ .m), in such a way that if I(κ .m)(φ � μ)= φ′ � μ′
and L= dom (μ) \ (⋃{RLocσ (φ(v)) | v ∈ dom (input(κ .m))}) then μ|L =μ′|L, φ′(out) �∈ L and⋃{rng (μ′(l).φ)∩ L | l ∈ dom (μ′|−L)} = ∅.

Note that the transformer of interpretations in Section 2.2.2 respects the conditions in
Definition 17. Interpretations could be further restricted in such a way that if I(κ .m)(φ � μ)=
φ′ � μ′ then rng (φ′)∩ L=∅. We do not enforce this condition since it is not necessary to prove
correctness of the abstract semantics.

3.1 Reachability among identifiers
As we said before, we want to record sharing and linearity information not only for variables in the
type environment but also for their fields. Therefore, we introduce some notation to treat variables
and their fields as uniformly as possible.

Definition 18 (Qualified fields and identifiers). Given a type environment τ , we call qualified field
an expression v.f where v ∈ dom (τ) and f ∈ dom (τ (v)) and we call qualified identifier either a
variable in dom (τ) or a qualified field. We denote by Qτ and Iτ the set of qualified fields and
identifiers, respectively.

It is worth noting that we only consider fields that are in the declared type of the variables, and
we do not consider further fields that are in the actual type. This choice, although it may decrease
the precision of the analysis, simplifies a lot the correspondence between abstract and concrete
semantics and may increase the speed of the analysis. Note that since dom (τ) is finite, we have
that Iτ is also finite.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

56 G. Amato et al.

Example 19. In Example 2, the qualified fields are Qτ = {v7 .l, v7 .r, v8.l, v8.r} and the qualified
identifiers are Iτ = {v7 , v8} ∪Qτ .

Definition 20 (Locations for qualified fields). If σ = φ � μ ∈�τ and v.f ∈Qτ , for uniformity of
notation with variables we define φ(v.f)= null if φ(v)= null, φ(v.f)= φ(v).f otherwise. In other
words, if φ(v.f) �= null, then φ(v.f) is the location pointed to by the field f in the variable v.

The following proposition states that the runtime type of a qualified identifiers is a subtype of
its declared type.

Proposition 21. For each i ∈ Iτ and σ = φ � μ ∈�τ , we have that φ(i) �= null implies τ (φ(i))≤
τ (i).

We now lift the definitions and properties of sharing and linearity from locations to identifiers.

Definition 22. (Sharing, linearity, and aliasing). Let σ ∈�τ and i1, i2 ∈ Iτ . We say that:

• i1 and i2 share in σ when φ(i1) �= null �= φ(i2) and φ(i1), φ(i2) share in σ ;
• i1 is nonlinear in σ when φ(i1) �= null and φ(i1) is nonlinear in σ ; otherwise, i1 is said to be
linear.

• i1 and i2 are (weakly) aliased in σ when φ(i1)= φ(i2).

Note that two identifiers that are both null are considered to be weakly aliased.

Example 23. In Figure 10, the field v7 .r shares with v8.l. As a consequence, v7 shares with v8.l
and v8. The field v7 .l shares only with itself and the parent. The identifiers v7 and v8 are linear,
while v5, v5.r, and v6 in Figure 6 are not linear.

Note that a qualified identifier i ∈ Iτ shares with itself if and only if it is not null. Moreover,
each i ∈ Iτ such that φ(i)= null is linear and does not share with any other identifier.

Definition 24 (Reachability for qualified identifiers). Let σ = φ � μ ∈�τ and i ∈ Iτ . We define the
set of locations reachable from i in σ as RLocσ (i)= RLocσ (φ(i)) if φ(i) �= null, ∅ otherwise.

Note that the reachability set for a variable is related to the reachability set of its qualified fields.
This is formalized by the following result.

Proposition 25. Let σ = φ � μ ∈�τ and v ∈ dom (τ). If φ(v) �= null, then

RLocσ (v)⊇ {φ(v)} ∪
⋃

v.f∈Qτ
RLocσ (v.f) .

Equality does not hold since there is some sharing information in RLocσ (v) which is not deriv-
able from the sharing information of its fields. This is due to the fact that we consider only fields in
the declared type of a variables. Thus, further sharing relationships may exist in other fields which
do not belong to the declared type.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 57

3.2 Class-induced reachability
It must be observed that two qualified identifiers might never be able to share if their static types
do not let them be bound to overlapping data structures. Analogously, certain qualified identifiers
are forced to be linear.

Example 26. In Example 1, we have that a Tree is not an Integer, an Integer is not a Tree,
and they do not have any field which can share. Therefore, any identifier of type Tree can never
share with any identifier of type Integer. Moreover, any identifier of type Integer may only be
linear.

Example 27. Consider the following classes:
class A { B b; } class C { }
class B { C c; } class B1 extends B { }

Then, every object of class A is linear.

Identifying pair of classes which cannot share, or that are forced to be linear, may improve the
result of the analysis. This is the topic of the rest of this section.

Definition 28 (Class reachability). We define a reachability relation between classes given by κ −→
κ ′ iff exists an identifier f such that κ ′ ≤ κ .f. We denote by ∗−→ the reflexive and transitive closure
of−→.

In Definition 28, if a class κ ′ (different from κ) is reachable from κ , then all its subclasses ↓ κ ′
are considered reachable. This reflects the fact that we consider a language with (checked) casts.
The following proposition relates reachability with class reachability: if location l2 is reachable
from l1, the type of l2 should be reachable from the type of l1.

Proposition 29. Given σ = φ � μ ∈�τ and l1, l2 ∈ dom (μ), if l1
∗−→σ l2, then τ (l1)

∗−→ τ (l2).

This notion of class reachability corresponds to the one in Secci and Spoto (2005a) if we denote
by C(κ) the set of classes reachable by ↓ κ , that is,

C(κ)= {κ ′ | κ ′′ ∈↓ κ and κ ′′ ∗−→ κ ′} .
We introduce this alternative notation since it will be convenient in the next definitions.

Example 30. Consider the classes in Example 1, we have that C(Tree)= {Tree} and
C(Integer)= {Integer}. Therefore, any identifier of type Tree can never share with an
identifier of type Integer. Given the classes in Example 27, we have C(A)= {A, B, B1, C}.

We will denote by NL the set of classes whose instances may be nonlinear and by SH the set of
pair of classes which may share. Both NL and SH may be computed using class reachability, that
is, by typing information only.

First of all, note that identifiers i1 and i2 may share only if there is a common location l which is
reachable both from φ(i1) and φ(i2). Therefore, the class τ (l) should be class reachable from both
τ (φ(i1)) and τ (φ(i2)). This is formalized by the following:

Definition 31 (The SH set). Given the type environment τ , we define the set of pairs of classes which
may share:

SH= {(κ , κ ′) | C(κ)∩ C(κ ′) �= ∅} .

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

58 G. Amato et al.

Proposition 32. Given i1, i2 ∈ Iτ , and σ ∈�τ , if i1 and i2 share in σ , then (τ (i1), τ (i2)) ∈ SH.

We now consider the problem of linearity induced by type information. In general, an object of
class κ may be nonlinear either if κ has two fields which may share, it has a field which may share
with itself or if a nonlinear class κ ′ is reachable from κ . This is formalized by the following:

Definition 33 (The NL set). The set NL of nonlinear classes is the upward closure of the least
solution of the equation:

S = {κ | C(κ .f1)∩ C(κ .f2) �= ∅, f1 �= f2} ∪ {κ | κ ∈ C(κ .f)} ∪ {κ | κ −→ κ ′, κ ′ ∈S } .

Note that NL is upward closed by definition. If κ is possibly nonlinear, the same holds for any
κ ′ ≥ κ since a variable of type κ ′ may actually point to an object of class κ .

Proposition 34. Given σ ∈�τ and i ∈ Iτ , if i is not linear in σ , then τ (i) ∈NL.

In the following sections, we use the concepts of sharing, linearity, and aliasing introduced
before to define a new abstract domain, called ALPS (Aliasing Linearity Pair Sharing), for the
analysis of Java-like programs.

4. Aliasing Graphs
We start by defining a basic domain encoding definite aliasing. The domain will also encode
definite nullness, which is a useful and basic property of Java programs.

Definition 35 (Pre-aliasing graphs). A pre-aliasing graph over the type environment τ is a directed
graph G=N � E � � such that:

• N is the finite set of nodes;
• E⊆N × Ide×N is the set of directed edges, each labeled by an identifier;
• � : dom (τ)�N is a partial map from variables to nodes;

with the additional condition that

• ∀n ∈N, ∀f ∈ Ide, there is at most an outgoing edge from n labeled by f and
• ∀n ∈N, ∀f ∈ Ide, if n f−→ n′ ∈ E then there exists v ∈ dom (τ) such that �(v)= n and v.f ∈Qτ .

When it is clear from the context, we denote G.N, G.E, and G.� just by N, E, and �. Moreover,
we denote Gi.N, Gi.E, and Gi.� by Ni, Ei, �i, and similarly for other typographical variants of G.

Example 36. Consider three classes A, B, C where B extends A and has two fields f and g of class B.
We have that K = {�, A, B, C} with B≤ A and B= [f �→ B, g �→ B], while A= C= []. Given vari-
ables a1, a2, b1, b2, c ∈ Ide with τ = [a1 �→ A, a2 �→ A, b1 �→ B, b2 �→ B, c �→ C], Figure 12A shows a
pre-aliasing graph over τ .

We can extend � from variables to qualified fields. Note that �(v.f) only depends on �(v) and
not from v itself.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 59

(a) (b)

Figure 12. A pre-aliasing graph for the type environment in Example 36.

Definition 37 (Extension of �). Given a pre-aliasing graph G=N � E � �, we extend � on qualified
fields v.f ∈Qτ by

�(v.f)=
{
n if �(v) �= ⊥ ∧ �(v) f−→ n ∈ E
⊥ otherwise

When it helps readability, we will annotate nodes in aliasing graphs both with variables and
qualified fields. See, for example, Figure 12B. Moreover, in the examples we will denote a node n
by any identifier i such that �(i)= n.

The idea of a pre-aliasing graph is that, given an identifier i ∈ Iτ , �(i)=⊥means i is definitely
null, while �(i)= �(j) means that i and j are either both null or aliased. Since we aim at designing
a domain which encodes definite aliasing and nullness, we define a preorder on pre-aliasing graphs
such that G1 �G2 when G1 has more aliasing and nullness information than G2.

Definition 38 (Preordering on pre-aliasing graphs). Given two pre-aliasing graphs G1 and G2, we
say that G1 �G2 iff

• for each i, i′ ∈ Iτ , �2(i)= �2(i′)⇒ �1(i)= �1(i′);
• for each i ∈ Iτ , �2(i)=⊥⇒ �1(i)=⊥.

Note that, given their intended meaning, some pre-aliasing graphs contain redundant infor-
mation. For example, nodes which are not labeled by any qualified identifiers may be removed.
On the converse, two identifiers i1, i2 of incomparable types may be (weak) aliased only if they
are both null. We therefore restrict our attention to the pre-aliasing graphs which present some
additional regularity conditions.

Definition 39 (Aliasing graph). An aliasing graph is a pre-aliasing graph G such that, for all n ∈N,
{τ (i) | i ∈ Iτ ∧ �(i)= n} is a nonempty chain. We denote by Gτ the set of aliasing graphs over the
type environment τ , by τG(n)=∧{τ (i) | i ∈ Iτ ∧ �(i)= n} the type of the node n and by ψG(n)=∧{τ (w) |w ∈ dom (τ)∧ �(w)= n} for the type that may be inferred by variables only, with the
proviso that the meet of an empty set of classes is�.

Note that, although the type τG(n) depends on all the qualified identifiers labeling that node,
the edges possibly departing from the nodes depend on ψG(n) only. We could have also adopted
another approach for pre-aliasing graphs and allow edges n f−→m if f is a field in τG(n). Although
this could potentially improve precision, it comes at the cost of a greater complexity of several
operations.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

60 G. Amato et al.

(a) (b)

Figure 13. Comparison of aliasing graphs. We
have explicitly annotated each node with its
identity.

Example 40. The pre-aliasing graph in Figure 12A is not an aliasing graph due to the rightmost
node b2c since τ (b2)= B, τ (c)= C but {B, C} is not a chain. This means that the variables b2 and c
can never be aliased (and thus are both null).

4.1 Morphisms of aliasing graphs
We give in this section a different characterization of the preordering over aliasing graphs.

Definition 41 (Morphism of aliasing graphs). A morphism of aliasing graphs h :G1→G2 in Gτ is
a partial map h :N1 �N2 such that, for each i ∈ Iτ , h(�1(i))= �2(i).

This notion of morphism respects the intended meaning of aliasing graphs. If h :G1→G2 and
�1(v)=⊥, then �2(v)=⊥. Moreover, if �1(v)= �1(w), then �2(v)= �2(w). Aliasing morphisms
enjoys many interesting properties. In particular,

Theorem 42. Given two aliasing graphs G1,G2, there exists a morphism from G2 to G1 if and only
if G1 �G2. Moreover, the morphism, when it exists, is unique.

It is often easier to think in terms of morphism than to check whether Definition 38 holds:
most of the proofs of the properties in this section use graph morphisms and the characterization
in Theorem 42. Moreover, morphisms will be pivotal in Section 5 when comparing sharing and
linearity information attached to different aliasing graphs.

Example 43. Let us consider the following classes:

class B; class A extends B { B l; B r; }

and the type environment τ = [a �→ A, b �→ B]. Consider the aliasing graphs G1 and G2, respec-
tively, in Figure 13A and B. There is a morphism h :G2→G1 given by {n3 �→ n1, n6 �→ n1, n4 �→
n2}, since

h(�2(a))= h(n3)= n1 = �1(a) h(�2(b))= h(n6)= n1 = �1(b)
h(�2(a.l))= h(n4)= n2 = �1(a.l) h(�2(a.r))= h(n5)=⊥= �(a.r)

By Theorem 42, we have that G1 �G2.

4.2 The lattice of aliasing graphs
We now show that � for aliasing graphs has least upper bounds and greatest lower bounds, and
we show how to build them.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 61

(a) (b) (c)

Figure 14. Least upper bound of aliasing graphs.

We begin by defining a new aliasing graph G1 �G2, which we will later prove to be the
least upper bound. In the definition, we use the inverse function �−1. Note that �−1 may be
different if we consider � as the map � : dom (τ)�N in Definition 35 or as the map � : Iτ �N in
Definition 37. When it is not specified, the latter is assumed.

Definition 44. Given G1,G2 ∈ Gτ , let X= �−11 (N1)∪ �−12 (N2) and let ∼⊆ X× X be the equiva-
lence relation on Iτ such that i∼ i′ ⇐⇒ �1(i)= �1(i′)∧ �2(i)= �2(i′). We define the aliasing graph
G1 �G2 =N � E � � where

• N = X/∼ is the set of equivalence classes of X;
• for any v ∈ dom (τ), �(v)= [v]∼ if v ∈ X, �(v)=⊥ otherwise;
• S1

f−→ S2 ∈ E iff there exists v ∈ S1 s.t. v.f ∈ S2.

Example 45. Let us consider the same classes and type environment of Example 43. Figure 14
shows an example of lub of aliasing graphs. Note that, even without knowing the class defini-
tions, the graphs contain enough information to justify the result of the operation. For example,
in Figure 14A, the fact that the left child of the node ab does not contain b.l means that that l is
not a field of τ (b), hence τ (a) is a subclass of τ (b).

An analogous, although more complex, definition may be given for G1 �G2, which we will
later prove to be the greatest lower bound of aliasing graphs.

Definition 46. Given G1,G2 ∈ Gτ , let ∼⊆ Iτ × Iτ be the least equivalence relation on Iτ such that
�1(i)= �1(i′)∨ �2(i)= �2(i′)⇒ i∼ i′. Moreover, let N be the largest subset of Iτ /∼ such that:

• N ⊆ {[i]∼ | i ∈ Iτ , τ ([i]∼) is a chain and [i]∼ ⊆ �−11 (N1)∩ �−12 (N2)};
• if [v]∼ /∈N, then [v.f]∼ /∈N.

We define the aliasing graph G1 �G2 =N � E � � where

• � : dom (τ)�N such that �(v)= [v]∼ if [v]∼ ∈N, �(v)=⊥ otherwise;
• S1

f−→ S2 ∈ E iff there exists v ∈ dom (τ), v ∈ S1 s.t. v.f ∈ S2.

The definition above is similar to the one for�: we start from defining an equivalence relation
∼ which propagates weak aliasing and we define G1 �G2 whose nodes are equivalence classes
of identifiers modulo ∼. However, propagation of nullness is more complex. There are several
situations which may force an identifier to be null.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

62 G. Amato et al.

(a) (b) (c)

Figure 15. Greatest lower bound of aliasing graphs.

• It may be that i1 ∼ i2, but i2 is null in either G1 or G2. In this case, both i1 and i2 are forced to
be null. This is the reason of the condition “[i]∼ ⊆ �−11 (N1)∩ �−12 (N2)” in the first clause of
the definition for N.

• Assume τ (i)= κ , τ (i1)= κ1, and τ (i2)= κ2, such that κ1 ≤ κ , κ2 ≤ κ with κ1 and κ2 incompa-
rable. It may happen that �1(i)= �1(i1) and �2(i)= �2(i2), which implies i∼ i1 ∼ i2. However,
this forces i, i1, and i2 to be null, since there is no object which is both an element of κ1 and
κ2. This is cared by the condition “τ ([i]∼) is a chain” in the first clause of the definition forN.

• If variable v is forced to be null for one of the reasons above, then fields of v cannot exist. This
is cared of by the second clause of the definition for N.

Example 47. Let us consider the following classes:

class A { A l; } class B extends A { A r; }

and the type environment τ = [a �→ A, b �→ B]. Figure 15 shows an example of glb of aliasing
graphs.

The following theorem proves that � and � are actually the least upper bound and greatest
lower bound of aliasing graphs.

Theorem 48. The preordered set (Gτ ,�) has

• a least element⊥τ =∅ � ∅ �⊥ where⊥ is the always undefined map;
• a greatest element �τ = Iτ � E � id where n1

f−→ n2 ∈ E ⇐⇒ n1 = v ∈ dom (τ)∧ n2 = v.f ∈
Qτ ;

• a least upper bound G1 �G2 for each G1,G2 ∈ Gτ ;
• a greatest lower bound G1 �G2 for each G1,G2 ∈ Gτ .

4.3 Projection
Several operations may be defined on aliasing graphs. Most of them will be introduced later, since
they depend on the concrete semantics of our language. We introduce here only the operation of
restriction of a graph to a subset of variables.

Definition 49 (Projection). Given a pre-aliasing graph G and a set of nodes X, we denote by G|X
the tuple X � E′ � �′ where

E′ = E∩ (X× Ide× X) �′(v)=
{
�(v) if �(v) ∈ X,
⊥ otherwise

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 63

It is immediate to check that G|X is a pre-aliasing graph. Given a pre-aliasing graph G=N �
E � �, a set of nodes X⊆N is said to be backward closed when, for each n ∈ X, if there exists
n′ f−→ n ∈ E, then n′ ∈ X. Given a set of nodes X, we denote by←−X the smallest backward closed
set of nodes containing X. Symmetrically, we define forward closed sets and the forward closure
operator−→X .

It turns out that if X is backward closed, then G|X �G. Moreover, if G is an aliasing graph, G|X
is too. More precisely, the following hold:

Proposition 50. If G ∈ Gτ and X⊆N is backward closed, then G|X ∈ Gτ . Moreover, for each n ∈ X,
τG|X (n)= τG(n) and ψG|X (n)=ψG(n).

Proposition 51. If G is a pre-aliasing graph and X⊆N is backward closed, then G|X �G.

We will come back to this point when we introduce the abstract semantics.

4.4 The domain of aliasing graphs
Given a concrete state σ ∈�τ , wemay abstract it into an aliasing graph which conveys the relevant
information.

Definition 52. Given σ = φ � μ ∈�τ , we define the abstraction of σ as an aliasing graph αa(σ)=
G ∈ Gτ where

• N = {l ∈ Loc | ∃i ∈ Iτ .φ(i)= l};
• for each v ∈ dom (τ), �(v)= φ(v) if φ(v) �= null, �(v)=⊥ otherwise;
• l f−→ l′ ∈ E iff there exists v ∈ dom (τ) such that �(v)= l, v.f ∈Qτ and l.f= l′.

The abstraction of a state σ is essentially the representation of the environment and stores as
an aliasing graph, limited to the locations reachable from a qualified identifier.

The following proposition shows that the abstraction of a concrete state is an aliasing graph.

Proposition 53. Given σ = φ � μ ∈�τ , G= αa(σ) is an aliasing graph and, for each i ∈ Iτ , �(i)=
φ(i) if φ(i) �= null, �(i)=⊥ otherwise.

We say that G ∈ Gτ is a correct abstraction of σ = φ � μ ∈�τ iff αa(σ)�G. Note that if
αa(σ)�G and G.�(i)=⊥, then φ(i)= null, hence � may actually be used to represent definite
nullness. Moreover, if G.�(i1)=G.�(i2), then either φ(i1)= φ(i2) ∈ Loc or φ(i1)= φ(i2)= null.
Hence, � actually encodes definite weak aliasing between variables.

The following propositions show that each aliasing graph can be viewed as the abstraction of a
concrete state.

Proposition 54. Given G ∈ Gτ , there exists σ ∈�τ s.t. αa(σ) and G are equivalent, that is,
αa(σ)∼ G.

The map αa of Definition 52 may be lifted to the abstraction map of a Galois insertion from
P(�τ) to Gτ given by αa(S)=�

σ∈S αa(σ). The abstraction map induces the concretization map
γa : Gτ →P(�τ), which maps aliasing graphs to the set of concrete states they represent. Its
explicit definition, below, is straightforward:

γa(G)= {σ ∈�τ | αa(σ)�G}.
https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

64 G. Amato et al.

Theorem 55. The preorder � is the same preorder induced by γa, that is, given G1,G2 ∈ Gτ , G1 �
G2 iff γa(G1)⊆ γa(G2).

The above theorem may be considered the analogous of injectivity of γa when the abstract
domain is preordered instead of partially ordered. It allows to prove that γa(G1)⊆ γa(G2) by just
checking G1 �G2.

5. ALPS Graphs
Aliasing graphs are a very concrete representation of the part of the program state which is reach-
able from variables through a single field access. Pair sharing and linearity, instead, summarize
global properties of the state. We want to add possible pair sharing and possible nonlinearity
information to an aliasing graph.

Definition 56 (Pre-ALPS graph). A pre-ALPS graph G=G � sh � nl is an aliasing graph G with a
set sh⊆ {{n,m} | n,m ∈N} and a set nl⊆N.

