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A SUBSEMILATTICE OF THE LATTICE OF 
VARIETIES OF LATTICE ORDERED GROUPS 

NORMAN R. REILLY 

1. Introduction. Each variety of lattice ordered groups if determines 
a variety of groups, namely the variety of groups generated by the groups 
i n ^ . In this paper a completely new and different correspondence be
tween varieties of groups and varieties of lattice ordered groups is 
developed. It is known that the variety of representable lattice ordered 
groups is defined by the law z+ A u~h~u = 1. Here we consider the 
varieties defined by laws of this form where u is restricted to lie in some 
fully invariant subgroup of the free group Fx on a countable set X. All 
the varieties considered contain the variety of representable /-groups and 
therefore the free group with appropriate ordering. 

The fundamental theorem (in Section 2) establishes that for any 
lattice ordered group G (or variety of lattice ordered g r o u p s ^ ) the set 
of u G Fx for which l(u) = 1 is a law in G (respectively^) is a fully 
invariant subgroup^(G) (respectively, J ^ C ^ ) ) of Fx. On the other hand 
the class of lattice ordered groups S% (U) satisfying the laws l(u) = 1 for 
wf J7,a fully invariant subgroup of Fx, is clearly a variety. The mappings 
*V-* ^Itff) and U ->&(U) are studied in detail in Sections 3 and 4. 
In particular, ^3& is shown to be the identity mapping and & Ĵ ~ a 
closure operator. The mapping S% is then used to construct a meet semi-
lattice isomorphism of the lattice of varieties of groups into the lattice of 
varieties of lattice ordered groups. The structural properties of elements 
of 3?(U) are discussed in Section 5, where it is shown that they have 
properties reminiscent of representable lattice ordered groups. For in
stance, minimal prime subgroups are ' ' Z7-normar '. 

The reader is referred to [2] and [3] for background information, 
terminology and notation for lattice ordered groups (henceforth called 
/-groups). For background information on varieties of /-groups the reader 
is referred to [5]. 

We will denote byoêf the lattice of varieties of /-groups. For any /-group 
G (family of /-groups {G*}) we denote b y ^ ( G ) (respectively, if\Gj\) 
the variety of /-groups generated by G (respectively, {G*}). 

Let X' = X \J {z), where z (? X, be a countable alphabet which will be 
used to express laws. Let F = Fx denote the free group on the set X} 

which will be considered as a subset of F. 
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Let <p be a mapping of X' into a group G. Then the restriction of <p to X 
extends to a unique homomorphism of F into G. In this way 9? determines 
a unique mapping of {2) U F into G which is a homomorphism on F and 
the restriction of which to X' is just <p. We will denote this extension by 
*p also. 

For any variety of / -g roups^ , we define 

&Y = {u Ç F: z+ A «-V-« = 1, is a law i n f J, 

and, for any /-group G, we define 

J^G = (wf F : z+ A u~lz~u = 1, is a law in G}. 

C l e a r l y ^ G = &Y(G) and J ^ = H {J^G : G Ç ^ } . We will some
times write 

/(w) = z+ A u~lz~u. 

2. Fundamental theorem. The following observation is fundamental 
to this paper. 

THEOREM 2.1. For any l-group G (or variety of l-groups^),^G (respec
tively, ^V) is a fully invariant subgroup of F. 

Proof. Let uy v Ç ^"G. Then l(u) = 1 is a law in G. Hence, for any 
mappings : Xr —> G with z<p — g,u<p ~ h,v<p = k, 

g+ A h-'g-h = 1. 

Let / = g+(h~1g-h)-1. Then /+ = g+ a n d / - = h~lg~h. Since /(*;) is a 
law in G, we have 

/+ A k-y-k = 1 

or 

g+ A (hk)~lg-(hk) = 1. 

That is, 

(z<£>)+ A ((^)v?)_1(^)-(wz;)^ = 1. 

