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A SUBSEMILATTICE OF THE LATTICE OF
VARIETIES OF LATTICE ORDERED GROUPS

NORMAN R. REILLY

1. Introduction. Each variety of lattice ordered groups ¥~ determines
a variety of groups, namely the variety of groups generated by the groups
in?”. In this paper a completely new and different correspondence be-
tween varieties of groups and varieties of lattice ordered groups is
developed. It is known that the variety of representable lattice ordered
groups is defined by the law z+ A uw~'z—u = 1. Here we consider the
varieties defined by laws of this form where u is restricted to lie in some
fully invariant subgroup of the free group Fx on a countable set X. All
the varieties considered contain the variety of representable l-groups and
therefore the free group with appropriate ordering.

The fundamental theorem (in Section 2) establishes that for any
lattice ordered group G (or variety of lattice ordered groups?”) the set
of u € Fx for which I(x) = 1is alaw in G (respectively ¥”) is a fully
invariant subgroup%# (G) (respectively,# (¥")) of Fx.On the other hand
the class of lattice ordered groups # (U) satisfying the laws I(x) = 1 for
u € U, afully invariant subgroup of Fx, is clearly a variety. The mappings
YV — F(¥)and U — X (U) are studied in detail in Sections 3 and 4.
In particular, # % is shown to be the identity mapping and #Z.% a
closure operator. The mapping & is then used to construct a meet semi-
lattice isomorphism of the lattice of varieties of groups into the lattice of
varieties of lattice ordered groups. The structural properties of elements
of #(U) are discussed in Section 5, where it is shown that they have
properties reminiscent of representable lattice ordered groups. For in-
stance, minimal prime subgroups are ‘' U-normal’’.

The reader is referred to (2] and [3] for background information,
terminology and notation for lattice ordered groups (henceforth called
l-groups). For background information on varieties of /-groups the reader
is referred to [5].

We will denote by .# the lattice of varieties of /-groups. For any l-group
G (family of l-groups {G.}) we denote by ¥ (G) (respectively, ¥ {G,})
the variety of I-groups generated by G (respectively, {G;}).

Let X' = X U {z}, where z ¢ X, be a countable alphabet which will be
used to express laws. Let F = Fx denote the free group on the set X,
which will be considered as a subset of F.
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Let ¢ be a mapping of X’ into a group G. Then the restriction of ¢ to X
extends to a unique homomorphism of Finto G. In this way ¢ determines
a unique mapping of {z} U F into G which is a homomorphism on F and
the restriction of which to X’ is just ¢. We will denote this extension by
¢ also.

For any variety of l-groups#~, we define

FY ={u€ F:zt ANulz=u = 1,isalaw in ¥},
and, for any /-group G, we define
FG={u€F:z" ANulzu=1,isalaw in G}.

Clearly #G = 7 (G) and F¥ = N {FG:G € ¥ }. We will some-
times write

Iu) = 2+ A u™lz7u.
2. Fundamental theorem. The following observation is fundamental
to this paper.

THEOREM 2.1. For any l-group G (or variety of l-groups ¥ ), F G (respec-
tively, F¥") is a fully invariant subgroup of F.

Proof. Let u, v € #G. Then I(u) = 1 is a law in G. Hence, for any
mapping ¢ : X' — Gwithze = g,up = h,vp = k,

gt A hlgh = 1.

Let f = gt(h—'g~h)~'. Then f+* = gt and f— = h~'g~h. Since I(v) is a
law in G, we have

fTANEYR=1
or
gt A (hk)"'g—(hk) = 1.
That is,
()t A ((uv)e)~1(zp)~(uv)e = 1.