When it is clear from the context, we denoteG.G,G.sh,G.nl by G, sh, nl andGi.G,Gi.sh,Gi.nl
by Gi, shi, nli. Similarly for other variants ofG.

The set sh in a pre-ALPS graph encodes possible pair sharing, while nl encodes possible non-
linearity. In particular, two identifiers i, j ∈ Iτ may share when {�(i), �(j)} ∈ sh, while i may be
nonlinear when �(i) ∈ nl. This suggests to extend the preorder on aliasing graphs to ALPS graphs
as follows:

Proposition 57. Pre-ALPS graphs are preordered by the relation � defined as:

G1 �G2 ⇐⇒G1 �G2 and ∀i ∈ Iτ . �1(i) ∈ nl1⇒ �2(i) ∈ nl2 and
∀i, j ∈ Iτ . {�1(i), �1(j)} ∈ sh1⇒{�2(i), �2(j)} ∈ sh2 .

Not all the pre-ALPS graphs make sense, due to the way aliasing, nonlinearity, and sharing
interact. In particular, some nonlinearity or sharing information is redundant, since it cannot hap-
pen in practice due to the class hierarchy under consideration: pairs {n,m} ∈ sh such that classes
τG(n) and τG(m) cannot share, or variables n ∈ nl such that τG(n) /∈NL. This is formalized by the
following:

Definition 58 (Graph compatibility). Given an aliasing graph G ∈ Gτ , we say {n,m} ⊆N is
G-SH-compatible if (τG(n), τG(m)) ∈ SH. We say n ∈N is G-NL-compatible if τG(n) ∈NL. Sets
sh⊆P2(N) (and nl⊆N) are G-SH-compatible (G-NL-compatible) if all their elements are G-SH-
compatible (G-NL-compatible).

We define a reduction operation which takes pre-ALPS graphG and removes spurious sharing
and linearity information.

Definition 59. (Reduced pre-ALPS graphs). Given a pre-ALPS graph G, let sh′ � nl′ be the sharing
and nonlinearity information contained in sh � nl which is G-SH and G-NL, compatible, that is,

sh′ = sh∩ {{n,m} ∈P2(N) | {n,m} is G-SH-compatible} ,
nl′ = nl ∩ {n | n is G-NL-compatible} .

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 65

(a) (b) (c)

Figure 16. Two pre-ALPS graphs with a loop and a concrete state which is in the concretization of the Pre-ALPS graphsG in
Figure 16B.

We define the reduction of G to be the pre-ALPS graph red (G)=G � sh′ � nl′ and we say that a
pre-ALPS graphG is reduced if red (G)=G.

Moreover, some sharing and nonlinearity information can be derived from other information.
For example, if n is a node in G, then {n} should be in sh, otherwise any identifier i s.t. �(i)= n is
forced to be null and G could be simplified by removing the node n.

Definition 60. (Closed pre-ALPS graphs). We define a pre-ALPS graph G=G � sh � nl closed
when it satisfies all the following properties:

(1) n ∈N⇒{n} ∈ sh;
(2) there is a loop in G involving n⇒ n ∈ nl;
(3) {n,m} ∈ sh∧ n′ f−→ n⇒{n′,m} ∈ sh;
(4) n f1−→m1, n

f2−→m2, f1 �= f2, {m1,m2} ∈ sh⇒ n ∈ nl;
(5) n ∈ nl∧ n′ f−→ n⇒ n′ ∈ nl.

Point (1) is standard in sharing domains since each non-null variable shares with itself. Point
(2) expresses the fact that any variable in a loop cannot be linear. Point (5) means that nl is
backward closed, while Point (3) is obvious generalization of backward closure to sharing pairs.
Finally, Point (4) formalizes the fact that if two different fields of an object o share, then o is not
linear.

Example 61 (Pre-ALPS graphs with loops). Consider the concrete state in Figure 16A. Locations
l0 and l1 are nonlinear, since l0.r.r= l0 and l1.r.r= l1. This state is correctly abstracted by the pre-
ALPS graph G in Figure 16B, where nodes a and b are marked as nonlinear. On the contrary, the
same concrete state is not correctly approximated by the pre-ALPS graph G′ in Figure 16C, since
the latter does not allow for the nonlinearity of a and b. Actually, the only concrete states which
are correctly abstracted byG′ are the ones where both a and b are null, since every other situation
would violate either the aliasing constraints (a.r= b and b.r= a) or the linearity constraint. The
Pre-ALPS graph G is closed according to Definition 60, while G′ is not and it is essentially not
used, since it may be replaced by the empty pre-ALPS graph.

We want to restrict our attention only to those pre-ALPS graphs which do not contain any
spurious information and where all sharing and nonlinearity information is explicit.

Definition 62 (ALPS graph). An ALPS graph G is a pre-ALPS graph which is reduced and closed.
We denote by ALPSτ the set of ALPS graphs over the type environment τ .

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

66 G. Amato et al.

5.1 Projection
Analogously to aliasing graphs, we define a projection operator for ALPS graphs.

Definition 63 (Projection of pre-ALPS graphs). Given a pre-ALPS graph G and X⊆N backward
closed, we denote byG|X the pre-ALPS graph G|X � sh′ � nl′ where

sh′ = sh∩P2(X) nl′ = nl ∩ X .

In the definition above, the hypothesis that X is backward closed is needed in order to ensure
that G|X is an aliasing graph and not just a pre-aliasing graph. It is immediate to check that
projection maps ALPS graphs to ALPS graphs. More specifically:

Proposition 64. IfG ∈ ALPSτ and X⊆N is backward closed, thenG|X ∈ ALPSτ .

Moreover, the following holds:

Proposition 65. IfG is a pre-ALPS graph and X⊆N is backward closed, thenG|X �G.

5.2 Up- and down-closures of pre-ALPS graphs
Given a pre-ALPS graph G, the up-closure of G is a new pre-ALPS graph, obtained by adding
derived sharing and nonlinearity information to the sh and nl components. Moreover, if G is
reduced (i.e., it does not contain spurious sharing and nonlinearity elements which are not
G-SH-compatible and G-NL-compatible, respectively), then the up-closure of G is an ALPS
graph.

Definition 66. (Up-closure of pre-ALPS graphs). Given a pre-ALPS graph G=G � sh � nl, we
define the up-closure of G as the pre-ALPS graph cl↑ (G)=G � sh′ � nl′ such that sh′ � nl′ is the
smallest pair, under the component-wise ordering, which contains sh � nl and G � sh′ � nl′ is closed.

It is immediate to see that the up-closure of a pre-ALPS graph G always exists and can be
simply computed starting from sh � nl and adding new elements according to the five properties
in Definition 60. Note that the graph G does not change when computing the up-closure.

Symmetrically, we can define the down-closure as follows.

Definition 67. (Down-closure of pre-ALPS graphs). Given a pre-ALPS graph G, we define the
down-closure of G as the pre-ALPS graph cl↓ (G) such that cl↓ (G) is the greatest pre-ALPS graph
smaller than or equal toG and such that cl↓ (G) is closed.

Note that, differently from the up-closure, when computing the down-closure the graph G can
possibly change, since some nodes could be removed. The next proposition shows how to compute
the down-closure.

Theorem 68. Given a pre-ALPS graph G=G � sh � nl, the down-closure cl↓ (G) can be computed
as follows. Let sh∗ � nl∗ be the greatest pair, under the component-wise ordering, such that

(1) nl∗ = nl \ {n |m �∈ nl∗ ∧m f−→ n ∈ E};
(2) sh∗ = sh \ {{m1,m2} | n �∈ nl∗, n f1−→m1 ∈ E, n f2−→m2 ∈ E, f1 �= f2} \ {{n,m} | {n′,m} �∈

sh∗ ∧ n′ f−→ n ∈ E}.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 67

(a) (b)

Figure 17. Example of an ALPS graph.

Then, we have that

cl↓ (G)= (G � sh∗ � nl∗)|N\−→X
where X= {n | n �∈ nl∗, there is a loop in G such that n f1−→ · · · fk−→ n ∈ E} ∪ {n | {n} �∈ sh∗}. Moreover,
ifG is closed w.r.t. red, then cl↓ (G) is an ALPS graph.

The down-closure shows the interaction between the three components of aliasing (which is
encoded in the graph structure), sharing, and nonlinearity. It precisely describes how linearity
and sharing information propagate to the other components.

The first point states that whenever a node m is linear, then all its children are linear too. The
second point explains the interaction between sharing and linearity: when a node n is linear, then
its children cannot share. Moreover, when a node n′ does not share with a nodem, the same holds
for the children of n′. Note that, whenever in a loop of the graph a node is linear, then all the nodes
in the loop and all their children must be null. This is reflected in the projection on N \ −→X .

Example 69. Figure 17 shows the aliasing graph G and the ALPS graphG=G � sh � nl where

sh= {{ab}, {c}, {a.r c.l}, {c.r}, {ab, a.r c.l}, {c, a.r c.l}, {c, c.r}, {ab, c}}

nl= {c, c.r}
In Figure 17B, nonlinearity is represented with a double circle, while sharing information is
represented as follows:

• the sharing information of the singletons {ab}, {c}, {a.r c.l}, {c.r} can be deduced from the
existence of the nodes in the aliasing graph;

• the sharing information of a node with its field, for example, {c, c.r}, can be deduced from
the corresponding edge in the aliasing graph c r−→ c.r;

• additional sharing information is represented with a dotted line, for example, between the
nodes ab and c.

5.3 The lattice of ALPS graphs
In order to define an abstract domain of ALPS graphs, we start by defining the least upper bound
G1 �G2 and greatest lower boundG1 �G2 of ALPS graphs.

We use morphisms when we need to combine sharing and nonlinearity information coming
from different graphs with different sets of nodes.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

68 G. Amato et al.

(a) (b) (c)

Figure 18. Least upper bound of ALPS graphs.

Definition 70. LetG1 andG2 be ALPS graphs. We defineG=G1 �G2 as:

• G=G1 �G2, with morphisms h1 :G→G1 and h2 :G→G2;
• sh= h−11 (sh1)∪ h−12 (sh2) and
• nl= h−11 (nl1)∪ h−12 (nl2).

Example 71. Consider the ALPS graphs in Figure 18A and B. For ease of notation, we assume
a node to be denoted by its label. The morphisms h1 :G1 �G2→G1 and h2 :G1 �G2→G2 are
defined as follows:

h1 = [a �→ ab, b �→ ab, a.l �→ a.l]

h2 = [a �→ a, b �→ b, a.r �→ a.r]

We have that:

sh= h−11 (sh1)∪ h−12 (sh2)

= h−11 ({{ab}, {a.l}, {ab, a.l}})∪ h−12 ({{a}, {a.r}, {b}, {a, a.r}, {a, b}, {a.r, b}})
= {{a}, {b}, {a.l}, {a, b}, {a, a.l}, {b, a.l}} ∪ {{a}, {a.r}, {b}, {a, a.r}, {a, b}, {a.r, b}}
= {{a}, {b}, {a.l}, {a, b}, {a.r}, {a, a.l}, {a, a.r}, {b, a.l}, {a.r, b}}

and

nl= h−11 (nl1)∪ h−12 (nl2)= h−11 ({ab})∪ h−12 (∅)= {a, b} .

Definition 72. LetG1 andG2 be ALPS graphs. We defineG=G1 �G2 asG= cl↓ (G′), where

• G′ =G1 �G2 with morphisms h1 :G1→G and h2 :G2→G;
• sh′ = {{n,m} ∈P2(N) | ∀k ∈ {1, 2} h−1k ({{n,m}})⊆ shk};
• nl′ = {n ∈N | ∀k ∈ {1, 2} h−1k (n)⊆ nlk};

Example 73. Consider the ALPS graphs in Figure 19A and B. For ease of notation, we assume
a node to be denoted by its label. The morphisms h1 :G1→G1 �G2 and h2 :G2→G1 �G2 are
defined as follows:

h1 = [ab �→ ab, b.r �→ b.r]
h2 = [a �→ ab, b �→ ab, b.r �→ b.r]

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 69

(a) (b) (c)

Figure 19. Greatest lower bound of ALPS graphs.

We have that:

sh= { {n,m} ∈P2(N) | h−11 ({{n,m}})⊆ sh1, h−12 ({n,m}})⊆ sh2 }
= { {n,m} ∈P2({ab, b.r}) |

h−11 ({{n,m}})⊆ {{ab}, {a.l b.l}, {b.r}, {ab, a.l b.l}, {ab, b.r}},
h−12 ({{n,m}})⊆ {{a}, {b}, {a.l}, {b.r}, {a, a.l}, {b, b.r}, {a, b}, {a, b.r}} }

= { {ab}, {b.r}, {ab, b.r} }
and

nl= { n ∈N | h−11 (n)⊆ nl1, h−12 (n)⊆ nl2 }
= { n ∈N | h−11 (n)⊆ {ab}, h−12 (n)⊆ {a, b, b.r} }
= {ab} .

Theorem 74. The preordered set of ALPS graphs has

• a least element⊥τ � ∅ � ∅;
• a greatest element�τ � sh � nl, where
– sh= {{n,m} ∈P2(Iτ) | (τ (n), τ (m)) ∈ SH} and
– nl= {n ∈ Iτ | τ (n) ∈NL};

• a least upper boundG1 �G2 for each pairG1 andG2 of ALPS graphs;
• a greatest lower boundG1 �G2 for each pairG1 andG2 of ALPS graphs.

With an abuse of language, we denote the top and bottom of ALPS graphs for the domain
environment τ with �τ and ⊥τ , which are the same symbols used for aliasing graphs. We omit
the index τ when it is clear from or not relevant in the context.

5.4 The domain of ALPS graphs
Given a concrete state σ ∈�τ , wemay abstract it into an aliasing graph which conveys the relevant
information.

Definition 75 (Abstraction map on ALPS graph). Given σ ∈�τ , we define the abstraction α :
�τ → ALPS as α(σ)= αa(σ) � sh � nl where

sh= {{l1, l2} ⊆N | l1 and l2 share in σ } ,
nl= {l ∈N | l is not linear in σ } .

We sayG is a correct abstraction of σ when α(σ)�G.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

70 G. Amato et al.

The abstraction of a state σ is essentially the representation of the environment and stores as
an ALPS graph, limited to the locations reachable from a qualified identifier.

Given σ ∈�τ and α(σ)�G, if i1, i2 ∈ Iτ share in σ , then {G.�(i1),G.�(i2)} ∈G.sh. Moreover,
if i ∈ Iτ is nonlinear in σ , then G.�(i) ∈G.nl. Hence, G actually encodes possible sharing and
nonlinearity among variables and fields.

We may define a concretization map γ : ALPSτ →P(�τ) which maps ALPS graphs to the
set of concrete states they represent as γ (G)= {σ ∈�τ | α(σ)�G}. If we lift the map α in
Definition 75 to an additive map α :P(�τ)→ ALPSτ as α(S)=�

σ∈S α(σ), then α and γ form a
Galois connection.

Proposition 76. (Concretization of ALPS graphs). The concretization map induced by the
abstraction map α satisfies the following property:

γ (G)= {
σ ∈�τ | σ ∈ γa(G),

∀i ∈ Iτ . i nonlinear in σ ⇒ �(i) ∈ nl,
∀i, i′ ∈ Iτ . i share with i′ in σ ⇒{�(i), �(i′)} ∈ sh

}
.

Note that ALPS-graphs do not form a Galois insertion with concrete states, as shown in the
following example.

Example 77 (ALPS-graphs do not form a Galois insertion). Consider the following set of classes:

class A { C f; } class B { C g; } class C { }

Since all classes may share among them, we have SH = {(κ , κ ′) | κ , κ ′ ∈ {A, B, C}}. Let τ be the type
environment τ = {x �→A, y �→ B} and consider the ALPS-graphG given by:

x y

It turns out that there is no set of states S such that α(S)=G. This is because, due to the set of
classes we have available, x and y may only share through the class C, that is, through the fields f
and g. But according to G, f and g should be null, making sharing impossible. Therefore, α is
not surjective and 〈α, γ 〉 is a Galois connection but not a Galois insertion.

Obtaining a Galois insertion would require the addition of new closure conditions on ALPS
graphs. This is possible, but would make the definitions more cumbersome, and we have decided
not to follow this line. While Galois insertions are more theoretical appealing since they do not
contain redundant abstract elements, precise and efficient analysis can be obtained even without
them. In the literature of numerical abstract domains (Amato and Scozzari 2012; Cousot and
Cousot 1976) there are many examples of analysis which do not form a Galois insertion and not
even a Galois connection, such as the polyhedral analysis of imperative programs (Cousot and
Halbwachs 1978) and the parallelotope abstract domain (Amato et al. 2017), which nonetheless
enjoy interesting completeness properties (Amato and Scozzari 2011)

In the next section, we will define the necessary operations on the domain of ALPS graphs in
order to define an abstract semantics for sharing analysis. Note that, since the abstract domain is
finite, we do not need a widening operator to ensure the termination of the analysis.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 71

6. An Abstract Semantics on ALPS
We present the abstract semantics on the domain ALPSτ . We provide a correct abstract coun-
terpart for each concrete operator in the standard semantics. The abstract counterpart of an
interpretation is an ALPS interpretation, defined as follows.

Definition 78. An ALPS interpretation I maps methods to total functions such that I(κ .m) :
ALPSinput(κ .m)→ ALPSoutput(κ .m) for each method κ .m.

6.1 Auxiliary operators
First of all, we introduce some auxiliary operators which will be used later in the abstract semantics
for commands and expressions.

6.1.1 Pruning
Given a triple G=G � sh � nl (not necessarily an ALPS graph), the operation prune removes
extraneous nodes and adds inferred information:

prune (G)= cl↑ (G|N′)
where N′ = {�(w) |w ∈ dom (τ)} ∪ {n |w ∈ dom (τ), �(w) f−→ n ∈ E, f ∈ dom (τ (w))}.

6.1.2 Restriction
Consider the operation on concrete states which, given S⊆�τ and a set of variablesV ⊆ dom (τ),
returns the set of states in S restricted to the variables in V , that is,

S‖V = {φ|V � μ | φ � μ ∈ S} ⊆�τ |V .

Starting from a correct abstraction G ∈ ALPSτ of the set of states S, we would like to define a new
abstractionG′ ∈ ALPSτ |V which correctly approximates S‖V .

Definition 79 (Abstract restriction). Given G ∈ ALPSτ and V ⊆ dom (τ), we define G‖V =
prune (N � E � �|V � sh � nl) .

Let W =V ∪ {v.f ∈Qτ | v ∈V} and let G‖V =N′ � E′ � �′ � sh′ � nl′. Since �′ is obtained by
restricting � to the variables in V , we have that for any x ∈ dom (τ) \V , �′(x)= �|V (x)=⊥. Then
for each n′ ∈N′, �′−1(n)⊆W and all the nodes in G which are not the image of a qualified iden-
tifier inW are removed from the graph. By construction and since G ∈ ALPSτ , we have that N′ is
backward closed andG‖V ∈ ALPSτ |V .

Proposition 80. For eachG ∈ ALPSτ and V ⊆ dom (τ), γ (G)‖V ⊆ γ (G‖V).

6.1.3 Nullness propagation
Consider the operation on concrete states which, given S⊆�τ and an identifier i ∈ Iτ , returns the
subset of those states in S where i is null, that is,

S|i=null = {σ = φ � μ ∈ S | φ(i)= null} .

If G is a correct abstraction of S, it is also a correct abstraction of S|i=null, but we would like
to refine G into a more precise abstract state which still correctly approximates S|i=null. This
suggests the following definition.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

72 G. Amato et al.

Definition 81 (Abstract nullness propagation). GivenG ∈ ALPSτ and an identifier i ∈ Iτ , we define
G|i=null =G|Nv where Nv =N \ −−→{�(i)}.

InG|i=null, since the identifier i is forced to be null, all the nodes reachable from i need to be
removed from the graph since they do not really exist. Given that N \ −−→{�(i)} is backward closed,
we know from Propositions 64 and 65 thatG|i=null is an ALPS graph andG|i=null �G.

Nullness propagation is a special case of greatest lower bound between ALPS graphs, as proved
in the following:

Proposition 82. For eachG ∈ ALPSτ and i ∈ Iτ ,G|i=null =G��|i=null.

In turn, this allows us to prove that:

Proposition 83. For eachG ∈ ALPSτ and i ∈ Iτ , γ (G)|i=null ⊆ γ (G|i=null).

In the rest of the paper, given i, j ∈ Iτ , we use G|i=null,j=null as a short form for
(G|i=null)|j=null.

6.1.4 Restriction to aliasing
Consider the operation on concrete states which, given S⊆�τ and two variables v,w, returns the
subset of those states in S where v is weakly aliased with w, that is,

S|v=w = {σ = φ � μ ∈ S | φ(v)= φ(w)} .

Similarly to what we have done in the previous section, we aim to determine a correct approxima-
tion of S|v=w. GivenG ∈ ALPSτ , we define

G|v=w = G��v=w

where

�v=w =

⎧⎪⎨⎪⎩
prune (�.N ��.E ��.�[w �→ v] ��.sh ��.nl) if τ (v)≤ τ (w);
prune (�.N ��.E ��.�[v �→w] ��.sh ��.nl) if τ (w)< τ (v);
�|v=null,w=null otherwise.

Proposition 84. For eachG ∈ ALPSτ and v,w ∈ dom (τ), γ (G)|v=w ⊆ γ (G|v=w).

In the rest of the paper, we will useG|v1=w1,...,wn=wn as a shorthand for ((G|v1=w1) . . .)|vn=wn .

6.2 Abstract semantics for expressions
The abstract semantics specifies how each expression exp transforms input abstract states G=
N � E � � � sh � nl into final abstract states G′ =N′ � E′ � �′ � sh′ � nl′ where res holds the exp’s
value. Abstract semantics for expressions (and later commands) is given compositionally on their
syntax.

Definition 85. Let τ describe the variables in scope and I be an ALPS interpretation. Figure 20
defines the ALPS semantics for expression (except method calls) SE I

τ �exp� : ALPSτ → ALPSτ+exp.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 73

Figure 20. The ALPS interpretation for expressions.

We briefly explain the behavior of the abstract semantic operators with respect to the cor-
responding concrete ones. The concrete semantics of null κ stores null in the variable res.
Therefore, in the abstract semantics, we only need to add the new variable res into the type
environment, without modifying the abstract state.

The concrete semantics of new κ stores in res a reference to a new object o, whose fields are
null. The other variables do not change. Since o is only reachable from res, variable res shares
with itself only and is clearly linear. Therefore, we only need to add a new node labeled with res
and the corresponding sharing singleton, without affecting nonlinearity information.