Therefore, Z(wv) = 1 is a law in G and uv Ç J ^ . 
Furthermore, for any g Ç G, 

ÙT1)4" A w - 1 ^ - 1 ) - ^ = 1 or g~ A u~lg+u = 1. 

Therefore, 

(^ - 1 ) - 1 r (^ - 1 ) A g + = 1 

and w-1 Ç ^"G. Thus ^ G is a subgroup of F. 
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To see that J^G is fully invariant, let a be any endomorphism of F. 
Let ip : Xf —» G be any mapping. Define 6 : Xf —» G by zB = z<p, x0 = 
(#Q:)<£> (X «E -X"). Let u G J^G. Then l(u) is a law in G. Therefore, 

(zd)+ A (ud)-l(zd)-(ud) = 1, 

that is, 

(s<p)+ A ((ua)ip)-l(zv)-((ua)ip) = 1. 

Since <p was chosen arbitrarily, it follows that l(ua) = 1 is a law in G 
and that ua G ^G. H e n c e ^ G is fully invariant. The result for tPV then 
follows easily. 

3. Group varieties to /-group varieties. Theorem 2.1 associates a 
fully invariant subgroup of F with each variety of /-groups. Conversely, 
each full invariant subgroup of F may be used to define a variety of 
/-groups as follows. We denote by J'F the lattice of fully invariant 
subgroups of F. 

Definition 3.1. Let U Ç J F be a fully invariant subgroup of F. Then 
S? U will denote the variety of /-groups satisfying the laws l(u) = 1, for 
all u G U. The two limiting cases are well known. If U = {1}, the trivial 
subgroup of F, then 3%U = =£?, the variety of all /-groups while 3% F is 
simply the variety 3% of all representable /-groups. We will call an /-group 
G quasi-representable if G G S%U for some V ^ JF. 

We will now develop some basic properties of the two mappings 
& : Y -> / ^ and g% : [/ -+ ^? [/. To do so we will need to have certain 
examples at our disposal. 

We recall the construction of the wreath product of two /-permutation 
groups. Let (H, 9) and (G, Q) be /-permutation groups and let A = 9 X Œ 
be ordered lexicographically from the right. Then the wreath product 
(W, A) = (H, 9) Wr (G, 12) of (H, 9) and (G, 12) is the /-permutation 
group of order preserving permutations of A of the form (A, a) where 
A : 12 —>i7 and (6, co) (A, a) = (9A(œ), œa). The resulting group con
sists of all ordered pairs (A, a) where A : 12 —-> H and a Ç G wTith the 
group operation 

(A,a)(B,b) = (ABa,ab) 

where Ba (a) = £(<xa). 
Since the /-group W so constructed is independent of 9, we will simply 

write W = if Wr (G, 12). For basic properties of the wreath product and 
its role in the study of<if see [4] and [5]. 

If G is a totally ordered group, then (G, G) will denote G as a group of 
order preserving permutations of the totally ordered set G where the 
action is by right translations. 
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For the purpose of constructing the examples below, let F be endowed 
with some fixed total order. 

Let U be a fully invariant subgroup of F. Then we define a subset Lv of 
Z Wr (F, F) as follows: 

Lv= {(A}a) :A(g) = A(h), if Ug = Uh}. 

LEMMA 3.2. Lv is an l-subgroup of Z Wr (F, F). 

Proof. Let (Au at) £ Lv (i = 1, 2). Then 

(Aua1)(A2,a2) = 04^42
a i, aia2). 

Let C/g = Uh. Then f/gai = C/Aai and so 

(i4ii42
a0(g) = ^i(g)^2(goi) = ^ 1 ( ^ 2 ( ^ 0 = (i4ii42

fll)(*)-

Thus Lv is closed under products. For any (A, a) £ Lt/, 

( 4 , a ) - i = ( (^ ô )" 1 , a - 1 ) 

where & = a - 1 and so 

(^&)-Ug) = A(ga-i)-i = A (ha-')-' = (Ab)'l(h). 