Therefore, I(uv) = 1isalaw in G and uv € Z .
Furthermore, for any g € G,

@H*Auwt(g)u=1 or g Aulgtu =1.
Therefore,

(@) (w) Agh=1
and u~! € #G. Thus # G is a subgroup of F.
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To see that &% G is fully invariant, let & be any endomorphism of F.
Let ¢ : X’ — G be any mapping. Define 6 : X’ — G by 20 = zp, x8 =
(xa)e (x € X).Letu € #G. Thenl(u) isalaw in G. Therefore,

(z0)t A (u8)~1(20)~(u8) = 1,
that is,
(ze)t A ((ue) o)™ (20)~ ((ua)p) = 1.

Since ¢ was chosen arbitrarily, it follows that /(ua) = 1 is a law in G
and that ua € # G. HenceZ G is fully invariant. The result for#%  then
follows easily.

3. Group varieties to /-group varieties. Theorem 2.1 associates a
fully invariant subgroup of F with each variety of I-groups. Conversely,
each full invariant subgroup of F may be used to define a variety of
l-groups as follows. We denote by £ F the lattice of fully invariant
subgroups of F.

Definition 3.1. Let U € JF be a fully invariant subgroup of F. Then
Z U will denote the variety of I-groups satisfying the laws /(x) = 1, for
all u € U. The two limiting cases are well known. If U = {1}, the trivial
subgroup of F, then ZU = %, the variety of all l-groups while ZF is
simply the variety & of all representable I-groups. We will call an I-group
G quasi-representable if G € A U for some U € FF.

We will now develop some basic properties of the two mappings
F Y > FV and R : U — RU. To do so we will need to have certain
examples at our disposal.

We recall the construction of the wreath product of two /-permutation
groups. Let (H,0) and (G, Q) be I-permutation groupsandlet A =0 X Q
be ordered lexicographically from the right. Then the wreath product
(W, A) = (H,0) Wr (G, 2) of (H,6) and (G, Q) is the l-permutation
group of order preserving permutations of A of the form (4, a) where
A:Q— Hand (6, w) (4, ¢) = (04 (w), wa). The resulting group con-
sists of all ordered pairs (4, a) where 4 : @ —» H and a € G with the
group operation

(4,a)(B,b) = (AB* ab)

where B%(a) = B(aa).

Since the /-group W so constructed is independent of 6, we will simply
write W = H Wr (G, ©). For basic properties of the wreath product and
its role in the study of & see [4] and [5].

If G is a totally ordered group, then (G, G) will denote G as a group of
order preserving permutations of the totally ordered set G where the
action is by right translations.
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For the purpose of constructing the examples below, let F be endowed
with some fixed total order.

Let U be a fully invariant subgroup of F. Then we define a subset Ly of
Z Wr (F, F) as follows:

Ly =1{(4,a) : A(g) = A(h), if Ug = Uh}.
LEMMA 3.2. Ly s an l-subgroup of Z Wr (F, F).
Proof. Let (4, a;) € Ly (¢ = 1,2). Then
(41, a1) (42, az) = (414:%, a1as).
Let Ug = Uh. Then Uga, = Uha; and so
(414:)(g) = A:1(g)A2(gar) = A1(R)As(har) = (4:14:°1) (h).
Thus Ly is closed under products. For any (4, a) € Ly,
(4,a)7 = (4", a)
where b = ¢! and so
(4)74(e) = A(ga™)™ = A(ha™)™t = (4" ().

Therefore Ly is closed under inverses and is a subgroup. It can readily
be verified that, for any (4, a) € Ly,

(4, a) ifa>1
(4,a) V1={1 ifa <1
AvIl ifa=1

where 1 denotes the identity of Ly or F, as appropriate, and I denotes
the constant map of F onto 1 € % . Therefore Ly is an I-subgroup, as
required.

The I-groups Ly relate to the varieties % U through the following result.

THEOREM 3.3. Let U be a fully invariant subgroup of F. Then
(1) Ly satisfites the laws l(u) = 1 (u € U);
(2) Ly does not satisfy the law l(v) = 1, if v ¢ U.