The concrete semantics of v simply makes res an alias for v. Since the types of v and res
coincide, we only need to add the variable v to the same node of res. The other variables are
unchanged.

When v= null, then (κ)v behaves like null κ . If κ and the type of v are not compatible, then
(κ)v only returns a nonfailed state when v= null. Therefore, in the abstract semantics, (κ)v
restricts the input graphG to those states where v= null. In the other cases, the cast (κ)v stores
in res the value of v. We use an auxiliary operator add(G, n, κ), explained in the following section,
which adds the label res to the node n, and possibly adds new nodes for the fields of res which
are not fields of ψG(n). In this case, we can exploit the notion of linearity. In fact, when v is linear,
we know that fields of res cannot share with each other and are linear.

The concrete semantics of v.f stores in res the value of the field f of v, provided v is not null.
When v.f is not null, this essentially amounts to the same procedure of the previous case.

6.2.1 Assignment to a node
The auxiliary operator add(G, n, κ) adds a new variable res of type κ as an alias of the node n ∈N.
The operator also adds children of res when needed to have an ALPS graph.

add(G, n, κ)=
{
⊥ if {τG(n), κ} is not a chain
cl↑ (G′) otherwise

Given G=G � sh � nl, in order to define G′, let κ ′ =ψG(n) be the inferred type for node n in G
(from variables only) and F′ = dom (κ) \ dom (κ ′)= {f1, . . . , fm} be the set of the new fields in
class κ which are not currently considered inG; let also {nf1 , . . . , nfm} be a set of fresh nodes, that

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

74 G. Amato et al.

Figure 21. The ALPS interpretation for simple commands.

is, such that {nf1 , . . . , nfm} ∩N =∅; then:
G′ =N ∪ {nf1 , . . . nfm} � E∪ {n f1−→ nf1 , . . . , n

fm−→ nfm} � �[res �→ n]

sh′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sh∪ {{nfi , nfj} | fi, fj ∈ F′, (κ .fi, κ .fj) ∈ SH } ∪

{{nfi , n′} | fi ∈ F′, {n, n′} ∈ sh, (κ .fi, τG(n′)) ∈ SH } if n ∈ nl

sh∪ {{nfi , n′} | fi ∈ F′, {n, n′} ∈ sh, (κ .fi, τG(n′)) ∈ SH,

�k> 0, f′1, . . . , f′k. n
f′1−→ n1 . . . nk−1

f′k−→ n′ ∈ E} if n /∈ nl

nl′ =
{
nl ∪ {nfi | fi ∈ F′, κ .fi ∈NL} if n ∈ nl
nl if n /∈ nl

Definition of G′ is straightforward: we just add the new nodes as children of node n, each one
pointed through the corresponding field in F′. If n is nonlinear, then all new nodes are nonlin-
ear, all new nodes share among them and with other nodes n′ sharing with n. This procedure
might add spurious sharing or nonlinearity information: we solve this problem by filtering with
SH and NL.

When n is linear, then all new nodes are linear, do not share among them, and do not share
with any node n′ reachable from n through a nonempty sequence of fields f′1, . . . , f′k in E, but
share with all the other nodes sharing with n.

6.3 Abstract semantics for commands
In the concrete semantics, each command com transforms an initial state into a final state. On the
abstract domain, it transforms an initial ALPS graph G � sh � nl into an ALPS graph G′ � sh′ � nl′.

Definition 86. Let τ describe the variables in scope and I be an ALPS interpretation. Figures 21–23
show the ALPS semantics for commands S C I

τ �com� : ALPSτ → ALPSτ .

The concrete semantics of v := exp evaluates exp and stores its result into v. Thus, the final
abstract state is obtained by first computing SE I

τ �exp� and then renaming res into v. Some of
the nodes may become unlabeled and must be removed. This is accomplished by the auxiliary
operation prunewhich removes unnecessary information, in particular unlabeled nodes and fields
which are not in the declared type of the variables.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 75

Figure 22. The ALPS interpretation for assignment to field.

To determine a correct approximation of the conditional “if v = null” we check whether
�(v)=⊥. If this is the case, then we know that v is null and we evaluate com1. Otherwise, we
evaluate both branches and compute the lub. When evaluating the first branch, we may improve
precision by using the auxiliary operatorG|v=null (Section 6.1.3) which returns a correct approx-
imation of the program states {φ � μ | α(φ � μ)�G∧ φ(v)= null}, that is, the states correctly
approximated by G where v is null. Note that, since our domain does not model definite non-
nullness, there is no way to define a projection G|v �=null to improve the input for S C I

τ �com2� as
in S C I

τ �com1�(G|v=null).

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

76 G. Amato et al.

Figure 23. The ALPS interpretation for method calls. The auxiliary function matchv.m is defined later in Figure 24.

Similarly for the conditional “if v = w” where we use another auxiliary operator G|v=w
(Section 6.1.4) which returns a correct approximation of the set of program states {φ � μ | α(φ �
μ)�G∧ φ(v)= φ(w)}. Again, since our domain does not model definite not aliasing, we cannot
improve the input for the second branch.

The composition of commands is denoted by functional composition over ALPS, where the
identity map λs ∈ ALPSτ .s is needed when p= 0. The evaluation of v.f := exp in Figure 22 is the
most complex operation of the abstract semantics. Although it may seem similar to the assignment
v := exp, we must take into account that v might be aliased to many different nodes. The candi-
dates are those variables, denoted by Vcomp, which share with �(v) and have compatible types. For
each node labeled by a variable in Vcomp, we add a new fresh node in Nnew pointed by an edge
(labeled by the field f) in Enew. Finally, all possible sharing and nonlinearity are added. A slightly
different treatment is devoted to the special case when the result of the expression is definitely
null.

6.4 Abstract semantics of method call
The concrete semantics of the method call v.m(v1, . . . , vn) builds an input state containing the
local variables w1, . . . ,wn and the special variable this, and executes the method body. In order
to improve the precision of methods call, we also use a copy of the local variables w′1, . . . ,w′n
which will be used when returning from the method call to match the original variables v1, . . . , vn.
This allows a change to the object pointed by wi to be distinguished from a change to wi
itself.

When a method v.m is called, the class of v is inspected and the correct overloaded method
for m is selected. The abstract domain contains only a partial information on the runtime class of
v, since we only know that the class of v must be a superclass of the class of any variable aliased
with v, namely a superclass of τG(�(v)). We exploit this information in computing the abstract
semantics of a method call in Figure 23. In practice, we conservatively assume that every method
m in any subclass of τG(�(v)) may be called. Note that methods defined only in superclasses of κ
are already considered in κ .

When exiting from a method call, we need to rename out into res since, from the point of
view of the caller, the returned value of the callee (out) is the value of the method call expression
(res). We use an auxiliary operation matchv.m which, given an initial and final state, updates the
initial state trying to guess a possible matching of variables in the abstract states. The definition of
matchv.m is given in Figure 24.

Theorem 87. The abstract semantics formalized in Figures 20–24 is correct wrt the concrete
semantics in Section 2.2.2.

Analougously to the concrete case, we may define an abstract transformer which, given a ALPS
interpretation I, returns a new ALPS interpretation I′ such that

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 77

Figure 24. Thematchv.m auxiliary operation.

I′(κ .m) = (λG ∈ ALPSscope(κ .m).G‖ dom (output(κ .m))) ◦
S C I

scope(κ .m)�body(κ .m)� ◦
(λG ∈ ALPSinput(κ .m).N � E � �′ � sh � nl)

where �′ = �[w′1 �→ �(w1), . . . ,w′n �→ �(wn)].
The new interpretation returned by the abstract transformer is computed by first adding

primed variables which are used to hold a copy of the original actual parameters, then evaluat-
ing the body of the method and finally restricting the graph to the output variables. The abstract
denotational semantics is the least fixpoint of this transformer.

Theorem 88. The abstract denotational semantics is correct wrt the concrete one.

Example 89. Consider the method Tree.makeTree in Section 1.4, where
scope(Tree.makeTree)= [this �→ Tree, n �→ Integer, n′ �→ Integer,m �→ Integer, out �→ Tree].

We can compute a new ALPS interpretation from the least informative ALPS interpretation
I⊥(Tree.makeTree)= λG.⊥out(Tree.makeTree):

I1(Tree.makeTree)(G)=N ∪ {nout} � E � �[n′ �→ �(n), out �→ nout] � sh∪ {{nout}} � nl
Now, starting from I1(Tree.makeTree), we can compute a new interpretation as follows:

I2(Tree.makeTree)(G)=N ∪ {nout , nout.l, nout.r, } �
E∪ {nout l−→ nout.l, nout

r−→ nout.r} �
�[n′ �→ �(n), out �→ nout] �
sh∪ { {nout}, {nout.l}, {nout.r}, {nout , nout.l}, {nout , nout.r} } � nl

which is the least fixpoint. Relatively to the case �(n) �= null, the abstract states
I1(Tree.makeTree)(G) and I2(Tree.makeTree)(G) are depicted in Figure 25. From this
graph, it appears that the tree generated by this method is linear and does not share with this
(the object on which we call the makeTree method). Moreover since n and n′ are aliased we know
that the method does not modify the variable n.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

78 G. Amato et al.

(a) (b)

Figure 25. ALPS interpretations for the makeTreemethod.

7. Related Work
Sharing properties has been deeply studied for logic programs, see for instance: Jacobs and Langen
(1992), Hans and Winkler (1992), Muthukumar and Hermenegildo (1992), Codish et al. (1999),
Bagnara et al. (2002), and Amato and Scozzari (2009). The large literature on this topic has been
the starting point for designing our enhanced abstract domain for sharing analysis. In particu-
lar, the use of a linearity property, for example, Codish et al. (1991), Hans and Winkler (1992),
Muthukumar and Hermenegildo (1992), King (1994), and Amato and Scozzari (2010, 2014), has
proved to be very useful when dealing with sharing information (see Bagnara et al. 2005 for a
comparative evaluation).

Outside of the logic programming community, sharing information is generally regarded as a
by-product of shape analysis. One of the first papers that explicitly deals with sharing information
is Jones and Muchnick (1979), which presents a combined intra-procedural analysis of aliasing,
reachability, and cyclicity for imperative and functional languages with records. The focus of their
analysis is not pair sharing, but detecting the set of shared nodes, that is, heap cells which may
be reached by variables using at least two different paths. Shared nodes and cyclicity are used to
optimize memory management.

The property of sharing for object-oriented languages has been studied in a few works. Secci
and Spoto (2005a) propose a simple domain of pair sharing for a simple Java-like language and
Méndez-Lojo and Hermenegildo (2008) extend this domain proposing a combined analysis of set
sharing, nullness, and classes for exactly the same language. The main differences of our paper
w.r.t. these proposals are

• the ALPS abstract domain encodes linearity and aliasing information, in addition to sharing;
• the analysis is field sensitive, that is, information is encoded at the level of the fields of the
objects.

The analysis in Secci and Spoto (2005a) has also been refined by Zanardini (2018) which proposes
a field-sensitive sharing analysis for a very similar language. Linearity information is not exploited
in this paper either.

Pollet et al. (2001) propose a framework for the analysis of object-oriented languages and intro-
duce two abstract domains for definite aliasing and possible aliasing, respectively. The abstract
objects of these domains are similar to aliasing graphs, but without being restricted to two lev-
els. Termination is guaranteed by widening. These domains may be enriched by providing type
information for the leaves of the graphs. However, they do not consider sharing or linearity
properties.

In the context of pure functional programming with no destructive updates, sharing is just an
implementation detail and has not impact on the behavior of the program. Nonetheless, shar-
ing analysis may help in optimizing program execution. For example, the first part of Jones and
Muchnick (1979) deals with sharing in pure functional programs in order to avoid the use of
garbage collection and reference counting.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 79

More recently, Peña-Marí et al. (2006) present a pair-sharing analysis for SAFE, which is a func-
tional language with explicit control for copy and destruction of data structures. The result of the
analysis is used during type checking. Due to the particular features of the programming language,
the sharing analysis distinguishes between generic sharing and sharing of recursive substructures
(e.g., two lists share a recursive substructure when they have a common tail). The analysis is field
insensitive and cannot represent neither definite aliasing nor definite nullness and linearity. This
analysis has been vastly improved inMontenegro et al. (2015), where each pair of sharing variables
is annotated with the set of possible paths through which the sharing may happen. Although defi-
nite aliasing and definite nullness are still not representable in the new domain, definite linearity is
inferable by the extended pair-sharing information: if x shares with itself only through the empty
path, then x is linear.

8. Conclusions
We propose the new abstract domain ALPS which combines aliasing, linearity, and sharing
analysis for an object-oriented language and provide all the necessary abstract operations.

The combination with linearity information allows us to improve the precision of the anal-
ysis in blocks of assignments, method calls, and thus on recursion. This is a fundamental issue
that has not been considered in any previous analysis. We have shown in Section 1.4 a simple
example where linearity plays a fundamental role in proving that two subtrees do not share. More
generally, an important point is that linearity information allows us to distinguish a tree from a
direct acyclic graph (DAG). For instance, the result of makeTree in Figure 8 is a tree. However,
the abstract representation of a tree in any abstract domain containing only information about
reachability, sharing, acyclicity, nullness, and aliasing (and the corresponding negated properties
such as cyclicity, non-nullness, etc.) cannot be distinguished from the abstraction of a DAG. For
example, the data structure t2:

Tree t2 = new Tree ()
t2.l = new Tree ()
t2.r = new Tree ()
t2.l.l = new Tree ()
t2.l.r = t2.l.l

has the same sharing, acyclicity, nullness, etc. properties of a tree, but t2 is not linear, while t in
Figure 8 is linear. At the end of the method useTree, left is equal to t.l.l, right is t.l.r, but
they do not share since t is a tree. However, t2.l.l and t2.l.r share. Linearity allows to distinguish
these two situations. None of the works discussed in Section 7 can distinguish a DAG from a tree,
with the exception of Montenegro et al. (2015) which cannot be directly applied to a Java-like
language since it does not support updates.

Regarding modularity of the analysis, although the most precise results are obtained by analyz-
ing the entire program as a whole, it is possible to analyze single libraries (or even single methods)
by assuming the every external method returns the largest possible abstract object. In this way,
when a real object will we plugged in the final program, its behavior will be correctly abstracted.

From the point of view of performance, note that in a domain which tracks possible sharing
information, it usually happens that themore precise an abstract object is, the smaller its represen-
tation is. For example, the best correct abstraction of a concrete state where no sharing happens
is an ALPS graph without edges. However, if our analysis is not precise enough to compute the
best correct abstraction, some edges will be included in the abstract object, which may negatively
impact the performance of succeeding operations. Therefore, improving the precision of the anal-
ysis, from the one side, increases the computational cost, but from the other side may lead to
smaller abstract objects which partially compensates this cost. A detailed evaluation of the trade-
off between precision and performance may only be conducted experimentally. We plan to carry

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

80 G. Amato et al.

on this evaluation once we implement ALPS as an abstract domain for the Jandom static analyzer
(Amato et al. 2013).

Although we have presented ALPS graphs in the context of object-oriented programs, the same
domain can be immediately applied to functional programs. In this regard, note that the example
program in Figure 8 may be rewritten in functional style and the benefits of linearity are the same
already discussed for object-oriented programs.

The domain of ALPS graphs may be easily extended by annotating nodes with additional infor-
mation in a modular way. For example, class analysis might be integrated by adding a set of
possible classes for each node, while nodes representing numerical entities may be annotated with
intervals for integrating range analysis. Obviously, if we want to maximize the benefits of the
integration, at the very least, new operators should be devised which use the information of one
domain to improve the precision of the other.

To the best of our knowledge, this is the first attempt to combine sharing with linearity for
imperative or object-oriented languages.

Conflicts of Interests. The authors declare none.

References
Amato, G., Di Nardo Di Maio, S. and Scozzari, F. (2013). Numerical static analysis with Soot. In: Proceedings of the ACM

SIGPLAN International Workshop on State of the Art in Java Program Analysis, SOAP’13, New York, NY, USA. ACM.
Amato, G., Meo, M. C. and Scozzari, F. (2015). Exploiting linearity in sharing analysis of object-oriented programs. In

Crescenzi, P. and Loreti, M. (eds.) Proceedings of ICTCS 2015, the 16th Italian Conference on Theoretical Computer Science,
Electronic Notes in Theoretical Computer Science, vol. 322, Elsevier, 3–18.

Amato, G., Rubino, M. and Scozzari, F. (2017). Inferring linear invariants with parallelotopes. Science of Computer
Programming 148 161–188.

Amato, G. and Scozzari, F. (2009). Optimality in goal-dependent analysis of sharing. Theory and Practice of Logic
Programming 9 (5) 617–689.

Amato, G. and Scozzari, F. (2010). On the interaction between sharing and linearity. Theory and Practice of Logic
Programming 10 (1) 49–112.

Amato, G. and Scozzari, F. (2011). Observational completeness on abstract interpretation. Fundamenta Informaticae 106
(2–4) 149–173.

Amato, G. and Scozzari, F. (2012). Random: R-based analyzer for numerical domains. In: Bjørner, N. and Voronkov, A. (eds.)
Logic for Programming, Artificial Intelligence, and Reasoning 18th International Conference, LPAR-18, Mérida, Venezuela,
March 11–15, 2012. Proceedings, Lecture Notes in Computer Science, vol. 7180, Berlin, Heidelberg, Springer, 375–382.

Amato, G. and Scozzari, F. (2014). Optimal multibinding unification for sharing and linearity analysis. Theory and Practice
of Logic Programming 14 379–400.

Bagnara, R., Hill, P. M. and Zaffanella, E. (2002). Set-sharing is redundant for pair-sharing. Theoretical Computer Science 277
(1–2) 3–46.

Bagnara, R., Zaffanella, E. and Hill, P. M. (2005). Enhanced sharing analysis techniques: A comprehensive evaluation. Theory
and Practice of Logic Programming 5 (1–2) 1–43.

Codish, M., Dams, D. and Yardeni, E. (1991). Derivation and safety of an abstract unification algorithm for groundness
and aliasing analysis. In Furukawa, K. (ed.) Logic Programming, Proceedings of the Eighth International Conference, Logic
Programming, Cambridge, MA, USA, The MIT Press, 79–93.

Codish, M., Søndergaard, H. and Stuckey, P. J. (1999). Sharing and groundness dependencies in logic programs. ACM
Transactions on Programming Languages and Systems 21 (5) 948–976.

Cousot, P. and Cousot, R. (1976). Static determination of dynamic properties of programs. In: Proceedings of the Second
International Symposium on Programming, Paris, France. Dunod, 106–130.

Cousot, P. and Cousot, R. (1977). Abstract interpretation: A unified lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In: POPL’77: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, New York, NY, USA, ACM Press, 238–252.

Cousot, P. and Cousot, R. (1992). Abstract interpretation and applications to logic programs. Journal of Logic Programming
13 (2 & 3) 103–179.

Cousot, P. and Halbwachs, N. (1978). Automatic discovery of linear restraints among variables of a program. In: POPL’78:
Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, New York, NY, USA,
ACM Press, 84–97.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 81

Hans, W. and Winkler, S. (1992). Aliasing and groundness analysis of logic programs through abstract interpretation and
its safety. Technical Report 92–27, Technical University of Aachen (RWTH Aachen). Available from http://sunsite.
informatik.rwth-aachen.de/Publications/AIB. Last accessed March 14, 2013.

Jacobs, D. and Langen, A. (1992). Static analysis of logic programs for independent AND parallelism. The Journal of Logic
Programming 13 (2–3) 291–314.

Jones, N. D. and Muchnick, S. S. (1979). Flow analysis and optimization of LISP-like structures. In: POPL’79: Proceedings of
the 6th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 244–256.

King, A. (1994). A synergistic analysis for sharing and groundness which traces linearity. In: Sannella, D. (ed.) Programming
Languages and Systems — ESOP’94, 5th European Symposium on Programming Edinburg, UK, April 11–13, 1994,
Proceedings, Lecture Notes in Computer Science, vol. 788, Berlin, Heidelberg, Springer, 363–378.

Méndez-Lojo, M. and Hermenegildo, M. (2008). Precise set sharing analysis for java-style programs. In: Logozzo, F., Peled,
D. and Zuck, L. (eds.) Verification, Model Checking, and Abstract Interpretation, Lecture Notes in Computer Science, vol.
4905, Berlin, Heidelberg, Springer, 172–187.

Montenegro, M., Peña, R. and Segura, C. (2015). Shape analysis in a functional language by using regular languages. Science
of Computer Programming 111 51–78.

Muthukumar, K. and Hermenegildo, M. V. (1992). Compile-time derivation of variable dependency using abstract
interpretation. The Journal of Logic Programming 13 (2–3) 315–347.

Peña-Marí, R., Segura, C. andMontenegro, M. (2006). A sharing analysis for SAFE. In: Nilsson, H. (ed.) Trends in Functional
Programming, vol. 7, Bristol, UK. Intellect Books, 109–127.

Pollet, I., Le Charlier, B. and Cortesi, A. (2001). Distinctness and sharing domains for static analysis of Java programs.
In: Proceedings of the 25th European Conference on Object-Oriented Programming (ECOOP), Lecture Notes in Computer
Science, vol. 2072, Budapest, Hungary, 77–98.

Secci, S. and Spoto, F. (2005a). Pair-sharing analysis of object-oriented programs. In: Hankin, C. (ed.) Proceedings of Static
Analysis Symposium (SAS), Lecture Notes in Computer Science, vol. 3672, London, UK, Springer, 320–335.

Secci, S. and Spoto, F. (2005b). Pair-Sharing Analysis of Object-Oriented Programs (long version). Personal communication.
Also available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.79.2459.

Zanardini, D. (2018). Field-sensitive sharing. Journal of Logical and Algebraic Methods in Programming 95 103–127.

Appendix A. Proofs
A.1 Reachability, sharing, linearity, and aliasing
A.1.1 Reachability among locations
Proposition 90. Given σ = φ � μ ∈�τ , l ∈ dom (μ), f̄ a possible empty sequence of identifiers, if
l.f̄ exists, then either l.f̄= null or l.f̄ ∈ dom (μ).

Proof. Assume that l.f̄ exists. The proof is by induction on the length of f̄. If f̄ is empty, then
l.f̄= l, which is in dom (μ) by hypothesis. Otherwise f̄= f̄1f2 and l.f̄= (l.f̄1).f2. By induc-
tive hypothesis, l′ = l.f̄1 is either null or an element of dom (μ). If l′ = null, then l′.f2 = l.f̄
does not exists, which contradicts the hypothesis, hence l′ ∈ dom (μ). Since l′.f2 exists, then
f2 ∈ dom (μ(l′).φ). By τ -correctness of σ we have that μ(l′).φ � μ is weakly μ(l′).κ-correct. This
implies that either l.f̄= l.f̄1f2 = l′.f2 = null, or l.f̄= l.f̄1f2 = l′.f2 ∈ dom (μ).