Therefore Lv is closed under inverses and is a subgroup. It can readily 
be verified that, for any (A, a) £ Lv, 

( (A, a) if a > 1 
(4 , a) V 1 = 1 if a < 1 

( ( i V / , 1 ) if a = 1 

where 1 denotes the identity of Lv or F, as appropriate, and I denotes 
the constant map of F onto 1 £ J^". Therefore L^ is an /-subgroup, as 
required. 

The /-groups Lv relate to the varieties S% U through the following result. 

THEOREM 3.3. Let U be a fully invariant subgroup of F. Then 
(1) Lv satisfiies the laws l(u) = 1 (u £ U); 
(2) Lv does not satisfy the law l(y) = 1, if v (? U. 

Proof. (1) Letw É U and let <p : X' —> L^ and let w = s^ = (B, b). 
If 6 5̂  1 then, since F is totally ordered, either b > 1 or b < 1 so that 
either w > 1 o rw < 1. This means that either w~~ = 1 or w+ = 1 and 
therefore 

w+ A (u(p)-lw~(uip) = 1. 

Now suppose that w = (B, 1) and let x = u<p = (̂ 4, a). Let T : Lv —> F 
be the mapping that projects onto the second component: (C, c) —» c. 
Then <£>7r (restricted to F) is an endomorphism of F. Since £/ is fully 
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invariant, it follows that a € U and so also a -1. We have, w i th / = a -1, 

x-^w-x = {{A')~\ a~l)(B~, l)(A,a) 

= ( (^o-HB-w l) = ((£-)', l). 
Since a - 1 £ U, for any y, 

{B-)'(y) = ^- (ya- 1 ) = B-((ya^y^)y) = 5- (y) , 

since ya""^"1 G £/, by the normality of U, and since w Ç Lt/. Thus the 
support of {B~)f equals the support of B~~. Hence 

w+ A x~lw-x = (B+, 1) A ( (3 - ) ' , 1) = (5+ A (B")' , 1) = (/, 1). 

Therefore Z(w) = 1 is a law in Lv. 
(2) Now let v 6 F\Z7. Let ^ : F -» Z be defined by 

( 1 if y e U 
A(y) = - 1 if y Ç t/zr"1 

( 0 otherwise. 

Then w = (-4,1) 6 -̂ c;- Define <p : X' —> Lu by z? = w, x<p = (J, x) for 
x f l . Then z><p = (/, v), and, with u = zr-1 

(^-)w( l) = A-(v~l) = 1 = 4 + ( l ) . 

Thus 

A+ A (4 - ) " ^ I, 

and so 

(z<p)+ A (v<p)~~l(z<p)-(v<p) 9^ 1. 

Therefore Z(z/) = 1 is not a law in Liu-

4. Basic properties of the correspondences. The next theorem 
summarizes the basic properties of the mappings &~ : i f —» <?{F), 
& : J (F) —* i f of the lattice of varieties of /-groups to the lattice of 
varieties of fully invariant subgroups of F and conversely. 

THEOREM4.1 .Le^ , ' ^ ' , ( : ^ a ( ae4 ) (= i f andU,V,Ua(a 6 A) 6 J^(F). 
(1) ^ is one-to-one. 

(3) U Q V *=>@(V) ç&(U). 
(4) % C &&"(&). 
(5) U=f&(U). 
(Q)r\#~(<%a) = J r ( v # „ ) . 
(7)r\@(ua) = # ( v [/«). 
(8) v^"(#«) c ^ ( n ^ a ) . 
(9) y dii.Ua) ç ^ ( n t4). 
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Proof. (1) Let U, V be distinct elements of J (F). Without loss of 
generality, let there be an element v Ç V\U. It then follows from 
Theorem 3.3 that Lv G 0l(U)\0$(V). Hence 0% is one-to-one. The direct 
part of (3), (2) and (4) are immediate from the definitions of J ^ and 0%. 