Proof. (1) Let u € U and let ¢ : X' — Ly and let w = z¢ = (B, b).
If b # 1 then, since F is totally ordered, either b > 1 or b < 1 so that
either w > 1 or w < 1. This means that either w— = 1 or wt = 1 and
therefore

wt A (up)~'w=(ue) = 1.

Now suppose that w = (B, 1) and letx = up = (4,a). Letw: Ly — F
be the mapping that projects onto the second component: (C, ¢) — c.
Then ¢ (restricted to F) is an endomorphism of F. Since U is fully
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invariant, it follows that ¢ € U and so also a~!. We have, with f = a7},
xlwx = ((47)% e 1) (B, 1)(4, a)
= ((4N)1(B7)’4%, 1) = ((B)', 1).
Since a~! € U, for any v,
(B7)/(y) = B~(ya™") = B=((ya~ly~1)y) = B=(y),

since ya~1y~1 € U, by the normality of U, and since w € Ly. Thus the
support of (B~)’ equals the support of B—. Hence

wt A x7lwx = (B, 1) A ((B7), 1) = (Bt A (B7),1) = (I,1).

Therefore I(#) = 1isalaw in Ly.
(2) Now letv € F\U. Let A : F — Z be defined by

1 ifyeU
Al) ={—1 ify € Uv!
0 otherwise.

Thenw = (4,1) € Ly. Define ¢ : X’ — Ly by 3¢ = w,x¢ = (I, x) for
x € X. Thenve = (I,v), and, with u = v~!

(A1) = 4= = 1 = 4+(D).
Thus

AT N (A7) # 1,
and so

(z0)t A (v9) 7 (20)~ (ve) # 1.

Therefore I(v) = 1 is not a law in Lg.

4. Basic properties of the correspondences. The next theorem
summarizes the basic properties of the mappings &% :.¥ — J(F),
R : I(F) — & of the lattice of varieties of I-groups to the lattice of
varieties of fully invariant subgroups of F and conversely.

THEOREM 4.1. Let U,V ,WUo (0 € A) € L and U,V,Uy(a € 4) € I (F).
(1) Z is one-to-one.

QU CY =F W) CF ).

BUCVeaAWV) CAW).

&) U CRF (U).

5) U=FZ).

6) NF (U) =F (V U.).

(M NZRAU) = Z(V Uy).

B) VF W) CF (N U.).

c
9) VZ(U.) S Z(N V).
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Proof. (1) Let U, V be distinct elements of # (F). Without loss of
generality, let there be an element v € V\U. It then follows from
Theorem 3.3 that Ly, € Z (U)\Z (V). Hence & is one-to-one. The direct
part of (3), (2) and (4) are immediate from the definitions of % and %.

(5) Again it is immediate from the definitions that U € # % (U). Let
v € F\U. By Theorem 3.3, Ly € # (U) and Ly does not satisfy /(v) = 1.
Hence v ¢ % (# (U)) and so we must have equality.

(6) By (2), F(V U.) € N\ F (%.). Now, for each a, # (U.) 2
NZ (%,) and so, by (3) and (4),

Ui CRF (Ua) € RNF (Uo))-
Hence

NVUs SHANF (Ua)).
Applying # to both sides, we obtain

FNU) 2F RNF (Ue))

which, by (5), reduces to % (V U,) 2 NF (%,). Therefore, we have
equality.

For the converse implication in (3), now suppose that Z (V) € % (U).
Then, by (2), FX(U) < F X (V) which, by (5), reduces to U C V,
as required.

(7) By (3), we have that Z(V U,) € N % (U,). On the other hand,
for each a, N # (U,) C # (U,) implies that

U =FRU,) CTF(N\RAU)).
Hence,
V U STF (N R (U,))
and
RN Uy DRF (NR(UL)) 2NR(Uy).

Therefore equality holds.
(8) From (2),% (%.) €% (N %.), for each a. Therefore (8) follows.
(9) From (3), Z(U,) € Z (N U,), for each a. Therefore (9) follows.