Proposition 11. Given σ = φ � μ ∈�τ , f an identifier and l, l′ ∈ dom (μ), then:

(1) l.f exists iff τ (l).f exists;
(2) if l.f exists and l.f �= null, then τ (l.f)≤ τ (l).f.

Proof. Let us prove the first property. It is the case that l.f exists iff f ∈ dom (μ(l).φ). By τ -
correctness, dom (μ(l).φ)= dom (μ(l).κ)= dom (τ (l)). Hence l.f exists whenever f ∈ dom (τ (l))
iff τ (l).f exists.

We now prove the second property. Since l.f exists, then l exists and μ(l) ∈ rng (μ). By this
reason and τ -correctness of σ , we have that μ(l).φ � μ is weakly μ(l).κ-correct. If we consider
what this means for the identifier f, and since l.f=μ(l).φ(f) �= null by hypothesis, we have that

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

http://sunsite.informatik.rwth-aachen.de/Publications/AIB
http://sunsite.informatik.rwth-aachen.de/Publications/AIB
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.79.2459
https://doi.org/10.1017/S0960129522000160

82 G. Amato et al.

μ(μ(l).φ(f)).κ ≤μ(l).κ(f). By just applying the definitions, we have that μ(μ(l).φ(f)).κ = τ (l.f)
while μ(l).κ(f)= τ (l).f.

Proposition 16. Given σ = φ � μ ∈�τ and locations l1, l2 ∈ dom (μ), we have that l1 shares with
l2 iff RLocσ (l1)∩ RLocσ (l2) �= ∅.

Proof. If l1 and l2 share, then there are sequences of identifiers f̄1 and f̄2 such that l1.f̄1 = l2.f̄2 �=
null. Let l be l1.f̄1, we have that l ∈ RLocσ (l1) and l ∈ RLocσ (l2).

A.1.2 Reachability among identifiers
Proposition 91. Given σ = φ � μ ∈�τ and v.f ∈Qτ then φ(v.f) exists.

Proof. If φ(v)= null, then φ(v.f)= null by definition. If φ(v) �= null, then φ(v) ∈ dom (μ). By
τ -correctness, the runtime class of v is a subtype of the declared class, that is, τ (φ(v))≤ τ (v).
By properties of subtyping, if τ (v).f exists, then also τ (φ(v)).f exists and, by Proposition 11 (1),
φ(v).f= φ(v.f) exists.

Proposition 21. For each i ∈ Iτ and σ = φ � μ ∈�τ , we have that φ(i) �= null implies τ (φ(i))≤
τ (i).

Proof. If i is a variable in dom (τ) and φ(i) �= null, then τ (φ(i))≤ τ (i) by weakly τ -correctness.
If i= v.f is a qualified field, since φ(i) �= null then φ(v) �= null and, by Proposition 91, φ(v.f)=
φ(v).f. Hence τ (φ(v.f))= τ (φ(v).f). By Proposition 11 (2), τ (φ(v).f)≤ τ (φ(v)).f. Since φ(v) �=
null, by weak τ -correctness, we have τ (φ(v))≤ τ (v) and, by property of subtyping, τ (φ(v)).f=
τ (v).f= τ (v.f), concluding the proof.

Proposition 25. Let σ = φ � μ ∈�τ and v ∈ dom (τ). If φ(v) �= null, then

RLocσ (v)⊇ {φ(v)} ∪
⋃

v.f∈Qτ
RLocσ (v.f) .

Proof. If φ(v) �= null, then φ(v) ∈ dom (μ). Moreover, by Proposition 90, if φ(v).f exists and
φ(v).f �= null, then φ(v).f ∈ dom (μ). Hence:

RLocσ (v)=
= {l | φ(v) ∗−→σ l}
= {φ(v)} ∪ {l | φ(v).f exists∧ φ(v).f �= null∧ φ(v).f ∗−→σ l}
⊇ {φ(v)} ∪ {l | v.f ∈Qτ ∧ φ(v).f �= null∧ φ(v.f) ∗−→σ l}
= {φ(v)} ∪

⋃
v.f∈Qτ

φ(v).f �=null

{l | φ(v.f) ∗−→σ l}

= {φ(v)} ∪
⋃

v.f∈Qτ
φ(v).f �=null

RLocσ (v.f)

= {φ(v)} ∪
⋃

v.f∈Qτ
RLocσ (v.f)

which concludes the proof.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 83

A.1.3 Class-induced reachability
Proposition 29. Given σ = φ � μ ∈�τ and l1, l2 ∈ dom (μ), if l1

∗−→σ l2, then τ (l1)
∗−→ τ (l2).

Proof. If l1 = l2, then τ (l1)
∗−→σ τ (l2). Otherwise, it is enough to prove that l1 −→σ l2 implies

τ (l1)−→ τ (l2). If l1 −→σ l2, then l2 = l1.f for some f, τ (l2)= τ (l1.f)≤ τ (l1).f, hence τ (l1)→
τ (l2).

The operator C for class reachability is downward closed and monotone w.r.t. subtyping.

Lemma 92. The following properties hold:

(1) ↓ C(κ)= C(κ) for each class κ ;
(2) C(κ ′)⊆ C(κ) for each κ ′ ≤ κ .

Proof. The first property immediately descends from the fact that C(κ)=⋃
κ ′′≤κ{κ ′ | κ ′′ ∗−→ κ ′}

is the union of downward closed sets. The second property is an immediate consequence of the
definition of C.

Lemma 93. Given σ = φ � μ ∈�τ and l1, l2 ∈ dom (μ), if l1 and l2 share, then C(τ (l1))∩
C(τ (l2)) �= ∅.

Proof. If l1 and l2 share, then by Proposition 16 RLocσ (l1)∩ RLocσ (l2) �= ∅, that is, there is l ∈
Loc s.t. l1

∗−→σ l and l2
∗−→σ l. By Proposition 29, this implies τ (l1)

∗−→ τ (l) and τ (l2)
∗−→ τ (l), which

implies τ (l) ∈ C(τ (l1))∩ C(τ (l2)).

Proposition 32. Given i1, i2 ∈ Iτ , and σ ∈�τ , if i1 and i2 share in σ , then (τ (i1), τ (i2)) ∈ SH.

Proof. If i1 and i2 share, then φ(i1) �= null �= φ(i2) and φ(i1) shares with φ(i2). By Lemma 93,
C(τ (φ(i1)))∩ C(τ (φ(i2))) �= ∅. By Proposition 21, τ (φ(i1))≤ τ (i1) and τ (φ(i2))≤ τ (i2). Then by
Lemma 92, C(τ (i1))∩ C(τ (i2)) �= ∅.

Lemma 94. Given φ � μ ∈�τ and l ∈ dom (μ), if l is not linear, then τ (l) ∈NL.

Proof. If l is not linear, by Definition 14, there are two sequences f̄1 �= f̄2 such that l.f̄1 = l.f̄2 �=
null. We prove by induction on the shortest among f̄1 and f̄2 that τ (i) ∈NL. There are several
cases:

• f̄1 is empty. Then f̄2 = f · f̄′2 for some f, and l.f.f̄′2 = l. This means l.f ∗−→σ l, hence by
Proposition 29, τ (l.f) ∗−→ τ (l), that is, τ (l) ∈ C(τ (l.f))⊆ C(τ (l).f), where the last inclusion
follows by Proposition 11 (2) and Lemma 92 (2). Hence, we have τ (l) ∈NL.

• f̄2 is empty. The proof is the same as for the previous point.
• f̄1 = f1 · f̄′1 and f̄2 = f2 · f̄′2 with f1 �= f2. Then l.f1 and l.f2 share, hence by Lemma 93
C(τ (l.f1))∩ C(τ (l.f2)) �= ∅. By Proposition 11 (2) and by monotonicity of C, that is,
Lemma 92 (2), C(τ (l).f1)∩ C(τ (l).f2) �= ∅, hence τ (l) ∈NL.

• f̄1 = f · f̄′1 and f̄2 = f · f̄′2. Then f̄′1 �= f̄′2 and l.f is not linear. By inductive hypothesis,
τ (l.f) ∈NL. Since l→ l.f then, by Proposition 29, τ (l)→ τ (l.f), hence τ (l) ∈NL.

This concludes the proof.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

84 G. Amato et al.

Proposition 34. Given σ ∈�τ and i ∈ Iτ , if i is not linear in σ , then τ (i) ∈NL.

Proof. If i is not linear, then φ(i) �= null is not linear, hence, by Lemma 94 τ (φ(i)) ∈NL. Since by
Proposition 21, τ (φ(i))≤ τ (i) and NL is upward closed, then τ (i) ∈NL.

A.2 Aliasing graphs and aliasing morphisms
The following proposition relates edges in aliasing graphs with reachability among classes.

Proposition 95. Given an aliasing graph G and nodes n,m ∈N, we have that:

• if n f−→m, then ψG(n)−→ τG(m);
• if there is a path from n to m, then τG(m) ∈ C(τG(n)).

Proof. For the first point, if n f−→m there is v ∈ dom (τ) such that �(v)= n and �(v.f)=m. By
definition of τ , we have τG(m)≤ τ (v.f)= τ (v).f. Moreover, ψG(n)≤ τ (v). Since fields cannot be
redefined in subclasses, τ (v).f=ψG(n).f, hence the thesis. The second point is an immediate
corollary.

In the following, we show that �(v.f) only depends on �(v) and not on v itself.

Lemma 96. Given two aliasing graphs G1,G2 ∈ Gτ , the following properties are true for every h :
G1→G2:

• if n f−→m ∈ E1 and h(m) �= ⊥, then h(n) f−→ h(m) ∈ E2;
• if n ∈N1 and h(n) �= ⊥, then τG1 (n)≥ τG2 (h(n)) and ψG1 (n)≥ψG2 (h(n));
• for each n2 ∈N2, there is n1 ∈N1 s.t. h(n1)= n2, τG1 (n1)= τG2 (n2) and ψG1 (n1)=ψG2 (n2).

Proof. For the first point, let n f−→m ∈ E1. There exists v ∈ dom (τ) such that �1(v)= n and
�1(v.f)=m. Composing with h, we have �2(v)= h(n) and �2(v.f)= h(m). By definition of � for
qualified fields, since h(m) �= ⊥ then h(n) �= ⊥, too. In turn, this means h(n) f−→ h(m) ∈ E2.

For the second point, {i ∈ Iτ | �1(i)= n} ⊆ {i ∈ Iτ | h(�1(i))= h(n)} = {i ∈ Iτ | �2(i)= h(n)}, and
therefore τG2 (h(n))≤ τG1 (n) and ψG1 (n)≥ψG2 (h(n)).

For the last point, since τ (�−12 (n2)) is a chain, then τG2 (n2)= τ (i) for some i ∈ Iτ such that
�2(i)= n2. Let n1 = �1(i), so that h(n1)= n2. Obviously, τG1 (n1)≤ τ (i)= τG2 (n2). The converse
inequality comes from the previous point. The same holds for ψG1 and ψG2 .

Proposition 97. Given two aliasing graphs G1,G2 ∈ Gτ , the following properties are true for every
h :G1→G2:

• h is the unique morphism from G1 to G2;
• h is surjective;
• h is an isomorphism iff it is total and injective; the inverse morphism is h−1.

Proof. For the first point, assume h′ :G1→G2. Then, for each node n ∈N1, there is an identifier
i ∈ Iτ such that �1(i)= n. Therefore, h′(n)= h′(�1(i))= �2(i)= h(�1(i))= h(n), that is, h= h′. For
the second point, given n ∈N2, there is i ∈ Iτ such that n= �2(i). Since �2(i)= h(�1(i)), then n is
in the range of h, hence h is surjective. The third point is straightforward.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 85

Since by Proposition 97, there exists a single morphism h between aliasing graphs, it is natural
to define a preorder on Gτ × Gτ by

G1 G2 ⇐⇒ ∃h :G2→G1 in Gτ

Lemma 98. Given two aliasing graphs G1,G2 ∈ Gτ , G2 G1, and i ∈ Iτ , if �2(i) �= ⊥ then
�−12 (�2(i))⊇ �−11 (�1(i)).

Proof. Since G2 G1, there exists a morphism h :G1→G2. Assume i ∈ Iτ such that �2(i) �= ⊥.
If �1(i)= n, then �2(i)= h(n). Therefore, �−12 (�2(i))= �−12 (h(n))= �−11 (h−1(h(n)))⊇ �−11 (n)=
�−11 (�1(i)), and then the thesis.

Finally, it is possible to characterize the preorder between aliasing graphs without using the
concept of morphism of graphs.

Theorem 99. Given G1,G2 ∈ Gτ , we have G1 G2 iff G1 �G2.

Proof. AssumeG1 G2. By definition there exists h :G2→G1. Then, if �2(i)= �2(i′), then �1(i)=
h(�2(i))= h(�2(i′))= �1(i′). Moreover, if �2(i)=⊥, then �1(i)= h(�2(i))=⊥.

On the other side, assume G1 �G2. For each node n ∈N2, there is i ∈ Iτ s.t. �2(i)= n. We
let h(n)= �1(i). This is well defined since if �2(j)= n, then �1(j)= �1(i). Moreover, it is a graph
morphism. Given i ∈ Iτ , if �1(i)= n, then h(�2(i))= �1(i) by the definition above. If �2(i)=⊥,
then �1(i)=⊥, hence h(�2(i))= �1(i) again.

Theorem 42. Given two aliasing graphs G1,G2, there exists a morphism from G2 to G1 if and only
if G1 �G2. Moreover, the morphism, when it exists, is unique.

Proof. The proof is straightforward by Proposition 97 and Theorem 99.

A.2.1 The lattice of aliasing graphs
First of all, we prove a characterization for least upper bounds.

Lemma 100. Assume given G1,G2,G ∈ Gτ such that G1 �G, G2 �G, with morphisms h1 :G→G1
and h2 :G→G2. Then, G is the least upper bound of G1 and G2 if:

• ∀n,m ∈N. (h1(n)= h1(m)∧ h2(n)= h2(m))⇒ n=m;
• �n ∈N. h1(n)= h2(n)=⊥.

Proof. First of all, observe that the existence of h1 and h2 follows by Theorem 99. Moreover, note
that the two conditions are equivalent to ∀n,m ∈N ∪ {⊥}. (h1(n)= h1(m)∧ h2(n)= h2(m))⇒
n=m. If the original condition holds and there are n,m ∈N ∪ {⊥} with h1(n)= h1(m)∧ h2(n)=
h2(m), we have that: either n,m ∈N, and the results follow immediately, or one among n and
m is ⊥. Assume without loss of generality that n=⊥. Then h1(m)= h2(m)=⊥ which implies
m=⊥ by hypothesis, hence n=m. On the converse, if the condition stated above holds and
h1(n)= h2(n)=⊥, then h1(n)= h1(⊥) and h2(n)= h2(⊥), hence n=⊥.

Now, assume this property hold, and we prove that G is the least upper bound. Let G′ such
that G1 �G′ and G2 �G′ with corresponding morphisms h′1 and h′2. We need to build a mor-
phism h :G′ →G. For each n ∈N′, consider a qualified identifier i ∈ Iτ such that �′(i)= n and we
define h(n)= �(i). We prove that h is well defined and that it is a morphism. Assume there are
i′, i with i′ �= i, �′(i)= �′(i′)= n. Then �1(i)= �1(i′) and �2(i)= �2(i′), that is, h1(�(i))= h1(�(i′))

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

86 G. Amato et al.

and h2(�(i))= h2(�(i′)). By the alternative formulation of hypothesis, this implies �(i)= �(i′).
Therefore, h is well defined.

Now, we prove �(i)= h(�′(i)) for each i ∈ Iτ . If �′(i) ∈N′, this is immediate, since h(�′(i)) is
�(i′) for some identifier i′ such that �(i′)= �(i). Obviously i′ = i is a good choice, hence �(i)=
h(�′(i)). If �′(i)=⊥, then �1(i)= �2(i)=⊥ hence h1(�(i))= h2(�(i))=⊥. By hypothesis, �(i)=
⊥= h(�′(i)).

Then, using this characterization, we prove that G1 �G2 in Definition 44 is the least upper
bound of G1 and G2.

Theorem 101. The aliasing graph G1 �G2 is the least upper bound of G1 and G2.

Proof. G is a pre-aliasing graph). First of all, we prove that G=G1 �G2 is a pre-aliasing graph.
Given S1 ∈N and f ∈ Ide, assume that there are S2, S′2 in N such that S1

f−→ S2 and S1
f−→

S′2. This means there are v,w ∈ S1 ∩ Ide such that v∼w, v.f ∈ S2 and w.f ∈ S′2. We need
to prove that S2 = S′2. Since v∼w then �1(v)= �1(w) and �2(v)= �2(w), which implies
�1(v.f)= �1(w.f), �2(v.f)= �2(w.f) and in turn, v.f∼w.f, that is, S2 = S′2. Now assume there
are S1, S2 ∈N and f ∈ Ide with S1

f−→ S2. By construction of G, there is v ∈ S1 s.t. v.f ∈ S2.
This implies v ∈ Ide, v.f ∈Qτ and �(v)= [v]∼ = S1, proving that the second condition in
Definition 35 holds.

A small lemma). Note that �(i)= [i]∼ for any i ∈ X and �(i)=⊥ otherwise. This happen by defi-
nition when i ∈ Ide, hence we only need to prove the property for i= v.f ∈Qτ . When v.f ∈ X,
then v ∈ X and [v]∼

f−→ [v.f]∼, hence �(v)= [v]∼ and �(v.f)= [v.f]∼. When v /∈ X, then
�(v)=⊥ and �(v.f)=⊥, too. If v ∈ X but v.f /∈ X, we should prove �(v.f)=⊥. For the sake of
contradiction, assume �(v.f)= S, that is, there is an arrow �(v)= [v]∼

f−→ S. This means there
is w ∈ Ide such that w∼ v, w �= v and w.f ∈ S. Since w.f ∈ X, then �1(w.f) �= ⊥ �= �2(w.f).
But since v∼w, then �1(v)= �1(w) and �1(v.f)= �1(w.f) �= ⊥. The same holds or �2(v.f).
Therefore, v.f ∈ X, which is a contradiction.

G ∈ Gτ). Now we prove that G is an aliasing graph. Given S ∈N, we need to check that {τ (i) | i ∈
Iτ ∧ �(i)= n} is a chain. Let i1, i2 ∈ Iτ such that �(i1)= �(i2)= n. Since by the previous small
lemma �(i1)= [i1]∼ and �(i2)= [i2]∼, we have �1(i1)= �1(i2) ∈N1, which means that τ (i1)
and τ (i2) are comparable, since G1 is an aliasing graph.

G is the least upper bound of G1 and G2. Finally, we prove that G is the least upper bound of
G1 and G2. Consider the map h1 :N→N1 such that h1([i]∼)= �1(i) for any [i]∼ ∈N.
If i ∈ X, then h1(�(i))= h1([i]∼)= �1(i), otherwise i /∈ �−11 (N1), hence h1(�(i))=⊥= �1(i).
This means that h1 :G→G1. The same holds for h2 :G→G2. Now, if h1([i]∼)= h1([i′]∼)
and h2([i]∼)= h2([i′]∼), then �1(i)= �1(i′) and �2(i)= �2(i′) hence i∼ i′ and [i]∼ = [i′]∼.
Moreover, for each [i]∼, either h1([i]∼)= �1(i) ∈N1 or h2([i]∼)= �2(i) ∈N2. By Lemma 100
follows that G is the least upper bound of G1 and G2.

Now, we prove that G1 �G2 in Definition 46 is the greatest lower bound of G1 and G2.

Theorem 102. The aliasing graph G1 �G2 is the greatest lower bound of G1 and G2.

Proof. Let G=G1 �G2. The following holds:

G is a pre-aliasing graph). First, we have to prove that ∀S ∈N, ∀f ∈ Ide, there is at most one
outgoing edge from S labeled by f. Let S1 ∈N and assume there are edges S1

f−→ S2 and
S1

f−→ S3 ∈ E. By construction there are v,w ∈ S1 s.t. S2 = [v.f]∼ and S3 = [w.f]∼. By definition

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 87

of G, there is a sequence v= i1 ∼ · · · ∼ it =w such that �1(is)= �1(is+1) or �2(is)= �2(is+1)
for each s ∈ {1, . . . , t− 1}. Then, for each s ∈ {1, . . . , t− 1}, either �1(is.f)= �1(is+1.f) or
�2(is.f)= �2(is+1.f). By definition of ∼, we have that v.f∼w.f. Therefore, S2 = [v.f]∼ =
[w.f]∼ = S3.
Now, we have to prove that ∀S1, S2 ∈N, ∀f ∈ Ide, if S1

f−→ S2 there exists v ∈ dom (τ) such
that �(v)= S1 and v.f ∈Qτ . Let S1, S2 ∈N and let f ∈ Ide such that S1

f−→ S2. By construction,
there exists v ∈ S1 s.t. v.f ∈ S2. Obviously, S1 = [v]∼ = �(v). Moreover S2 = [v.f]∼ ∈N and
therefore v.f ∈ [v.f]∼ ⊆ �−11 (N1)∩ �−12 (N2)⊆Qτ .

A small lemma). Note that �(i)= [i]∼ for any i ∈N and �(i)=⊥ otherwise. The proof is
analogous to the one for�, hence it is omitted here.

G ∈ Gτ). We have to prove that for each S ∈N, the set {τ (i) | i ∈ Iτ ∧ �(i)= S} is a nonempty
chain. By construction for each S ∈N, there exists j ∈ Iτ such that S= [j]∼ and τ ([j]∼) is a
chain. Note that τ ([j]∼)= {τ (i) | i ∈ Iτ ∧ i∼ j}. By the previous small lemma τ ([j]∼)= {τ (i) |
i ∈ Iτ ∧ �(i)= �(j)} = {τ (i) | i ∈ Iτ ∧ �(i)= S} which is the require property.

G is a lower bound of G1 and G2. Let us consider the map h1 :N1→N such that h1(n1)= [i]∼ if
i ∈ Iτ , �1(i)= n1 and [i]∼ ∈N, h1(n1)=⊥ otherwise. First, we prove that h1 is well defined.
Let j ∈ Iτ such that �1(j)= n1. By definition, i∼ j and therefore [i]∼ = [j]∼ ∈N. Moreover,
note that h1(�1(i))= [i]∼ = �(i) both when [i]∼ ∈N and [i]∼ /∈N. Therefore, h1 :G1→G.
The same holds for h2 :G→G2.