It was first proved by Kopitov and Medvedev [7] that there are
uncountably many varieties of I-groups. In fact, the varieties described
in [7] are all varieties of representable I-groups. Feil, private communica-
tion, has described another much simpler uncountable family of varieties
of representable I-groups. Since the mapping & is one-to-one and it is
known that £ (F) is uncountable [10], it follows that #Z.# (F) constitutes
a new uncountable family of varieties of /-groups. More specifically, from
Theorem 4.1 (1) and (7) we have the following corollary.
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COROLLARY 4.2 # I (F) is an uncountable M -complete lower subsemi-
lattice of & with R, the variety of all representable I-groups, as its smallest
element and L as its largest member.

The following application of Theorem 4.1, to answer an open question
regarding the breadth of ¥, was drawn to the author’s attention by A.
Glass. It has been shown by S. Adyan [1] that there exist 280 pairwise
incomparable varieties of groups and consequently 2X¢ pairwise incom-
parable elements of . (F). By Theorem 4.1 (3), # maps such elements
onto incomparable elements in.#. Thus

CoroLLARY 4.3. (A. Glass). There exist 280 pairwise incomparable
varieties of lattice ordered groups.

In terms of the lattice of varieties of groups we have the following.
Let : 9 — J(F) be the usual anti-isomorphism of the lattice & of
group varieties onto the lattice £ (F) of fully invariant subgroups of F.

COROLLARY 4.4. The composition of 6 and X is a one-to-one complete
lower semilattice homomorphism of the lattice G of group varieties into the
latticeL of varieties of I-groups.

Notation. For each positive integer #n, let 4, denote the fully invariant
subgroup of F corresponding to the variety of abelian groups of exponent
n. If (m,n) = 1, thatis, if m and = are relatively prime, then 4,4, = F.
Hence from Theorem 4.1 (7) we have the following.

COROLLARY 4.5. If m and n are relatively prime positive integers, then

RA,NRA, = AR.

Finally, the following corollary is a simple consequence of parts (2)-(5)
of Theorem 4.1.

COROLLARY 4.6. ZF 1is a closure operator.

5. Characterizations of quasi-representable /-groups. Recall that
an l-group G is representable if and only if there exists a family of prime
subgroups {P,} such that each P, is normal in G and N Py, = {1}.
Suppose now that M is a fully invariant subgroup of F and that M (G)
denotes the fully invariant subgroup of G corresponding to M. The sub-
group M (G) can also be described as the smallest normal subgroup of G
such that the quotient group lies in the variety of groups defined by M
or as the union of all the images of M under all homomorphisms of F into
G. Note that M (G) is a fully invariant subgroup of G but not necessarily
an l-subgroup.

Definition 5.1. Let M be a fully invariant subgroup of F and H be a
subgroup of an /-group G. Then H is said to be M-invariant or M(G)-
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tnvariant if and only if M(G) is contained in the normalizer of H in G.
The l-group G is said to be M-representable if there exists a family of
prime subgroups {P,} such that each Py is M(G)-invariant and M Py =
{1}. A prime subgroup P of G is said to be a representing prime subgroup if

N {x~'Px:x € G} = {1}.

This is equivalent to saying that the Holland representation [6] of G on
the cosets of P is faithful.

If, in the following theorem, M = F then the listed conditions reduce
to the well-known equivalent characterizations of representability (see
[3]). Since the proofs are entirely analogous, they are not included.

THEOREM 5.2. Let G be an l-group and M a fully invariant subgroup of F.
Then the following statements are equivalent.

(1) G is M-representable.

(2) G s a subdirect product of l-groups with M-invariant representing
prime subgroups.

B)a € G,u€ M(G)anda N utau = 1implies thata = 1.

4)a Nb=1andu € M(G) impliesthata A u=bu = 1.

B)YGEAM.

(6) Every polar in G 1s M (G)-invariant.

(7) For amy prime subgroup P of G, J = M {g7'Pg:g € M(G)} isa
prime subgroup.