G is the greatest lower bound of G1 and G2. Let G′ ∈ Gτ and assume that G′ �G1 and G′ �G2
with the corresponding morphisms h′1 and h′2 (by Theorem 99).

First of all, observe that for each i, j ∈ Iτ
[i]∼ = [j]∼⇒ �′(i)= �′(j) . (A1)

In fact, if [i]∼ = [j]∼, there is a sequence i= i1 ∼ · · · ∼ it = j such that �1(is)= �1(is+1)
or �2(is)= �2(is+1) for each s ∈ {1, . . . , t− 1}. If �1(is)= �1(is+1), then �′(is)= h′1(�1(is))=
h′1(�1(is+1))= �′(is+1). Analogously if �2(is)= �2(is+1). As a result, we have �′(i)= �′(j). Note
that this implies:

{j | j ∈ Iτ ∧ �(j)= �(i) �= ⊥} ⊆ {j | j ∈ Iτ ∧ �′(j)= �′(i)} . (A2)

We need to build a morphism h′ :G→G′. For each S ∈N, consider a qualified identifier i ∈ Iτ
such that �(i)= [i]∼ = S and we define h′(S)= �′(i). We only need to prove that h′ is well
defined and that it is a morphism. Assume there is j ∈ Iτ , with j �= i and �(j)= [j]∼ = S. By
(A1), we have �′(i)= �′(j) and therefore h′ is well defined.

Now, we prove that �′(i)= h′(�(i)). If �(i) ∈N, this is immediate, since h′(�(i)) is �′(i′) for
some identifier i′ such that �(i)= �(i′). Obviously i′ = i is a good choice, hence �′(i)= h′(�(i)).
If �(i)=⊥, the proof is by contradiction. Assume that �′(i)= n′ �= ⊥.

Since �(i)=⊥, we have one of the following possibilities:
• τ ([i]∼) is not a chain. In this case, by (A2), τ ([i]∼)⊆ {τ (j) | j ∈ Iτ ∧ �′(j)= n′}. Therefore,
{τ (j) | j ∈ Iτ ∧ �′(j)= n′} is not a chain and this contradicts the fact that G′ is an aliasing
graph.

• [i]∼ �⊆ �−11 (N1)∩ �−12 (N2). In this case, by (A2), {j | j ∈ Iτ ∧ �′(j)= n′} �⊆ �−11 (N1)∩
�−12 (N2). This means that there exists j ∈ Iτ such that �′(j)= n′ and �1(j)=⊥ or �2(j)=
⊥. Now, we have a contradiction, since by definition of morphism and by Theorem 99
either G′ ��G1 or G′ ��G2.

• [v.f]∼ = [i]∼ and [v]∼ /∈N. We define
– X0 = {[i]∼ | i ∈ Iτ , τ ([i]∼) is a chain and [i]∼ ⊆ �−11 (N1)∩ �−12 (N2)};
– Xn+1 = Xn \ {[v.f]∼ ∈ Xn | [v]∼ /∈ Xn}.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

88 G. Amato et al.

By definition and since Iτ is finite, there exists m≥ 0 such that N =⋂
n≤m Xn. Since

[v]∼ /∈N, there exists a least n≤m such that [v]∼ /∈ Xn. Now the proof is by induction
on n.
– [v]∼ /∈ X0. By previous points �′(v)=⊥ and therefore �′(v.f)=⊥.
– [v]∼ /∈ Xn+1. Since [v]∼ ∈ Xn there exists w ∈ dom (τ) such that [w.f′]∼ = [v]∼ and
[w]∼ /∈ Xn. By inductive hypothesis �′(w)=⊥ and therefore �′(w.f′)=⊥. Then by
(A1), �′(v)= �′(w.f′)=⊥, �′(i)= �′(v.f)=⊥ and we have a contradiction.

Theorem 48. The preordered set (Gτ ,�) has

• a least element⊥τ =∅ � ∅ �⊥ where⊥ is the always undefined map;
• a greatest element �τ = Iτ � E � id where n1

f−→ n2 ∈ E ⇐⇒ n1 = v ∈ dom (τ)∧ n2 = v.f ∈
Qτ ;

• a least upper bound G1 �G2 for each G1,G2 ∈ Gτ ;
• a greatest lower bound G1 �G2 for each G1,G2 ∈ Gτ .

Proof. Immediately follows by Theorems 101 and 102.

A.2.2 Projection and propagation of nullness for aliasing graphs
Lemma 103. If G is a pre-aliasing graph and X⊆N, then G|X is a pre-aliasing graph.

Proof. Assume G is a pre-aliasing graph. In G|X , the first condition for pre-aliasing graph is triv-
ially respected, since projection does not introduce any new edge. The second condition is also
respected, since no new edges are introduced and labels for nodes in X are preserved. Therefore,
G|X is a pre-aliasing graph.

Proposition 50. If G ∈ Gτ and X⊆N is backward closed, then G|X ∈ Gτ . Moreover, for each n ∈ X,
τG|X (n)= τG(n) and ψG|X (n)=ψG(n).

Proof. Let G|X = X � E′ � �′. First of all, G|X is a pre-aliasing graph by Lemma 103. Now consider
n ∈ X and the set Y = {τ (i) | i ∈ Iτ ∧ �′(i)= n}. Note that, for each i ∈ Iτ , �(i)= n iff �′(i)= n. This
is obvious when i is a variable simply by definition of �′. If i= v.f and �(i)= n, then there ism ∈N
such that �(v)=m and m f−→ n ∈ E. Since X is backward closed, then m ∈ X, hence �′(v)=m,
m f−→ n ∈ E′ and �′(i)= n. On the converse, if �′(i)= n, then �(i)= n follows trivially by definition
of �′.

Therefore, Y = {τ (i) | i ∈ Iτ ∧ �(i)= n} and it is a nonempty chain since G is an aliasing graph.
Then G|X is an aliasing graph and τG|X (n)= τG(n) for each n ∈ X. In the same way, ψG|X (n)=
ψG(n) for each n ∈ X.

Proposition 51. If G is a pre-aliasing graph and X⊆N is backward closed, then G|X �G.

Proof. Let G|X = X � E′ � �′. Consider the partial map h :N � X which is the identity on X and
undefined on N \ X. We show h :G→G|X is a morphism.

Let i be an identifier. If i is a variable v and �′(i)=⊥, then �(i) /∈ X, hence h(�(i))=⊥= �′(i). If
�′(i)= n, then n ∈ X, and h(�(i))= h(n)= n= �′(i). If i is the qualified identifier v.f, consider the
following cases:

• �(v) /∈ X: Since X is backward closed, �(i) /∈ X. Therefore, h(�(i))=⊥= �′(v).f= �′(i).

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 89

• �(v) ∈ X and �(v.f) /∈ X: Then �(v)= �′(v)= n ∈ X, �(v.f)=m /∈ X and n f−→m ∈ E. By defi-
nition of E′, there is no outgoing edge from n labeled by f in G|X . Hence, h(�(v.f))= h(m)=
⊥= �′(v.f)= �′(v).f= n.

• �(v) ∈ X and �(v.f) ∈ X: Then �(v)= �′(v)= n ∈ X, �(v.f)=m ∈ X and n f−→m ∈ E. By defi-
nition of E′, n f−→m ∈ E′, hence �′(v.f)=m. Therefore, h(�(v.f))= h(m)=m= �′(v.f).

A.2.3 The domain of aliasing graphs
The following propositions show that the abstraction of a concrete state is an aliasing graph and
that each aliasing graph can be viewed as the abstraction of a concrete state.

Proposition 53. Given σ = φ � μ ∈�τ , G= αa(σ) is an aliasing graph and, for each i ∈ Iτ , �(i)=
φ(i) if φ(i) �= null, �(i)=⊥ otherwise.

Proof. First of all, we prove G is a pre-aliasing graph. If l f−→ l′ and l f−→ l′′, then l.f= l′ = l′′, hence
l′ = l′′. Moreover, there exists v ∈ dom (τ) s.t. �(v)= l and v.f ∈Qτ .

Now we prove �(i)= φ(i) for each i ∈ Iτ (modulo the fact that null corresponds to ⊥). If
i ∈ dom (τ), the thesis follows directly by definition. Otherwise i= v.f. If φ(v)= null, we have
φ(v.f)= null, �(v)= �(v.f)=⊥. If φ(v)= l �= null, then φ(v.f)= φ(v).f= l.f. Then �(v)= l,
l f−→ l.f ∈ E, and �(v.f)= l.f= φ(v.f) if and only if φ(v.f) �= null.

Finally, we prove that G is an aliasing graph. Given a node l, we consider the set τ (�−1(l))=
τ ({i ∈ Iτ | �(i)= l})= τ ({i ∈ Iτ | φ(i)= l}). By Proposition 21, we have that τ (i)≥ τ (φ(i)) for each
i such that φ(i) �= null. Therefore, κ ∈ τ (�−1(l)) implies κ ≥ τ (l). Since we do not allow multiple
inheritance, this means τ (�−1(l)) is a chain.

Proposition 54. Given G ∈ Gτ , there exists σ ∈�τ s.t. αa(σ) and G are equivalent, that is,
αa(σ)∼ G.

Proof. Let L be a set of locations of the same cardinality of N, and ι :N→ L be a bijective map.
Consider the state σ = φ � μ such that dom (μ)= L and:

• for each v ∈ dom (τ), if �(v)= n, then φ(v)= ι(n), otherwise φ(v)= null;
• for each n ∈N, μ(ι(n))= κn � φn where κn = τG(n)
• for each n ∈N and f ∈ dom (κn), if there is n′ ∈N such that n f−→ n′ ∈ E, then φn(f)= ι(n′),
otherwise φn(f)= null.

It is easy to check that σ ∈�τ . Let G′ = αa(σ) and we prove that ι :G→G′ is an isomorphism.
Since ι is total and injective, by Proposition 97 it is enough to prove that ι is a graph morphism.
In turn, this means proving that, for each identifier i ∈ Iτ , ι(�(i))= �′(i)= φ(i) when φ(i) �= null
and ι(�(i))=⊥ when φ(i)= null.

• for each v ∈ dom (τ), if �(v)= n, then φ(v)= ι(n), hence ι(�(v))= φ(v). Otherwise, if �(v)=
⊥ then φ(v)= null and ι(�(v))=⊥;

• for each v.f ∈Qτ such that �(v.f)= n′ �= ⊥, then �(v)= n �= ⊥ and n f−→ n′ ∈ E. Since both
n, n′ ∈N and φ(v)= ι(n), we have φn(f)= ι(n′), that is, φ(v.f)=μ(ι(n)).φ(f)= φn(f)=
ι(n′)= ι(�(v.f));

• for each v.f ∈Qτ such that �(v.f)=⊥, either �(v)=⊥ or �(v)= n �= ⊥. In the first case,
φ(v)= null, hence φ(v.f)= null. Otherwise, there is no n′ such that n f−→ n′ which means
φ(v.f)= φn(f)= null.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

90 G. Amato et al.

Theorem 55. The preorder � is the same preorder induced by γa, that is, given G1,G2 ∈ Gτ , G1 �
G2 iff γa(G1)⊆ γa(G2).

Proof. That G1 �G2 implies γa(G1)⊆ γa(G2) is trivial. On the converse, assume γa(G1)⊆ γa(G2)
and consider a state σ such that αa(σ)∼G1 (it exists by Proposition 54). Since αa(σ)�G1 we have
σ ∈ γa(G1)⊆ γa(G2), that is, αa(σ)�G2. ByG1 � αa(σ), we have the required resultG1 �G2.

A.3 ALPS graphs
We begin by proving that � is a preorder on ALPS-graphs.

Proposition 57. Pre-ALPS graphs are preordered by the relation � defined as:

G1 �G2 ⇐⇒G1 �G2 and ∀i ∈ Iτ . �1(i) ∈ nl1⇒ �2(i) ∈ nl2 and
∀i, j ∈ Iτ . {�1(i), �1(j)} ∈ sh1⇒{�2(i), �2(j)} ∈ sh2 .

Proof. Reflexivity is trivial. Assume now G1 �G2 and G2 �G3. By definition G1 �G2 and G2 �
G3 and since � is a preorder on aliasing graphs, we have that G1 �G3. Moreover, �1(i) ∈ nl1⇒
�2(i) ∈ nl2, �2(i) ∈ nl2⇒ �3(i) ∈ nl3 and therefore �1(i) ∈ nl1⇒ �3(i) ∈ nl3. Analogously, we have
{�1(i), �1(j)} ∈ sh1⇒{�3(i), �3(j)} ∈ sh3.

We now prove some properties of cl↑ and red, and of their interaction.

Proposition 104. (Closures of pre-ALPS graphs). The operators cl↑ and red are an upper and
lower closure operator, respectively. Moreover, if G is closed w.r.t. red, then cl↑ (G) is closed w.r.t.
red, too.

Proof. The fact that red and cl↑ are closure operators is immediate from their definition. It
remains to prove that cl↑ preserves closedness w.r.t. red.

First of all, every set {n} is G-SH-compatible with any type environment, since κ ∈ C(κ).
Moreover, if there is a nonempty loop involving node n, then n f−→m and there is a path fromm to
n. By Proposition 95, this means that τG(n) ∈ C(τG(m)) and by definition of τG, τG(m)≤ τG(n).f.
Hence, τG(n) ∈ C(τG(n).f), τG(n) ∈NL and n is G-NL-compatible.

Assume now that {n,m} is G-SH-compatible and n′ f−→ n. Then C(τG(n))∩ C(τG(m)) �= ∅
and by Proposition 95, τG(n) ∈ C(τG(n′)), hence C(τG(n′))⊇ C(τG(n)). Therefore, C(τG(n))∩
C(τG(m)) �= ∅ implies C(τG(n′))∩ C(τG(m)) �= ∅, that is,{n′,m} is G-SH-compatible.

Now, assume {m1,m2} is G-SH-compatible, n f1−→m1 and n f2−→m2 with f1 �= f2. Then,
(τG(m1), τG(m2)) ∈ SH and therefore C(τG(m1))∩ C(τG(m2)) �= ∅. Moreover, by definition of
τG, τG(m1)≤ τG(n).f1, τG(m2)≤ τG(n).f2. Therefore, since C is downward closed, we have
C(τG(n).f1)∩ C(τG(n).f2) �= ∅, i.e., τG(n) ∈NL.

Finally, assume that n is G-NL-compatible. This means τG(n) ∈NL. In particular, there exists
κ such that κ ≤ τG(n) and κ is in the least solution of the equation in Definition 33 of NL. When
n′ f−→ n then κ ≤ τG(n)≤ τG(n′).f, i.e., τG(n′)→ κ which implies τG(n′) ∈NL.

A.3.1 Projections and propagation of nullness
Proposition 64. IfG ∈ ALPSτ and X⊆N is backward closed, thenG|X ∈ ALPSτ .

Proof. It is immediate to check that G|X is closed and that red (G|X)=G|X (this holds even if X
is not backward closed). Moreover, since X is backward closed, then G|X is an aliasing graph and
not just a pre-aliasing graph.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 91

Proposition 65. IfG is a pre-ALPS graph and X⊆N is backward closed, thenG|X �G.

Proof. LetG′ =G|X .We know thatG|X �G by Proposition 51. Now, given the identifier i, assume
�′(i) ∈ nl′. This means �′(i)= n ∈ X and n ∈ nl′. By definition, �(i)= n and n ∈ nl. Similarly for the
sharing component.

A.3.2 Up- and down-closures of Pre-ALPS graphs
We introduce a new preorder on ALPS graphs which is apparently different from the one defined
in the main part of the paper. The new definition is based on the concept of morphisms of aliasing
graphs, and it is easier to use than the one in Proposition 57, although we will prove them to be
equivalent.

Proposition 105. Pre-ALPS graphs are preordered by

G1 �̃G2 ⇐⇒ ∃h :G2→G1 s.t. h−1(sh1)⊆ sh2 and h−1(nl1)⊆ nl2,
where

h−1(nl1)= {n ∈N2 | h(n) ∈ nl1} ,
h−1(sh1)= {{n,m} ∈P2(N2) | {h(n), h(m)} ∈ sh1} .

Proof. We show that �̃ is reflexive. Given a pre-ALPS graph G, the only morphism h :G→G
is the identity. Then h−1(sh)= sh and h−1(nl)= nl, hence G �̃G. Assume now G1 �̃G2 and
G2 �̃G3 with h2 :G3→G2 and h1 :G2→G1. We have that h= h1 ◦ h2 :G3→G1. Moreover,
h−1(sh1)= h−12 (h−11 (sh1))⊆ h−12 (sh2)⊆ sh3. Analogously, we have h−1(nl1)⊆ nl3.

Proposition 106. Given pre-ALPS graphsG1 andG2, we haveG1 �̃G2 iffG1 �G2.

Proof. We prove the two implications of the equivalence separately.

⇒) By Proposition 105 and Definition 41 there exists h :G2→G1 such that �1 = h ◦ �2,
h−1(sh1)⊆ sh2 and h−1(nl1)⊆ nl2. Applying �−12 to both sides of set inequalities, we have
�−11 (sh1)= �−12 (h−1(sh1))⊆ �−12 (sh2) and �−11 (nl1)= �−12 (h−1(nl1))⊆ �−12 (nl2).

⇐) By Propositions 57 and 42, there exists h :G2→G1 such that �1 = h ◦ �2. Note that
�−11 (sh1)= �−12 (h−1(sh1))⊆ �−12 (sh2). Since �2 is surjective, �2 ◦ �−12 = id. Therefore, by
applying �2 to both sides, we have h−1(sh1)⊆ sh2. Analogously for nl1 and nl2.

Theorem 68. Given a pre-ALPS graph G=G � sh � nl, the down-closure cl↓ (G) can be computed
as follows. Let sh∗ � nl∗ be the greatest pair, under the component-wise ordering, such that

(1) nl∗ = nl \ {n |m �∈ nl∗ ∧m f−→ n ∈ E};
(2) sh∗ = sh \ {{m1,m2} | n �∈ nl∗, n f1−→m1 ∈ E, n f2−→m2 ∈ E, f1 �= f2} \ {{n,m} | {n′,m} �∈

sh∗ ∧ n′ f−→ n ∈ E}.
Then, we have that

cl↓ (G)= (G � sh∗ � nl∗)|N\−→X
where X= {n | n �∈ nl∗, there is a loop in G such that n f1−→ · · · fk−→ n ∈ E} ∪ {n | {n} �∈ sh∗}. Moreover,
ifG is closed w.r.t. red, then cl↓ (G) is an ALPS graph.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

92 G. Amato et al.

Proof. The following holds.

(1) First of all, observe that nl∗ =⋂
i≥0 nli, where nl0 = nl and for i≥ 0, nli+1 = nli \ {n |m �∈

nli ∧m f−→ n ∈ E}. We first show that nl∗ = nl†, where nl† =N \ {n |m �∈ nl∧m f1−→ · · · fk−→
n ∈ E, k≥ 0}. We prove the two inclusions separately.
nl† ⊆ nl∗) The proof is by contradiction. Let us assume that nl† �⊆ nl∗. Since nl† ⊆ nl, there

exists j≥ 0 such that nl† �⊆ nlj+1 and nl† ⊆ nlj. Therefore, there exist n ∈ nl† and j≥ 0
such that n ∈ nlj and n �∈ nlj+1. By definition of nlj+1, there exists m �∈ nlj such that
m f−→ n ∈ E. Since by hypothesis nl† ⊆ nlj, we have that m �∈ nl† and, by definition of

nl†, there exists m′ f1−→ · · · fk−→m ∈ E such that m′ �∈ nl. Therefore, there exists m′ f1−→
· · · fk−→m f−→ n ∈ E such thatm′ �∈ nl. By definition of nl†, n �∈ nl† and this contradicts
the hypothesis.

nl∗ ⊆ nl†) Let n �∈ nl†. By definition there exists m �∈ nl such that m f1−→ · · · fk−→ n ∈ E. We
prove by induction on k that n �∈ nl∗.
– k= 0). In this case n=m �∈ nl and therefore n �∈ nl∗.
– k> 0). In this case m f1−→ · · · n′ fk−→ n ∈ E and m �∈ nl. By inductive hypothesis n′ �∈
nl∗ and n′ fk−→ n ∈ E. Therefore, by definition of nl∗, n �∈ nl∗ and then the thesis.

(2) First of all, observe that by the previous result, it holds that
sh∗ = S \ {{n,m} | {n′,m} �∈ sh∗ ∧ n′ f−→ n ∈ E} where
S= sh \ {{m1,m2} | m �∈ nl∧m

g1−→ · · · gk−→ n ∈ E, k≥ 0,

n f1−→m1 ∈ E, n f2−→m2 ∈ E, f1 �= f2}
and therefore sh∗ =⋂

i≥0 shi, where sh0 = S and for i≥ 0, shi+1 = shi \ {{n,m} | {n′,m} �∈
shi ∧ n′ f−→ n ∈ E}. We show that sh∗ = sh† where
sh† = sh \ {{m1,m2} | m �∈ nl,m f1−→ · · · fk−→m1 ∈ E,

m
g1−→ · · · gh−→m2 ∈ E, k≤ h, f1 · · · fk �= g1 · · · gk}

\ {{n,m} | {n′,m} �∈ sh∧ n′ f1−→ · · · fk−→ n ∈ E}
We prove the two inclusions separately.
sh† ⊆ sh∗) The proof is by contradiction. Let us assume that sh† �⊆ sh∗. Since by definition

sh† ⊆ S= sh0 there exists j≥ 0 such that sh† ⊆ shj and sh† �⊆ shj+1. Therefore, there
exist {n,m} ∈ sh† and j≥ 0 such that {n,m} ∈ shj and {n,m} �∈ shj+1. By definition of
shj+1, there exists {n′,m} �∈ shj such that n′

f−→ n ∈ E. Since by hypothesis sh† ⊆ shj, we
have that {n′,m} �∈ sh†. By definition of sh†, we have the following possibilities:
a. p �∈ nl, p f1−→ · · · fk−→ n′ ∈ E and p

g1−→ · · · gh−→m ∈ E and f1 · · · fy �= g1 · · · gy,
where y is the minimum between k and h. Since n′ f−→ n ∈ E, we have that p f1−→
· · · fk−→ n′ f−→ n ∈ E. Moreover, f1 · · · fx �= g1 · · · gx, where x= y if k≥ h and x=
y+ 1 if k< h. By definition {n,m} �∈ sh† and then we have a contradiction.

b. there exists {p,m} �∈ sh such that p f1−→ · · · fk−→ n′ ∈ E. In this case p f1−→ · · · fk−→
n′ f−→ n ∈ E. Therefore, {n,m} �∈ sh† and this contradicts the hypothesis.

sh∗ ⊆ sh†) Let {n,m} �∈ sh†. By definition we have the following possibilities:
a. {n,m} �∈ sh. In this case {n,m} �∈ sh∗.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 93

b. there exists {n′,m} �∈ sh such that n′ f1−→ · · · fk−→ n ∈ E. We prove by induction on
k that {n,m} �∈ sh∗.
k= 0) In this case n′ = n and {n,m} �∈ sh. Therefore {n,m} �∈ sh∗.
k> 1) n′ f1−→ · · · fk−1−−→ n′′ fk−→ n ∈ E. By inductive hypothesis {n′′,m} �∈ sh∗ and

then, by definition of sh∗, {n,m} �∈ sh∗.
c. there exists m′ �∈ nl, such that m′ f1−→ · · · fk−→m ∈ E, m′ g1−→ · · · gh−→ n ∈ E, k≤ h

f1 · · · fk �= g1 · · · gk. Let i≥ 1 be the first index such that fi �= gi. Then m′ f1−→
· · · fi−1−−→ ni−1 ∈ E, ni−1

fi−→ ni · · · fk−→m ∈ E, ni−1
gi−→ n′i · · ·

gh−→ n ∈ E and fi �= gi.
By previous result ni−1 �∈ nl† = nl∗ and therefore, by definition of sh∗, {ni, n′i} �∈
sh∗. Now, the proof follows by a straightforward inductive argument.