(8) Every minimal prime subgroup of G is M (G)-invariant.

(9) If N is a prime subgroup of G and g € M(G) then N and g~ *Ng are
comparable.

(10) If a € G,a # 1 and K is a convex l-subgroup of G which is maximal
with respect to (1) a ¢ K and (i1) K 1s M(G)-invariant, then K is prime.

6. Further remarks on # .4 (F). We will first show that the contain-
ment in Theorem 4.1 (9) can be proper. For each z € N, let

G, =1{(H,h) € ZWr (Z,Z2): H(t) = H(j) if 1 = j and mod #n}.

Then G, is an [-subgroup of Z Wr (Z, Z), introduced by Martinez [8].
Scrimger [11] considered the varieties ¥ ,, now called Scrimger varieties,
generated by the I-groups G,. Each G, is subdirectly irreducible.

For each integer #, let 4, be the fully invariant subgroup of F cor-
responding to the variety of abelian groups of exponent #. The verifica-
tion of the following lemma is a straightforward exercise.

LEmMA 6.1. (i) G, € #(4,) (i) S S H(4,).
We will also need the following result due to Martinez [9].

LEMMA 6.2. Let ¥ 1,V 2 € L. Then G € ¥+ V¥ if and only if G is
a subdirect product of I-groups in¥ 1 and ¥ ,.
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Let m and # be relatively prime integers greater than 1. Then G, €
R (Amy) and Ay, = Ay N A,. Suppose that G, € Z(4,) V #(4,).
Then by Lemma 6.2, G, is a subdirect product of I-groups in Z (4,,) and
% (A,). However, G, is subdirectly irreducible and so we must have
Gmn € X (Ay) or Gy € X (4,). It is easily verified that this is not the
case and therefore we have a contradiction. Hence G, ¢ #(4,) V
X (A,). Therefore

Z(An) NV R(42) G R (An N Ar) = R (Amn)

and we see that it is possible to have proper containment in Theorem
4.1 (9).

With regard to the placement of the quasi-representable varieties in
the lattice of varieties we have seen (Theorem 4.1) that the smallest
quasi-representable variety is # F which is simply the variety of repre-
sentable /-groups. Thus all quasi-representable varieties contain #. In
Lemma 6.1 we have observed that.¥, € #A,. Now let B, denote the
fully invariant subgroup of Fx defining the Burnside variety of exponent
n.
The variety %, of l-groups defined by the law x"y"* = y"x" was intro-
duced by Martinez [8] and also studied by Scrimger [11] and Smith [12].

LEMMA 6.3. For any integer n, ¥, S AB,.

The containment in Lemma 6.3 is clearly proper since # C #B, but
R T,

The smallest quasi-representable varieties that properly contain & are
clearly those of the form #A4,, where p is a prime. If p and ¢ are distinct
primes, then by Corollary 4.4, #4, N\ #A, = X. It is therefore natural
to consider whether these varieties actually cover #. By Lemma 6.1,

Sy CAA,. Thus
RANSy S RA,

for all integers n > 1. Now Ly, € #A,. Moreover Ly, is subdirectly ir-
reducible. Hence, if Ly, € # V %, then it must lie either in & or .%,.
Since neither is the case it follows that L,, ¢ # V .%,. Therefore we
have the following proposition.

PROPOSITION 6.4. For any integer n > 1,
RN L G RA,.
For any group G let
G =G, 6V = [G,G),...,G" =[GV, G"V]

be the derived series for G. Let.2Z denote the variety of all abelian l-groups
and let .&/” the product of &7 with itself under the Mal'cev product as
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discussed by Glass et al. [5]. Then &7" is solvable (&/")™ = 1 and so
I C RBF™. 1t is established in [5] that V &/ = 4, the variety of

normal valued /-groups. Hence we have.

ProposITION 6.5. VIR U : U € FF, U #= (1}} =N
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