By previous results, it holds that

X = {n | m �∈ nl∧m f1−→ · · · fk−→ n ∈ E, k≥ 0
and there is a loop in G such that n

g1−→ · · · gh−→ n ∈ E}
∪ {n ∈N | {n} �∈ sh}

= {n | m �∈ nl,m f1−→ · · · fk−→ n ∈ E,
m

g1−→ · · · gh−→ n ∈ E, k≤ h, f1 · · · fk �= g1 · · · gk}
{n | {n′, n} �∈ sh∧ n′ f1−→ · · · fk−→ n ∈ E}

Now, observe that sinceG is a pre-ALPS graph, then G � sh∗ � nl∗ is also a pre-ALPS graph and
by construction, (G � sh∗ � nl∗)�G. Moreover, since N \ −→X ⊆N backward closed, we have that
G′ is a pre-ALPS graph. Then, by Proposition 65G′ � (G � sh∗ � nl∗)�G.

Now, we prove thatG′ is closed.We prove that all conditions in the Definition 60 are respected.

n ∈N′ ⇒ {n} ∈ sh′) The proof is by contradiction. Let us assume that there exists n ∈N′ such that
{n} �∈ sh′. Then n �∈ −→X and {n} �∈ sh∗. Now, we have a contradiction, since X⊇ {n | {n} �∈ sh∗}.

There is a loop in G involving n⇒ n ∈ nl. Let us assume that there is a nonempty loop in G′
involving n such that n �∈ nl′. In this case, there is a nonempty loop in G involving n such
that n �∈ −→X and n �∈ nl∗. Now, we have a contradiction, since X⊇ {n | n �∈ nl∗, there is a loop
in G such that n f1−→ · · · fk−→ n ∈ E}.

G′ is partially closed. We check the three conditions in the definition of partial closure.

{n,m} ∈ sh′ ∧ n′ f−→ n ∈ E′ ⇒ {n′,m} ∈ sh′) Assume that {n,m} ∈ sh′ and n′ f−→ n ∈ E′. Then
n,m, n′ �∈ −→X , {n,m} ∈ sh∗ and n′ f−→ n ∈ E. By definition of sh∗, {n′,m} ∈ sh∗ and since
n′,m �∈ −→X , we have that {n′,m} ∈ sh′.

n f1−→m1 ∈ E′, n f2−→m2 ∈ E′, f1 �= f2, {m1,m2} ∈ sh′ ⇒ n ∈ nl′) Assume that n f1−→m1 ∈ E′,
n f2−→m2 ∈ E′, f1 �= f2, {m1,m2} ∈ sh′. Then n,m1,m2 �∈ −→X and n f1−→m1 ∈ E, n f2−→m2 ∈
E, f1 �= f2, {m1,m2} ∈ sh∗. By definition of sh∗, n ∈ nl∗ and since n �∈ −→X , we have that
n ∈ nl′.

n ∈ nl′ ∧ n′ f−→ n ∈ E′ ⇒ n′ ∈ nl′) Assume that n ∈ nl′ and n′ f−→ n ∈ E′. Then n′ �∈ −→X , n ∈ nl∗

and n′ f−→ n ∈ E. By definition of nl∗, n′ ∈ nl∗ and since n′ �∈ −→X , we have that n′ ∈ nl′.

By Proposition 65, since G is a pre-ALPS graph and N \ −→X ⊆N is backward closed, we have
thatG′ �G.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

94 G. Amato et al.

Now, we have to prove thatG′ is the greatest pre-ALPS graph smaller thanG and such thatG′
is closed. LetG1 be a pre-ALPS graph smaller thanG such thatG1 is closed. We have to prove that
G1 �G′.

Since G1 �G, by Propositions 106 and 105, there exists h1 :G→G1 such that h−11 (sh1)⊆ sh
and h−11 (nl1)⊆ nl.

Let h′1 :G′ →G1 such that for each n ∈N′ h′1(n)= h1(n). We prove that h′1 is a morphism from
G′ to G1, h′1

−1(sh1)⊆ sh† and h′1
−1(nl1)⊆ nl′. Therefore, the thesis follows by Propositions 105

and 106.

h′1 is a morphism from G′ to G1. Let i ∈ Iτ . We have to prove that h′1(�′(i))= �1(i). The following
holds:

• �′(i) �= ⊥. In this case h′1(�′(i))= h1(�(i))= �1(i).
• �′(i)=⊥ and �1(i)=⊥. In this case h′1(�′(i))=⊥= �1(i) and then the thesis.
• �′(i)=⊥ and �1(i)= h1(�(i)) �= ⊥. In this case, sinceG1 �G, we have that �(i) �= ⊥ and
therefore �(i) ∈−→X . Therefore there exists j ∈ X such that �′(j)=⊥, �(j) �= ⊥ and �1(j)=
h1(�(j)) �= ⊥. By definition of X one of the following holds.
– �(j)= n, there exists m �∈ nl such that m f1−→ · · · fk−→ n ∈ E, k≥ 0 and there is a loop in
G such that n

g1−→ · · · gh−→ n ∈ E. In this case, sinceG1 �G, �1(j)= h1(�(j)) �= ⊥ and by
Lemma 96, we have that h1(m) �∈ nl1, h1(m) f1−→ · · · fk−→ h1(n) ∈ E1, k≥ 0 and there is
a loop in G1 such that h1(n)

g1−→ · · · gh−→ h1(n) ∈ E1. Since by hypothesis G1 is closed,
by Point 5 of Definition 60 and by a straightforward inductive argument, we have that
h1(n) �∈ nl1. Therefore, by Point 2 of Definition 60, we have a contradiction, since there
is a loop inG1 involving h1(n) and h1(n) �∈ nl1.

– �(j) ∈ {n ∈N | {n} �∈ sh}. In this case, h1({�(j)}) �∈ sh1. By Point 1 of Definition 60,
h1(�(j))= �1(j) �∈N1 and this contradicts the hypothesis.

– �(j)= n, and there exists m �∈ nl, such that m f1−→ · · · fk−→ n ∈ E, m
g1−→ · · · gh−→ n ∈ E,

k≤ h and f1 · · · fk �= g1 · · · gk. In this case, since G1 �G′, h1(n) �= ⊥, h1(m) �∈ nl1
and by Lemma 96, h1(m) f1−→ · · · fk−→ h1(n) ∈ E1, h1(m)

g1−→ · · · gh−→ h1(n) ∈ E1, k≤ h
and f1 · · · fk �= g1 · · · gk. Let i≥ 1 be the first index such that fi �= gi. Therefore,
we have that h1(m) f1−→ · · · fi−1−−→ h1(ni−1) ∈ E1, h1(ni−1))

fi−→ h1(ni) · · · fk−→ h1(n) ∈ E1,
h1(ni−1)

gi−→ h1(n′i) · · ·
gh−→ h1(n) ∈ E1 and fi �= gi. Since G1 is closed, by Point 2 of

Definition 60 and by a straightforward inductive argument, we have that h1(ni−1) �∈
nl1. Therefore, since G1 is closed and by Point 4 of Definition 60, we have that
{ni, n′i} �∈ sh1. Now, sinceG1 is closed, by Point 3 of Definition 60 and by a straightfor-
ward inductive argument, {h1(n)} �∈ sh1. By Point 1 of Definition 60 h1(n)= �1(j) �∈N1
and this contradicts the hypothesis.

– �(j)= n and there exists {n′, n} �∈ sh such that n′ = n0
f1−→ n1

f2−→ · · · nk−1 fk−→ nk = n ∈
E. In this case, since G1 �G′, {h1(n′), h1(n)} �∈ sh1. Moreover, since h1(n) �= ⊥ and by
Lemma 96, h1(n′)= h1(n0)

f1−→ h1(n1) · · · h1(nk−1) fk−→ h1(nk)= h1(n) ∈ E1. Therefore,
there exists l ∈ [1, n] such that {h1(nl−1), h1(nl)} �∈ sh1 and h1(nl−1)

fl−→ h1(nl). Now,
by Point 3 of Definition 60 {h1(nl)} �∈ sh1. If l= k, then we have a contradiction,
since by Point 1 of Definition 60, h1(nk)= �1(j) �∈N1. Otherwise l< k and h1(nl)

fl+1−−→
h1(nl+1) ∈ E1. Since {h1(nl)} �∈ sh1, by Point 3 of Definition 60, {h1(nl), h1(nl+1)} �∈ sh1.
Now the proof follows by a straightforward inductive argument.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 95

h′1
−1(nl1)⊆ nl′) Assume that there exists n ∈ h′1

−1(nl1) such that n �∈ nl′. Since G1 �G and by
definition of h′1, we have that n ∈ h−11 (nl1)⊆N, n ∈N′ and n �∈ nl†. By definition of nl†, there
exists m �∈ nl such that m f1−→ · · · fk−→ n ∈ E. Then, since G1 �G, h1(n) �= ⊥ and by Lemma
96, we have that h1(m) �∈ nl1 and h1(m) f1−→ · · · fk−→ h1(n) ∈ E1. Since G1 is closed and by a
straightforward inductive argument we have that h1(n)= h′1(n) �∈ nl1 and this contradicts the
hypothesis.

h′1
−1(sh1)⊆ sh′) Assume that there exists {m1,m2} ∈ h′1

−1(sh1) such that {m1,m2} �∈ sh′. Since
G1 �G and by definition of h′1, we have that {m1,m2} ∈ h−11 (sh1)⊆ sh, m1,m2 ∈N′ and
{m1,m2} �∈ sh†. By definition of sh†, the following holds:

(1) there exists m �∈ nl, m f1−→ · · · fk−→m1 ∈ E, m
g1−→ · · · gh−→m2 ∈ E, k≤ h f1 · · · fk �=

g1 · · · gk. Then, since G1 �G, h1(m1) �= ⊥ h1(m2) �= ⊥ and by Lemma 96, we have
that h1(m) �∈ nl1 and h1(m) f1−→ · · · fk−→ h1(m1) ∈ E1, h1(m)

g1−→ · · · gh−→ h1(m2) ∈ E1, k≤
h f1 · · · fk �= g1 · · · gk. Let i≥ 1 be the first index such that fi �= gi. Therefore,
we have that h1(m) f1−→ · · · fi−1−−→ h1(ni−1) ∈ E1, h1(ni−1)

fi−→ h1(ni) · · · fk−→ h1(m1) ∈ E1,
h1(ni−1)

gi−→ h1(n′i) · · ·
gh−→ h1(m2) ∈ E1 and fi �= gi. Analogously to the previous case

h1(ni−1) �∈ nl1. Therefore, since G1 is closed and by Point 4 of Definition 60, we have
that {h1(ni), h1(n′i)} �∈ sh1. Now, since G1 is closed, by Point 3 of Definition 60 and
by a straightforward inductive argument, we have that {h1(m1), h1(m2)} �∈ sh1 and this
contradicts the hypothesis.

(2) there exists {n′,m2} �∈ sh such that n′ f1−→ · · · fk−→m1 ∈ E. Then, since G1 �G,
h1(m1) �= ⊥ h1(m2) �= ⊥ and by Lemma 96, we have that {h1(n′), h1(m2)} �∈ sh1 and
h1(n′)

f1−→ · · · fk−→ h1(m1) ∈ E1. Now, sinceG1 is closed, by Point 3 of Definition 60 and
by a straightforward inductive argument, we have that {h1(m1), h1(m2)} �∈ sh1 and this
contradicts the hypothesis.

Finally, we have to prove that if G is closed w.r.t. red then cl↓ (G) is a ALPS graph. By previous
result, we have only to prove that cl↓ (G) is closed w.r.t. red. The following holds:

sh′ is G′-SH-compatible. Assume {n,m} ∈ sh′. By construction, τG′(n)= τG(n), τG′(m)= τG(m)
and {n,m} ∈ sh. Since by hypothesisG=G � sh � nl is a pre-ALPS, we have that G graph is an
aliasing graph and therefore (τG′(n), τG′(m))= (τG(n), τG(m)) ∈ SH.

nl′ is G′-NL-compatible. The proof is analogous to the previous one.

A.3.3 The lattice of ALPS graphs
Among the clauses defining the operation cl↑ on pre-aliasing graphs, clauses 3, 4, and 5 of
Definition 60 enjoy some special properties, since closure w.r.t. these clauses is preserved by
counter-image of graph morphisms. This is formally stated by the following definition and
lemma.

Definition 107. We say that a pre-ALPS graphG is partially closed when

• {n,m} ∈ sh∧ n′ f−→ n⇒{n′,m} ∈ sh;
• n f1−→m1, n

f2−→m2, f1 �= f2, {m1,m2} ∈ sh⇒ n ∈ nl;
• n ∈ nl∧ n′ f−→ n⇒ n′ ∈ nl.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

96 G. Amato et al.

Lemma 108. Let G1 and G2 be aliasing graphs, with h :G2→G1. The following properties hold:

• if {n1,m1} ⊆N1 is G1-SH-compatible, then h−1({n1,m1}) is G2-SH-compatible;
• if n1 ∈N1 is G1-NL-compatible, then h−1(n1) is G2-NL-compatible;
• if G1 � sh1 � nl1 is partially closed, then G2 � h−1(sh1) � h−1(nl1) is partially closed, too.

Proof. For the first point, assume {n1,m1} is G1-SH-compatible and {n2,m2} ∈ h−1({n1,m1}).
By Lemma 96, τG2 (n2)≥ τG1 (n1) and τG2 (m2)≥ τG1 (m1). This implies that {n2,m2} is G2-SH-
compatible. The proof for the second point is similar.

For the third point, the following holds:

• Assume that {n,m} ∈ h−1(sh1) and n′ f−→ n ∈ E2. Then {h(n), h(m)} ∈ sh1 and by Lemma 96,
h(n′) f−→ h(n) ∈ E1. Since sh1 � nl1 is partially closed this implies {h(n′), h(m)} ∈ sh1, hence
{n′,m} ∈ h−1(sh1).

• Now, assume n f1−→m1, n f2−→m2 ∈ E2, f1 �= f2 and {m1,m2} ∈ h−1(sh1). Then
{h(m1), h(m2)} ∈ sh1 and by Lemma 96, h(n) f1−→ h(m1), h(n)

f2−→ h(m2) ∈ E1. Since sh1 � nl1
is partially closed this implies h(n) ∈ nl1, hence n ∈ h−1(nl1).

• Finally, assume n ∈ h−1(nl1) and n′ f−→ n ∈ E2. Then h(n) ∈ nl1 and by Lemma 96, h(n′) f−→
h(n) ∈ E1. Since sh1 � nl1 is partially closed, this means h(n′) ∈ nl1 and n′ ∈ h−1(nl1).

Lemma 109. LetG1 andG2 be ALPS graphs. ThenG1 �G2 is an ALPS graph.

Proof. LetG=G1 �G2. The proof thatG is an aliasing graph and that for k= 1, 2,Gk �G follows
by Theorem 101. Let h1 :G→G1, h2 :G→G2 be the corresponding morphisms. We prove that
all conditions in the definition of ALPS graph are respected.

sh is G-SH-compatible. If {n,m} ∈ sh, ∃k ∈ {1, 2} such that {hk(n), hk(m)} ∈ shk. Now the proof
follows by the first point of Lemma 108 and since by hypothesisGk is an ALPS graph.

nl is G-NL-compatible. The proof is similar to the previous one by using the second point of
Lemma 108 and hence it is omitted.

{{n} | n ∈N} ⊆ sh) Let n ∈N. From Lemma 100 there is k ∈ {1, 2} such that hk(n) �= ⊥. Then
{hk(n)} ∈ shk sinceGk is a ALPS graph, hence {n} ∈ sh.

if there is a nonempty loop in G involving n, then n ∈ nl. Assume there is a loop in N such that
n f1−→m1

f2−→ · · · fr−→ n. By Lemma 100, there exists k ∈ {1, 2} such that hk(n) �= ⊥. By proceed-
ing backward from the last edge toward the first using Lemma 96, we have that hk(n)

f1−→
hk(m1)

f2−→ · · · fr−→ hk(n) is a loop in Gk involving hk(n). Therefore, hk(n) ∈ nlk and n ∈ nl.
G is partially closed. By the third point of Lemma 108 and sinceG1 andG2 are ALPS graphs, we

have that G � h−1k (shk) � h−1k (nlk) is partially closed, for k= 1, 2. Now, the following holds:

• Assume that {n,m} ∈ sh∧ n′ f−→ n ∈ E. Since sh= h−11 (sh1)∪ h−12 (sh2) there is k ∈ {1, 2}
such that {n,m} ∈ h−1k (shk). Then, since Gk � h−1k (shk) � h−1k (nlk) is partially closed, we
have that {n′,m} ∈ shk ⊆ sh;

• Assume that n f1−→m1, n f2−→m2 ∈ E, f1 �= f2, {m1,m2} ∈ sh. Since sh= h−11 (sh1)∪
h−12 (sh2) there is k ∈ {1, 2} such that {m1,m2} ∈ h−1k (shk). Then, since G � h−1k (shk) �
h−1k (nlk) is partially closed, we have that n ∈ h−1k (nlk)⊆ nl;

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 97

• Assume that n ∈ nl∧ n′ f−→ n. Since by definition nl= h−11 (nl1)∪ h−12 (nl2) there is k ∈
{1, 2} such that n ∈ h−1k (nlk). Then, since G � h−1k (shk) � h−1k (nlk) is partially closed, we
have that n′ ∈ h−1k (nlk)⊆ nl and then the thesis.

Lemma 110. LetG1 andG2 be ALPS graphs. ThenG1 �G2 is the least upper bound ofG1 andG2.

Proof. Let G=G1 �G2. By Lemma 109 we have that G1 �G2 is an ALPS graph. The following
holds:

G is an upper bound ofG1 andG2. By Theorem 101 for k= 1, 2, Gk �G1 �G2 =G and let hk :
G→Gk be the corresponding morphism. We have that hk−1(shk)⊆ h1−1(sh1)∪ h2−1(sh2)=
sh and hk−1(nlk)⊆ h1−1(nl1)∪ h2−1(nl2)= nl. Then the thesis follows by Propositions 105
and 106.

G is the least upper bound ofG1 andG2. Let G′ be an ALPS graph and assume that G1 �G′
and G2 �G′. Obviously G�G′ since G=G1 �G2. Let h′1 :G′ →G1, h′2 :G′ →G2 be mor-
phisms of aliasing graphs, they factor through h :G′ →G and h1 :G→G1, h2 :G→G2,
that is, h′1 = h1 ◦ h and h′2 = h2 ◦ h. Since, by Propositions 105 and 106, h′k

−1(shk)⊆ sh′,
we have h−1(h−1k (shk))⊆ sh′, hence h−1(sh)= h−1(h−11 (sh1)∪ h−12 (sh2))= h−1(h−11 (sh1))∪
h−1(h−12 (sh2))⊆ sh′. Similarly for the nonlinearity component. Therefore, the proof follows
by Propositions 105 and 106.

Lemma 111. LetG1 andG2 be ALPS graphs. ThenG1 �G2 is the greatest lower bound ofG1 and
G2.

Proof. LetG=G1 �G2. By definition 72G= cl↓ (G′), where

• G′ =G1 �G2 with morphisms h1 :G1→G and h2 :G2→G;
• sh′ = {{n,m} ∈P2(N) | ∀k ∈ {1, 2} h−1k ({{n,m}})⊆ shk};
• nl′ = {n ∈N | ∀k ∈ {1, 2} h−1k (n)⊆ nlk};

The proof that G′ is an aliasing graph and that for k= 1, 2, G′ �Gk follows by Theorem 102. Let
h1 :G1→G′, h2 :G2→G′ be the corresponding morphisms. The following holds:

G is a ALPS graph. By Theorem 68, we have only prove that G′ is closed wrt red. The following
holds:
sh′ is G′-SH-compatible. Assume {n,m} ∈ sh′. By the third point of Lemma 96, for each

k ∈ {1, 2}, there are nodes nk,mk ∈Nk s.t. hk(nk)= n, hk(mk)=m, τGk(nk)= τG′(n), and
τGk(mk)= τG′(m).Moreover, by definition of sh′, {nk,mk} ∈ shk. SinceGk is an ALPS graph,
we have (τG′(n), τG′(m))= (τGk(nk), τGk(mk)) ∈ SH and then the thesis.

nl′ is G′-NL-compatible. Assume n ∈ nl′. By the third point of Lemma 96, for each k ∈ {1, 2},
there exists nk ∈Nk s.t. h(nk)= n, τGk(nk)= τG′(n) and by definition of nl′, nk ∈ nlk. Since
Gk is an ALPS graph, τG′(n)= τGk(nk) ∈NL.

G is a lower bound ofG1 andG2. By definition G�G′. Therefore, it is sufficient to prove that
G′ is a lower bound ofG1 andG2. By Theorem 102 for k= 1, 2,G′ =G1 �G2 �Gk. If {n,m} ∈
sh′, then h−1k ({n,m})⊆ shk by definition and therefore h−1k (sh′)⊆ shk. Analogously, if n ∈ nl′,
then h−1k (n)⊆ nlk and then h−1k (nl′)⊆ nlk. Hence, for k= 1, 2, by Propositions 105 and 106,
G′ �Gk.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

98 G. Amato et al.

G is the greatest lower bound ofG1 andG2. LetG∗ be an ALPS graph smaller thanG1 andG2,
with corresponding morphisms h∗1 and h∗2, and prove that G∗ �G′. By Proposition 106, we
have to prove the following facts.
G∗ �G′. Obviously G∗ �G1 �G2 =G′ and therefore there is h∗ :G′ →G∗ s.t. h∗k = h∗ ◦ hk.
h∗−1(sh∗)⊆ sh′. Let {n,m} ∈ h∗−1(sh∗). Since for k= 1, 2, G∗ �Gk, by Propositions 105

and 106, h∗k
−1(sh∗)⊆ shk. Moreover h∗k

−1 = h−1k ◦ h∗−1 and then

hk−1({n,m})⊆ h−1k (h∗−1(sh∗))= h∗k
−1(sh∗)⊆ shk.

By Definition 72 sh′ = {{n′,m′} ∈P2(N) | ∀k ∈ {1, 2}.h−1k ({n′,m′})⊆ shk}. Therefore,
{n,m} ∈ sh′ and then the thesis.

h∗−1(nl∗)⊆ nl′. The proof is similar to the one for the previous point.
Therefore, we have that G∗ �G′. Moreover since G∗ is closed and G is the greatest closed
pre-ALPS graph smaller thanG′, we have thatG∗ �G.

Theorem 74. The preordered set of ALPS graphs has

• a least element⊥τ � ∅ � ∅;
• a greatest element�τ � sh � nl, where
– sh= {{n,m} ∈P2(Iτ) | (τ (n), τ (m)) ∈ SH} and
– nl= {n ∈ Iτ | τ (n) ∈NL};

• a least upper boundG1 �G2 for each pairG1 andG2 of ALPS graphs;
• a greatest lower boundG1 �G2 for each pairG1 andG2 of ALPS graphs.

Proof. The proof that ⊥=⊥τ � ∅ � ∅ and �=�τ � sh � nl are least and greatest element is
straightforward. Given a generic ALPS graph G, it is easy to prove that ⊥�G and G��. For
the latter, if h : �τ →G, Lemma 108 ensures that h−1(nl)⊆�.nl and h−1(sh)⊆�.sh. Now, the
proof follows by Lemmas 110 and 111.

A.3.4 The domain of ALPS graphs
The following proposition shows that the abstraction of a concrete state is an ALPS graph.

Proposition 112. If σ ∈�τ , then α(σ) is an ALPS graph.

Proof. We first prove that if σ ∈�τ then α(σ) is an ALPS graph. Recall that, by Definition 52,
αa(σ)=G where

• N = {l ∈ Loc | ∃i ∈ Iτ φ(i)= l};
• n f−→ n′ ∈ E iff n.f= n′ ∈N;
• �= φ

By Definition 62, we have to prove that

sh is G-SH-compatible. Assume {n,m} ∈ sh. By definition of α(σ), n,m ∈ Loc, n,m share in σ
and there exist i, j ∈ Iτ such that φ(i)= n, φ(j)=m, τ (i)= τG(n), τ (j)= τG(m). Then by
Definition 22, i and j share in σ and by Proposition 32, C(τ (i))∩ C(τ (j)) �= ∅. Therefore, by
previous results, C(τG(n))∩ C(τG(m)) �= ∅ and hence (n,m) ∈ SH.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 99

nl is G-NL-compatible. The proof is analogous to the previous one by using Proposition 34 and
hence it is omitted.

{{n} | n ∈N} ⊆ sh. Straightforward by observing that, by definition of G, if n ∈N there exists
i ∈ Iτ s.t. φ(i)= n. Therefore, n ∈ Loc, n shares with itself in σ and, by Definition 75,
{n} ∈ sh.

If there is a nonempty loop in G involving n, then n ∈ nl. Assume there is a loop in N such that
n f1−→ n1

f2−→ · · · fn−→ n. Therefore, n= n.f1 . . . fn in σ and then by Definition 12, n is not linear
in σ . By Definition 75, n ∈ nl and hence the thesis.

G is partially closed. Assume that {n,m} ∈ sh and n′ f−→ n. By definition of α(σ), n andm share in
σ and then, byDefinition 12, there exists l ∈ dom (μ) such that n ∗−→σ l andm

∗−→σ l. Moreover,
by definition of G, n′.f= n. Therefore, by Definition 12, n′ ∗−→σ l, n′ shares with m in σ and
then, by definition of α(σ), {n′,m} ∈ sh.
Now, assume that n f1−→m1, n

f2−→m2, f1 �= f2 and {m1,m2} ∈ sh. By definition of G, n.f1 =
m1 �= null, n.f2 =m2 �= null and m1,m2 share in σ . Then since f1 �= f2, by Definition 12,
n is nonlinear in σ and therefore, by definition of α(σ), n ∈ nl.
Finally, assume that n ∈ nl and n′ f−→ n. By definition of α(σ) and by Definition 12, there are
two sequence of fields f̄1 �= f̄2 such that n.f̄1 = n.f̄2 �= null. Then, since n′.f= n �= null by
definition of G, we have that n′.f · f̄1 = n′.f · f̄2 �= null, with f · f̄1 �= f · f̄2. Therefore, n′ is
nonlinear in σ and then, by definition of α(σ), n′ ∈ nl.

Proposition 76. (Concretization of ALPS graphs). The concretization map induced by the
abstraction map α satisfies the following property:

γ (G)= {
σ ∈�τ | σ ∈ γa(G),

∀i ∈ Iτ . i nonlinear in σ ⇒ �(i) ∈ nl,
∀i, i′ ∈ Iτ . i share with i′ in σ ⇒{�(i), �(i′)} ∈ sh

}
.

Proof. It is a straightforward application of the definition of α.

Proposition 113. Let σ = φ � μ ∈�τ , i1, i2 ∈ Iτ and letG ∈ ALPS, such that σ ∈ γ (G).

• if φ(i1) �= null, then τ (φ(i1))≤ τG(�(i1)),
• if i1 and i2 share in σ , then {�(i1), �(i2)} ∈P2(N) is G-SH-compatible and C(τ (i1))∩
C(τG(�(i2))) �= ∅.

• if i1 is not linear in σ , then �(i1) ∈N is G-NL-compatible.

Proof. GivenG′ = α(σ), we haveG′ �G. Moreover:

• By Proposition 21, for each j ∈ Iτ such that φ(j)= φ(i1), we have that τ (φ(i1))= τ (φ(j))≤
τ (j) and therefore, by Definition 39, τ (φ(i1))≤ τG′(�′(i1)). Moreover, by Lemma 96,
τG′(�′(i1))≤ τG(�(i1)).

• Now, assume that i1 and i2 share in σ . By Lemma 93, C(τ (φ(i1)))∩ C(τ (φ(i2))) �= ∅. By
Proposition 21, we get C(τ (i1))∩ C(τ (φ(i2))) �= ∅, and by the first point of this proposition,
we get both C(τ (i1))∩ C(τG(�(i2))) �= ∅ and C(τG(�(i1)))∩ C(τG(�(i2))), the latter meaning
that {�(i1), �(i2)} is G-SH-compatible.

• Finally, assume that i1 is not linear in σ . By Lemma 94, τ (φ(i1)) ∈NL. Then, by the first point
of this proposition, we have τG(�(i)) ∈NL, that is, �(i) id G-NL-compatible.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

100 G. Amato et al.

A.4 An abstract semantics on ALPS
A.4.1 Auxiliary operators
Proposition 80. For eachG ∈ ALPSτ and V ⊆ dom (τ), γ (G)‖V ⊆ γ (G‖V).

Proof. Let W =V ∪ {v.f ∈Qτ | v ∈V} and let φ � μ ∈ γ (G)‖V . By definition, there exists φ′ �
μ ∈ γ (G) such that φ = φ′|V and α(φ′ � μ)�G. Let α(φ′ � μ)=G1 � sh1 � nl1, α(φ � μ)=G2 �
sh2 � nl2, G=G � sh � nl and G‖V =G′ � sh′ � nl′. Since α(φ′ � μ)�G by Proposition 57 and
Theorem 42, there exists a morphism h :G→G1, such that ∀i ∈ Iτ .�1(i) ∈ nl1⇒ �(i) ∈ nl and
∀i, j ∈ Iτ . {�1(i), �1(j)} ∈ sh1⇒{�(i), �(j)} ∈ sh. The following holds

(h′ = h|N′ is a morphism from G′ to G2) To prove the statement it is sufficient to observe that, by
Definition 52, for eachw ∈W, h′(�′(w))= h|N′(�|V (w))= h(�(w))= �1(w)= φ(w)= φ′(w)=
�2(w) and then the thesis.

(∀i ∈W.�2(i) ∈ nl2⇒ �′(i) ∈ nl′) Let i ∈W such that �2(i) ∈ nl2. By Definitions 52 and 75, �2(i)=
φ(i)= φ′(i) and φ(i) is not linear in φ � μ. Since φ = φ′|V , we have that φ′(i) is not linear
in φ′ � μ and therefore φ(i)= φ′(i)= �1(i) ∈ nl1. Then �(i) ∈ nl and by definition of G‖V , we
have that �′(i)= �(i) ∈ nl′ and then the thesis.

(∀i ∈W.{�2(i), �2(j)} ∈ sh2⇒{�′(i), �′(j)} ∈ sh′) The proof is similar to the previous one and
hence it is omitted.

By previous results α(φ � μ)�G‖V . Therefore, φ � μ ∈ γ (G‖V) and then the thesis.

Lemma 114. Given i ∈ Iτ , we have that�|i=null is the largest ALPS-graph such that �(i)= null.

Proof. Let us denote by N� the set of nodes in �|i=null and by �� its labeling function. Note
that, if i ∈Qτ , then N� = Iτ \ {i}, otherwise i is a variable v and N� = Iτ \ {v} \ {v.f | v.f ∈Qτ }.
Moreover, note that ��(i)= i if i ∈N�,⊥ otherwise.

Given an ALPS graph G such that �(i)= null, consider the map h :N��N such that h(j)=
�(j) for each j ∈N�. This is a morphism between aliasing graph, since for each identifier j:

• If j /∈N�, then h(��(j))= h(⊥)=⊥. Moreover, j is either i or an identifier i.f. In both cases,
�(j)=⊥.

• If j ∈N�, then h(��(j))= h(j)= �(j).
As a consequence, we also have that �(j) �= ⊥ implies ��(j) �= ⊥. By definition of the sharing and
nonlinearity components of�, it is immediate to check thatG��|i=null.

Proposition 82. For eachG ∈ ALPSτ and i ∈ Iτ ,G|i=null =G��|i=null.

Proof. We prove the two implications of the equality separately.

G|i=null �G��|i=null. By Proposition 65 we know thatG|i=null �G, while from Lemma 114
we have that G|i=null ��|i=null). The result follows since � is the greatest lower
bound.

G��|i=null �G|i=null. LetG1 =G��|i=null andG2 =G|i=null. The following facts hold.
�−11 (N1)⊆ �−12 (N2). Let j ∈ Iτ such that �2(j)=⊥, we show that �1(j)=⊥ too. By definition

of G, if �2(j)=⊥ then either �(j)=⊥ or �(j) ∈−−→{�(i)}. In the latter case, if �′ is the labeling
map of �|i=null, we have that �′(j)=⊥. Hence, either �(j)=⊥ or �′(j)=⊥. Due to the
definition of�, in both cases we have �1(j)=⊥

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 101

G1 �G2. Since G1 �G there exists h1 :N �N1 such that for each j ∈ Iτ , h1(�(j))= �1(j).
Consider h :N2 �N1 such that

h(�2(j))=
{
h1(�(j)) if �2(j) �= ⊥
⊥ otherwise

This is well defined since if �2(j)= �2(j′) �= ⊥, then by definition ofG|i=null, �(j)= �(j′) �=
⊥. Moreover, it is a graph morphism. Given j ∈ Iτ , if �2(j) �= ⊥, then h(�2(j))= �1(j) by
the definition above. Moreover, by the previous point, if �2(j)=⊥, then �1(j)=⊥. Hence
h(�2(j))= �1(j) again.

�−11 (sh1)⊆ �−21 (sh2) . First of all, observe that if {j, j′} ∈ �−11 (sh1), then by previous result and
by definition of � we have that j, j′ ∈N2 and {j, j′} ∈ �−1(sh). Now the thesis is immediate
by definition ofG2.

�−12 (nl2)⊆ �−11 (nl1) . The proof is analogous to the previous one.

Proposition 83. For eachG ∈ ALPSτ and i ∈ Iτ , γ (G)|i=null ⊆ γ (G|i=null).

Proof. If σ ∈ γ (G)|i=null, then σ ∈ γ (G) and φ(i)= null, that is, σ ∈ γ (�|i=null) by
Lemma 114. Therefore, σ ∈ γ (G)∩ γ (�|i=null)⊆ γ (G��|i=null) which is equal to γ (G|i=null)
by Proposition 82.

Proposition 115. Let v ∈ dom (τ) and let G,G′ ∈ ALPS, such that G�G′. Then G|v=null �
G′|v=null.

Proof. The proof is immediate, by observing that by hypothesis and by Proposition 82,G|v=null =
G��|v=null �G′ ��|v=null =G′|v=null.

Lemma 116. Given v,w ∈ dom (τ), we have that �|v=w is the largest ALPS-graph such that �(v)=
�(w).

Proof. Let G be an ALPS graphs such that �(v)= �(w). If τ (v) and τ (w) do not form a chain,
then �(v)= �(w) implies that �(v)= null= �(w), and we have G��|v=w =�|v=null,w=null by
Lemma 114.

If τ (v) and τ (w) do form a chain, let us denote by N� the set of nodes in �|v=w and by ��
its labeling function. Assume, without loss of generality, that τ (v)≤ τ (w). Then N� = Iτ \ {w} \
{w.f | f ∈ dom (τ (w))} and ��(i) is equal to i, with the proviso that any possible occurrence of
w is replaced by v. Consider the map h :N��N such that h(j)= �(j) for each j ∈N�. This is a
morphism between aliasing graphs since for each identifier j:

• if j=w, then h(��(w))= h(v)= �(v)= �(w);
• if j=w.f, then h(��(w.f))= h(v.f)= �(v.f)= �(v).f= �(w).f= �(w.f);
• If j ∈N�, then h(��(j))= h(j)= �(j).

By definition of the sharing and nonlinearity components of �, it is immediate to check that
G��|v=w.

Proposition 84. For eachG ∈ ALPSτ and v,w ∈ dom (τ), γ (G)|v=w ⊆ γ (G|v=w).

Proof. Similar to the proof of Proposition 83.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

102 G. Amato et al.

A.4.2 Abstract semantics
Proposition 117 (Correctness of add). Let φ � μ ∈�τ , i ∈ Iτ , τ ′ = τ [res �→ κres] and let G ∈
ALPS such that φ(i) �= null, τ (φ(i))≤ κres and φ � μ ∈ γ (G). Then φ′ � μ= φ[res �→ φ(i)] � μ ∈
�τ ′ and α(φ′ � μ)� add(G, �(i), κres).

Proof. First of all, observe that since by hypothesis τ (φ(i))≤ κres, φ′ � μ ∈�τ ′ . Now, let G′ =
α(φ � μ), G1 = α(φ′ � μ) and G2 = add(G, �(i), κres). Since in a Galois connection α ◦ γ is
reductive (Section 2), we have thatG′ �G and therefore there exists h′ :G→G′.

Let κ1 =ψG′(�′(i)), κ2 =ψG(�(i)), F1 = dom (κres) \ dom (κ1) and let F2 = dom (κres) \
dom (κ2). SinceG′ �G, by Lemma 96, κ1 ≤ κ2, dom (κ2)⊆ dom (κ1) and therefore F1 ⊆ F2.

Moreover, let W = �′−1(N′)∪ {res} ∪ {res.f ∈Qτ | f �∈ F2}. Since F1 ⊆ F2, G′ �G and by
definition of add, for each w ∈W there exists w∗ ∈ �′−1(N′) such that the following holds:

• �1(w)= �1(w∗)= �′(w∗) �= ⊥, �2(w)= �2(w∗)= �(w∗) �= ⊥ and
• w ∈ �′−1(N′) and w∗ =w or
w= res and w∗ = i or
w= res.f and w∗ = i.f.

The following holds.

(1) G1 �G2). By definition

G1 = ((N′ ∪ {φ(i).f | f ∈ F1, φ(i).f �= null}) �
(E′ ∪ {φ(i) f−→ φ(i).f | f ∈ F1, φ(i).f �= null}) �
�′[res �→ �′(i)])

and G2 =N ∪ {nf | f ∈ F2} � E∪ {�(i) f−→ nf | f ∈ F2} � �[res �→ �(i)], where {nf | f ∈
F2} ∩N =∅, namely, they are fresh nodes. Now, we can define h such that

h(n)=

⎧⎪⎨⎪⎩
h′(n) if n ∈N
φ(i).f if n= nf ∈N2 \N and φ(i).f �= null
⊥ otherwise.

It is easy to check that h :G2→G1 is a morphism and then the thesis.
(2) �−11 (sh1)⊆ �−12 (sh2)) First of all, observe that, by definition ofG1,

for each n ∈N′, τG1 (n)≤ τG′(n). (A3)

Now, let {j, j′} ∈ �−11 (sh1). We have the following possibilities.
j, j′ ∈W) By construction {j∗, j′∗} ∈ �′−1(sh′) and since G′ �G, we have that {j∗, j′∗} ∈
�−1(sh). Therefore {�(j∗), �(j′∗)} ∈ sh and then {�(j∗), �(j′∗)} is G-SH-compatible.
Moreover, by hypothesis �2(j)= �2(j∗) and �2(j′)= �2(j′∗). Now, observe that by
Lemma 93 and the first point of Proposition 113, since G′ = α(φ � μ)�G and
j∗ and j′∗ share in φ � μ, we have that C(τ (φ(j∗)))∩ C(τ (φ(j′∗))) �= ∅, τ (φ(j∗))≤
τG(�(j∗)) and τ (φ(j′∗))≤ τG(�(j′∗)). Now, since by hypothesis τ (φ(i))≤ κres we have
that {�2(j), �2(j′)} = {�(j∗), �(j′∗)} is G2-SH-compatible and then the thesis follows by
definition of add.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 103

j ∈W and j′ �∈W. In this case j′ = res.f, with f ∈ F2. By construction {j∗, i} ∈ �′−1(sh′)
and sinceG′ �G, we have that {j∗, i} ∈ �−1(sh), namely

{�(j∗), �(i)} ∈ sh. (A4)

Moreover, by hypothesis �2(j)= �2(j∗)= �(j∗) and �2(j′)= nf, where n= �(i).
Moreover, since res.f and j share in G1, by the second point of Proposition 113,
we have that C(τ (res.f))∩ C(τG1 (�1(j))) �= ∅ and therefore by (A3), C(κres.f)∩
C(τG′(�′(j∗))) �= ∅. By properties of morphisms and sinceG′ �G, τG′(�′(j∗))≤ τG(�(j∗))
and therefore

C(κres.f)∩ C(τG(�(j∗))) �= ∅. (A5)

Moreover, observe that by Lemma 93, since G′ = α(φ � μ)�G and j∗ and res.f share
in φ′ � μ, we have that C(τ (φ(j∗)))∩ C(τ (φ(i).f)) �= ∅. Moreover by the first point of
Proposition 113, τ (φ(j∗))≤ τG(�(j∗)). Then, since by hypothesis τ (φ(i))≤ κres and then
τ (φ(i).f)≤ κres.f, we have that {�2(j), �2(j′)} = {�(j∗), nf)} is G2-SH-compatible. Now,
we have two possibilities
– �(i) ∈ nl. In this case by (A4), (A5) and definition of add, {�(j∗), nf} =
{�2(j), �2(res.f)} ∈ sh2 and then the thesis.

– �(i) �∈ nl. Since G′ �G, we have that �′(i) �∈ nl′ and therefore, by definition of

G1, �1(i) �∈ nl1. If � ∃f′1, . . . , f′k. �(i)
f′1−→ n1

f′2−→ n2 . . . nk−1
f′k−→ �(j∗) ∈ E then, by (A4)

and (A5), {nf, �2(j)} = {�2(res.f), �2(j∗)} ∈ sh2 and then the thesis. Now, assume

that ∃f′1, . . . , f′k. �(i)
f′1−→ n1

f′2−→ n2 . . . nk−1
f′k−→ nk = �(j∗) ∈ E. By definition for each

l= 1, . . . , k− 1, there exists il such that �(i∗l)= nl. Moreover since �(i)
f′1−→ n1

f′2−→
n2 . . . nk−1

f′k−→ nk = �(j∗) ∈ E, for each l= 1, . . . , k, i∗l �= i.f′ with f′ ∈ F2. Then, since
F1 ⊆ F2, �′(j∗) �= null, and by proceeding backwards from the last edge toward the

first using Lemma 96, �′(i)
f′1−→ �′(i∗1)

f′2−→ �′(i∗2) . . . �′(i∗k−1)
f′k−→ nk = �′(j∗) ∈ E′.

Moreover for each l= 1, . . . , k, �1(i∗l)= �′(i∗l) ∈N′ and therefore �1(i)
f′1−→

�1(i∗1)
f′2−→ �1(i∗2) . . . �1(i∗k−1)

f′k−→ nk = �1(j∗) ∈ E1 and therefore �1(i)
f′1−→ �1(i∗1)

f′2−→
�1(i∗2) . . . �1(i∗k−1)

f′k−→ �1(j∗)= �1(j) ∈ E1. Moreover, since by construction

�1(i)= �1(res) and by hypothesis j′ = res.f ∈N1, we have that �1(i)
f−→ �1(j′) ∈ E1.

Therefore, since by hypothesis {�1(j), �1(j′)} ∈ sh1, by definition of cl↑ and by proceed-
ing backward from the last edge toward the first, we have that {�1(i).f′1, �1(i).f2} ∈
sh1, with f′1 �∈ F2 and f2 ∈ F2. Then, we have a contradiction, since by previous
observations, �1(i) �∈ nl1.

j, j′ �∈W. In this case j= res.f and j′ = res.f′, with f, f′ ∈ F2. If f= f′, the proof is
straightforward, since nf ∈N2 and by construction G2 = add(G, �(i), κres) is closed.
Now, assume that f �= f′. In this case, since by hypothesis {j, j′} = {res.f, res.f′} ∈
�−11 (sh1) we have that C(κres.f)∩ C(κres.f′) �= ∅. Moreover, since f, f′ ∈ F2, we have
that �2(j)= nf and �2(j)= nf′ , where n= �(i). Then, by Definitions 12 and 22 and since
φ′(res)= φ′(i)= φ(i), i is not linear in φ � μ. By definition of α, �′(i) ∈ nl′ and since
G′ �G, �(i) ∈ nl. Now, the thesis follows by definition of add.

(3) (�−11 (nl1)⊆ �−12 (nl2)). Let j ∈ �−11 (nl1). We have two possibilities
j ∈W. In this case j∗ ∈ �′−1(N′). Since G′ �G, we have that j∗ ∈ �−1(nl). Now, observe

that by Lemma 94 and by the first point of Proposition 113, since G′ = α(φ � μ)�G

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

104 G. Amato et al.

and j∗ is not linear in φ � μ, we have that τ (φ(j∗)) ∈NL and ↓ τG(�(j∗))∩NL �= ∅. Now,
since by hypothesis τ (φ(i))≤ κres, and by previous observations we have that τG2 (�(j))
is G2-NL-compatible and then the thesis.

j �∈W. In this case, there exists f ∈ F2 such that j= res.f. By definition of α, i ∈ �′−1(nl′)
and therefore since G′ �G, i ∈ �−1(nl). Moreover, since τ (φ(i))≤ κres we have that
τ (φ(i).f)≤ κres.f and then τG1 (�1(j))≤ κres.f and since G1 is closed, ↓ (τG1 (�1(j)))∩
NL �= ∅. Then ↓ (κres.f)∩NL �= ∅ and since f ∈ F2, �2(j)= nf. Therefore, by definition
of add, j= res.f ∈ �−12 (nl2) and then the thesis.

Now, the thesis follows by Proposition 106.

Theorem 87. The abstract semantics formalized in Figures 20–24 is correct wrt the concrete
semantics in Section 2.2.2.

Proof. According to the abstract interpretation framework Cousot and Cousot (1977), for each
operation op :�τ →�τ ′ ,G ∈ ALPS, interpretation I and sharing interpretation I′ such that I′(κ .m)
is correct w.r.t. I(κ .m) for every method κ .m, we must prove that

α(E I
τ �op�(γ (G)))︸ ︷︷ ︸

C(op)

�SE I′
τ �op�(G)︸ ︷︷ ︸
A(op)

.

where E �_� (C �_� for the commands) is given in Section 2.2.2 and SE �_� (S C �_�) in Figures
20 and 23 (Figures 21 and 22). Remember that for the expressions we have τ ′ = τ + typeτ (op) and
res �∈ dom (τ), while for the commands we have τ ′ = τ and res �∈ dom (τ). The proof is direct
for the expressions, while it is by induction for the commands (because commands are defined
inductively in Section 2.2). First of all, observe that since in a Galois connection αγ is reductive
(Section 2), for each φ � μ ∈ γ (G), we have that

G′ = α(φ � μ)�G (A6)

and therefore by definition of α,

G′′ = α({φ � μ | φ � μ ∈ γ (G)})�G. (A7)

null κ

We have τ ′ = τ + typeτ (null κ)= τ [res �→ κ]. Then

C(null κ)= α({φ[res �→ null] � μ | φ � μ ∈ γ (G)})
(Definition 75)= α({φ � μ | φ � μ ∈ γ (G)})

(A7)�G

=A(null κ).

new κ

Also in this case we have τ ′ = τ + typeτ (new κ)= τ [res �→ κ]. The proof is similar to that above,
since the new object is allocated in a fresh location l, and hence is only reachable from res:

C(new κ)= α({φ[res �→ l] � μ[l �→ new(κ)] | φ � μ ∈ γ (G)})
(by definition of α)=

�
{α(φ[res �→ l] � μ[l �→ new(κ)]) | φ � μ ∈ γ (G)}

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 105

(Definition 75)=
�
{(N′ ∪ {l} � E′ � �′[res �→ l]) � sh′ ∪ {{l}} � nl′ |
G′ ∈ αγ (G) and l �∈N′}

(A6)� (N ∪ {nnew} � E � �[res �→ nnew]) � sh∪ {{nnew}} � nl
with nnew �∈N

=A(new κ).

v

For v, we have τ ′ = τ + typeτ (v)= τ [res �→ τ (v)]. Then

C(v)= α({φ[res �→ φ(v)] � μ | φ � μ ∈ γ (G)})
(by definition of α)=

�
{α(φ[res �→ φ(v)] � μ) | φ � μ ∈ γ (G)}

(Definition 75)=
�
{(N′ � E′ � �′[res �→ �′(v)]) � sh′ � nl′ |
G′ ∈ αγ (G)}

(A6))� (N � E � �[res �→ �(v)]) � sh � nl
=A(v).

(κ)v

For (κ)v, we have τ ′ = τ + typeκ = τ [res �→ κ]. We have the following possibilities.

• �(v)=⊥). By (A6) for each φ � μ ∈ γ (G), we have that G′ = α(φ � μ)�G and therefore
�′(v)=⊥. By Definition 52, φ(v)= null and then φ[res �→ φ(v)] � μ= φ � μ. In this case

C((κ)v)= α({φ[res �→ φ(v)] � μ | φ � μ ∈ γ (G)})
(by previous observation)= α({φ � μ | φ � μ ∈ γ (G)})

(A7)�G

=A((κ)v).

• �(v) �= ⊥ and {τG(�(v)), κ} is a not chain). By Definition 39, τG(�(v))=∧{τ (�−1(�(v)))}. By
(A6) for each φ � μ ∈ γ (G), we have thatG′ = α(φ � μ)�G. Now, we have two cases
– �′(v)=⊥). In this case, φ(v)= null and E I

τ �(κ)v�(φ � μ)= φ � μ. Therefore, by
Definition 81 and Proposition 115, α(E I

τ �(κ)v�(φ � μ))=G′ =G′|v=null �G|v=null.
– �′(v) �= ⊥). In this case by Lemma 98 and Theorem 99, τ (�′−1(�′(v)))∪ {κ} is not a chain
and then {τ (φ(v)), κ} is not a chain. Therefore, α(E I

τ �(κ)v�(φ � μ))= α({ undefined })=
⊥.

By previous results

C(v)= α({E I
τ �(κ)v�(φ � μ) | φ � μ ∈ γ (G)})

(by definition of α)=
�
{α(E I

τ �(κ)v�(φ � μ)) | φ � μ ∈ γ (G)}
(by previous results)=

�
{α(φ � μ) | φ � μ ∈ γ (G) and φ(v)= null}

(by Definition 75)=
�
{G′ |G′ ∈ αγ (G) and �′(v)=⊥}

(by definition)�
�
{G′|v=null |G′ ∈ αγ (G)}

(by (A6) and Proposition 115)�G|v=null

=A(v).

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

106 G. Amato et al.

• �(v) �= ⊥ and {τG(�(v)), κ} is a chain. By previous results, since G� add(G, �(v), κ) and
by definition of α we have to prove that for each φ � μ ∈ γ (G) such that φ(v) �= null and
τ (φ(v))≤ κ we have that α(φ′ � μ)� add(G, �(v), κ), where φ′ = φ[res �→ φ(v)]. The proof
follows by Proposition 117.

v.f

We have τ ′ = τ + typeτ (v.f)= τ [res �→ τ (v.f)]. We have the following possibilities:

• �(v)=⊥. In this case, for each φ � μ ∈ γ (G), we have that φ(v)= null and then by definition
of α,

C(v.f)= α({ undefined })=⊥=A(v.f).

• �(v) �= ⊥ and �(v.f)=⊥. In this case for each φ � μ ∈ γ (G), φ(v).f= null and therefore,
φ[res �→ (φ(v).f)] � μ= φ � μ. Now, the proof is the same of the first case of the previous
point and hence it is omitted.

• �(v) �= ⊥ and �(v.f) �= ⊥. Let φ′ = φ[res �→ (φ(v).f)]. Analogously to the previous point,
we have to prove that for each φ � μ ∈ γ (G) such that φ(v) �= null and φ(v.f) �= null we
have that α(φ′ � μ)� add(G, �(v.f), τ (v.f)). The proof follows by Proposition 117, since by
Proposition 21, τ (φ(v.f))≤ τ (v.f).

v.m(v1, . . . , vn)

We have τ ′ = τ + typeτ (v.m(v1, . . . , vn))= τ [res �→ returnType(τ (v).m)] and

C(v.m(v1, . . . , vn))= α({φ[res �→ φ1(out)]︸ ︷︷ ︸
φ′

�μ1 | φ(v) �= null and φ � μ ∈ γ (G)}).

with σ † = [this �→ φ(v),w1 �→ φ(v1), . . . ,wn �→ φ(vn)] � μ and φ1 � μ1 = I((φ(v).κ).m)(σ †). As
for v.f above, C(v.m(v1, . . . , vn)) is best approximated by ⊥ when φ(v)= null. Assume hence
that φ(v) �= null.

First of all, observe that the effective method used in the concrete side is (φ(v).κ).m. By
type correctness, we know that μ(φ(v)).κ ≤ τG(�(v)). Therefore, since the abstract semantics is
defined as:

�{matchv.m (G, I(κ .m)(G′)) | κ ≤ τG(�(v)))}
we only need to prove that α(I((φ(v).κ).m)(γ (G))≤matchv.m (G, I((φ(v).κ).m)(G′)), and it imme-
diately follows that α(I((φ(v).κ).m)(γ (G)))≤�{matchv.m (G, I(κ .m)(G′)) | κ ≤ τG(�(v))}.

Proving that α(I((φ(v).κ).m)(γ (G))≤matchv.m (G, I((φ(v).κ).m)(G′)) amounts to show that
α(φ[res �→ φ1(out)] � μ1)≤matchv.m (G, I((φ(v).κ).m)(G′)).

First of all, observe that since φ � μ ∈ γ (G), we have that α(φ � μ)�G. Then α(σ †)�
prune((N � E � �input) � sh � nl) and therefore σ † ∈ γ (prune((N � E � �input) � sh � nl)), where
�input = [this �→ �(v),w1 �→ �(v1), . . . ,wn �→ �(vn)]. Then, by correctness of I′ with respect to
I, α(φ1 � μ1)� I′((φ(v).κ).m)(prune((N � E � �input) � sh � nl).

On the concrete side, only variables in dom (σ †.φ) can be reached in the computa-
tion of I((φ(v).κ).m)(σ †). Since dom (σ †.φ)= {this,w1, . . . ,wn}, it follows that for any vari-
able x ∈Vother we have that φ(x)= φ′(x). The same happens on the abstract side, since
G|Vother =Gother . Moreover, for variables in Vcomp, since on the abstract side we compute
(�|Vcomp)|{x=y | �1(x)=�1(y), x, y∈Vcomp}, there is nothing to prove.

For any variable x inValias, since x �∈ dom (σ †.φ) and, by definition ofValias, there exists u ∈Vm
such that �(x)= �(u), it follows that φ′(x)= φ′(u), which corresponds to the �alias mapping in G.

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 107

Therefore, we only need to show that the result is correct for variables inVm, which directly follows
from the induction hypothesis that I(κ .m)(G′) is correct w.r.t. I((φ(v).κ).m)(σ †).

v := exp

Since the composition of correct operations is correct and since we have proved above that the
abstract semantics for the expressions are correct with respect to their concrete counterparts, it is
enough to prove that the abstract prune operation

Pvτ = λG ∈ ALPS. prune((N � E � �[v �→ �(res), res �→⊥]) � sh � nl)
is correct with respect to the corresponding concrete operation

setVarvτ = λ(φ � μ) ∈�τ . φ|−res[v �→ φ(res)] � μ

Let τ ′ = τ |−res and letG ∈ ALPS. We have

C(setVarvτ)= α({φ|−res[v �→ φ(res)]︸ ︷︷ ︸
φ′

�μ | φ � μ ∈ γ (G)}).

Then to prove the thesis, by additivity of α, we have to prove that for each φ � μ ∈ γ (G),

G1 = α(φ′ � μ)� prune((N � E � �[v �→ �(res), res �→⊥]) � sh � nl).
LetG′ = α(φ � μ). By definition

G1 = ({n ∈N′ | ∃i ∈ �′−1(n).i �= v, i �= v.f ∈Qτ }�
{n1 f−→ n2 ∈ E′ | n1, n2 ∈N1} � �′[v �→ �′(res), res �→⊥])�
{{n1, n2} ∈ sh′ | n1, n2 ∈N1} � nl′ ∩N1.

Now, the proof is straightforward by definition of Pvτ and since by (A6),G′ = α(φ � μ)�G.

v.f := exp

Since the composition of correct operations is correct and since we have proved above that the
abstract semantics for the expressions is correct w.r.t. their concrete counterparts, it is enough to
prove that the abstract operation

P′v.fτ = λG ∈ ALPS.

⎧⎪⎨⎪⎩
⊥ if �(v)=⊥
G∗ if �(v) �= ⊥ and �(res)=⊥
G∗∗ otherwise,

is correct with respect to the corresponding concrete operation

setFieldv.fτ = λ(φ � μ) ∈�τ .

⎧⎪⎨⎪⎩
φ|−res︸ ︷︷ ︸
φ′

� μ[l �→μ(l)[f �→ φ(res)]]︸ ︷︷ ︸
μ′

if (l= φ(v)) �= null

⊥ otherwise.

where

G∗ = prune (N ∪Nnew � E \ Edel ∪ Enew � � � sh∪ shnew �
nl ∪ {n�(x) | n�(x) ∈Nnew, �(x.f) ∈ nl})

G∗∗ = prune (N ∪Nnew � E \ Edel ∪ E′new � �[res �→⊥] � sh∪ sh′new �
nl ∪ nlnew ∪ {n�(x) | n�(x) ∈Nnew, �(x.f) ∈ nl})

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

108 G. Amato et al.

where

Vcomp = {x ∈ dom (τ) | �(x) �= �(v), {�(x), �(v)} ∈ sh, {τG(�(x)), τG(�(v)}
is a chain}

Nnew = {n�(x) | x ∈Vcomp, f ∈ dom (ψG(�(x)), �(x.f) �= �(res)}
a set of new distinct nodes

Edel = {�(v) f−→ �(v.f)} ∪ {�(x) f−→ �(x.f) ∈ E | x ∈Vcomp, �(x.f) �= �(res)}
Enew = {�(x) f−→ n�(x) | x ∈Vcomp, n�(x) ∈Nnew}
shnew = {{n�(x), n′} | n�(x) ∈Nnew, {�(x.f), n′} ∈ sh} ∪

{{n�(x), n�(y)} | n�(x), n�(y) ∈Nnew, {�(x.f), �(y.f)} ∈ sh}
E′new = Enew ∪ {�(v) f−→ �(res)}
sh′new = {{n, n′} | {�(v), n} ∈ sh and {�(res), n′} ∈ sh} ∪

{{n�(x), n′} | n�(x) ∈Nnew, {�(res), n′} ∈ sh} ∪
{{n�(x), n′} | n�(x) ∈Nnew, {�(x.f), n′} ∈ sh} ∪
{{n�(x), n�(y)} | n�(x), n�(y) ∈Nnew}

nlnew =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{n ∈N | {n, �(v)} ∈ sh} ∪ {n�(x) | n�(x) ∈Nnew}

if {�(res), �(v)} ∈ sh or �(res) ∈ nl
{n ∈N | {n, �(v)} ∈ sh, {�(res), n} ∈ sh}

otherwise

Let τ ′ = τ |−res andG ∈ ALPS. We have to prove that

α(setFieldv.f
τ (γ (G)))� P′v.fτ (G).

We have the following possibilities:

• �(v)=⊥. In this case, for each φ � μ ∈ γ (G), we have that φ(v)= null and then by definition
of α,

α(setFieldv.f
τ (γ (G)))= α({ undefined })=⊥= P′v.fτ (G).

• �(v) �= ⊥ and �(res)=⊥. By (A6) for each φ � μ ∈ γ (G), we have that G′ = α(φ � μ)�G
and therefore �′(res)=⊥. By Definition 75, φ(res)= null and then φ′ = φ and φ′(v).f=
null. LetG1 = α(φ′ � μ′). By definition of α,

G1 = ({l ∈ Loc | ∃i ∈ Iτ .φ(i)= l and either i �=w.f or φ(v) �= φ(w)}�
{l f′−→ l′ | l.f′ = l′ ∈N′ and either v �∈ φ−1(l) or f′ �= f} � φ),

sh1 ⊆ {{n, n′} ∈ sh′ | n, n′ ∈N1} and nl1 ⊆ nl′ ∩N1. Now the proof is straightforward by
definition ofG∗ and sinceG′ �G.

• �(v) �= ⊥ and �(res) �= ⊥. By definition of α and by previous results, we have to prove that
for each φ � μ ∈ γ (G) such that φ(v) �= null we have that

G1 = α(φ′ � μ′)�G∗∗,

whereG∗∗ is defined as in definition of P′v.fτ .

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

Mathematical Structures in Computer Science 109

Let φ � μ ∈ γ (G) such that φ(v) �= null and let G′ = α(φ � μ). By (A6), G′ �G. Then, by
definition of α,

G1 = {l ∈ Loc | ∃i ∈ Iτ .φ(i)= l and either i �=w.f or φ(v) �= φ(w)}�
({l f′−→ l′ | l.f′ = l′ ∈N′ and either v �∈ φ−1(n) or f′ �= f} ∪
{φ(v) f−→ φ(res) | φ(res) �= null}) � φ[res �→⊥],

sh′1 ⊆ {{l, l′} ∈ sh′ | l, l′ ∈N1}∪
{{l, l′} | l, l′ ∈N1, {φ(v), l} ∈ sh′ and {φ(res), l′} ∈ sh′},

nl′1 ⊆ (nl′ ∩N1)∪
{φ′(v) | φ′(v) is not linear in φ′ � μ′}∪
{l | l and φ′(v) share in φ′ � μ′, φ′(v) is not linear in φ′ � μ′

and φ(v) is linear in φ � μ}
andG1 = cl↑ (G1, sh′1, nl

′
1). Now, the proof is straightforward, by definition ofG∗∗ and since

G′ �G.

if v= w then com1 else com2

Analogously to the previous case, we have to prove that

Aifeq = λG ∈ ALPS.

⎧⎪⎨⎪⎩
S C I

τ �com1�(G) if �(v)= �(w)
S C I

τ �com1�(G|v=w)�S C I
τ �com2�(G)

otherwise

is correct with respect to the corresponding concrete operation

Cifeq = λ(φ � μ) ∈�τ .
{

C I
τ �com1�(φ � μ) if φ(v)= φ(w)

C I
τ �com2�(φ � μ) if φ(v) �= φ(w)

LetG ∈ ALPS. We have the following possibilities:

• �(v)= �(w). In this case for each φ � μ ∈ γ (G), we have that φ(v)= φ(w). Therefore,
α(Cifeq (γ (G)))
(by previous observation and
by definition of α) = α(C I

τ �com1�(γ (G)))
(by definition) = C(com1)
(by induction) � A(com1)
(by definition) = Aifeq (G).

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160

110 G. Amato et al.

• �(v) �= �(w)). In this case

α(Cifeq (γ (G)))

(by definition) = α

⎛⎜⎜⎝
C I
τ �com1�({φ � μ ∈ γ (G) | φ(v)= φ(w)})
∪
C I
τ �com2�({φ � μ ∈ γ (G) | φ(v) �= φ(w)})

⎞⎟⎟⎠
(by definition of α) = α(C I

τ �com1�({φ � μ ∈ γ (G) | φ(v)= φ(w)})�
α(C I

τ �com2�({φ � μ ∈ γ (G) | φ(v) �= φ(w)})

(by Proposition 84
and monotonicity)

� α(C I
τ �com1�({φ � μ ∈ γ (G|v=w))})�

α(C I
τ �com2�({φ � μ ∈ γ (G)})

(by induction) � S C I
τ �com1�(G|v=w)� S C I

τ �com2�(G)
(by definition) = Aifeq (G).

if v= null then com1 else com2

The proof is analogous to that one of the previous case and hence it is omitted.

{com1; . . . ;comp}
The proof of this case follows directly by induction hypothesis.

Theorem 88. The abstract denotational semantics is correct wrt the concrete one.

Proof. To prove the correctness of the denotational semantics is enough to prove the correctness
of the abstract transformer. Since composition preserves correctness it is sufficient to prove that

(1) λG ∈ ALPSscope(κ .m).G‖ dom (output(κ .m)) is correct wrt λσ ∈�scope(κ .m). σ‖ dom (output(κ .m)) =
λφ � μ ∈�scope(κ .m). φ|dom (output(κ .m)) � μ;

(2) S C I
scope(κ .m)�body(κ .m)� is correct wrt C I

scope(κ .m)�body(κ .m)�;
(3) λG ∈ ALPSinput(κ .m).N � E � �[w′1 �→ �(w1), . . . ,w′n �→ �(wn)] � sh � nl is correct

wrt λφ � μ ∈�input(κ .m). φ[out �→ null,w′1 �→ φ(w1), . . . ,w′n �→ φ(wn),wn+1 �→
null, . . . ,wn+m �→ null] � μ.

The first and the second point are the content of Proposition 80 and Theorem 87, respectively. The
third point is trivial since adding null variables does not add any node or edge to the graph.

Cite this article: Amato G, Meo MC and Scozzari F (2022). The role of linearity in sharing analysis.Mathematical Structures
in Computer Science 32, 44–110. https://doi.org/10.1017/S0960129522000160

https://doi.org/10.1017/S0960129522000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000160
https://doi.org/10.1017/S0960129522000160

	The role of linearity in sharing analysis
	Introduction
	Field-sensitive pair-sharing information
	Aliasing and nullness
	Linearity information
	An example program
	Plan of the paper

	Preliminaries
	Notations
	The language
	Syntax
	Semantics

	Reachability, Sharing, Linearity, and Aliasing
	Reachability among identifiers
	Class-induced reachability

	Aliasing Graphs
	Morphisms of aliasing graphs
	The lattice of aliasing graphs
	Projection
	The domain of aliasing graphs

	ALPS Graphs
	Projection
	Up- and down-closures of pre-ALPS graphs
	The lattice of ALPS graphs
	The domain of ALPS graphs

	An Abstract Semantics on ALPS
	Auxiliary operators
	Pruning
	Restriction
	Nullness propagation
	Restriction to aliasing

	Abstract semantics for expressions
	Assignment to a node

	Abstract semantics for commands
	Abstract semantics of method call

	Related Work
	Conclusions
	Proofs
	Reachability, sharing, linearity, and aliasing
	Reachability among locations
	Reachability among identifiers
	Class-induced reachability

	Aliasing graphs and aliasing morphisms
	The lattice of aliasing graphs
	Projection and propagation of nullness for aliasing graphs
	The domain of aliasing graphs

	ALPS graphs
	Projections and propagation of nullness
	Up- and down-closures of Pre-ALPS graphs
	The lattice of ALPS graphs
	The domain of ALPS graphs

	An abstract semantics on ALPS
	Auxiliary operators
	Abstract semantics