(5) Again it is immediate from the definitions that U Q^0?(U). Let 
v e F\U. By Theorem 3.3, Lv £ 0?(U) and Lv does not satisfy l(v) = 1. 
Hence v $ ^(0?(U)) and so we must have equality. 

(6) By (2), J ^ V °tia) Q H ^ ( ^ « ) . Now, for each a, #~(<%a) 2 
H ^ ( ^ a ) and so, by (3) and (4), 

Hence 

Applying Ĵ ~ to both sides, we obtain 

which, by (5), reduces to ^ ( V <%<*) 2 C\^{^la). Therefore, we have 
equality. 

For the converse implication in (3), now suppose that M ( V) C 0$ ( [/). 
Then, by (2),#~dl<JJ) Q^0?(V) which, by (5), reduces to U Q V, 
as required. 

(7) By (3), we have that Be ( V £/«) c n ^ ( [ / a ) . O n the other hand, 
for each a,r\0${Ua) Q &(Ua) implies that 

Hence, 

v ua Q^{r\s%{ua)) 
and 

&tiy ua) -^@&~(r\@(ua)) ^r\^(ua). 
Therefore equality holds. 

(8) From (2), J ^ J C # ~ ( n <%a), for each a. Therefore (8) follows. 
(9) From (3), 01 (Ua) Ç,0%{C\ Ua), for each a. Therefore (9) follows. 

It was first proved by Kopitov and Medvedev [7] that there are 
uncountably many varieties of /-groups. In fact, the varieties described 
in [7] are all varieties of representable /-groups. Feil, private communica
tion, has described another much simpler uncountable family of varieties 
of representable /-groups. Since the mapping 0? is one-to-one and it is 
known that J (F) is uncountable [10], it follows that 0RJ (F) constitutes 
a new uncountable family of varieties of /-groups. More specifically, from 
Theorem 4.1 (1) and (7) we have the following corollary. 
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COROLLARY 4.2 S%J{F) is an uncountable C\-complete lower subsemi-
lattice of J£ with S%, the variety of all representable l-groups, as its smallest 
element and££ as its largest member. 

The following application of Theorem 4.1, to answer an open question 
regarding the breadth of J£, was drawn to the author's attention by A. 
Glass. It has been shown by S. Adyan [1] that there exist 2Xo pairwise 
incomparable varieties of groups and consequently 2Ko pairwise incom
parable elements of J (F). By Theorem 4.1 (3), & maps such elements 
onto incomparable elements in=£f. Thus 

COROLLARY 4.3. (A. Glass). There exist 2Xo pairwise incomparable 
varieties of lattice ordered groups. 

In terms of the lattice of varieties of groups we have the following. 
Let 6 : ^ —•> J (F) be the usual anti-isomorphism of the lattice ^ of 
group varieties onto the lattice J (F) of fully invariant subgroups of F. 

COROLLARY 4.4. The composition of 6 and 3% is a one-to-one complete 
lower semilattice homomorphism of the lattice ^ of group varieties into the 
latticed of varieties of I-groups. 

Notation. For each positive integer n, let An denote the fully invariant 
subgroup of F corresponding to the variety of abelian groups of exponent 
n. If (m, n) = 1, that is, if m and n are relatively prime, then AmAn = F. 
Hence from Theorem 4.1 (7) we have the following. 

COROLLARY 4.5. If m and n are relatively prime positive integers, then 

Finally, the following corollary is a simple consequence of parts (2)-(5) 
of Theorem 4.1. 

COROLLARY 4.6. gft^ is a closure operator. 

5. Characterizations of quasi-representable /-groups. Recall that 
an /-group G is representable if and only if there exists a family of prime 
subgroups \P\} such that each P\ is normal in G and P\ P\ = {1}. 
Suppose now that M is a fully invariant subgroup of F and that M(G) 
denotes the fully invariant subgroup of G corresponding to M. The sub
group M(G) can also be described as the smallest normal subgroup of G 
such that the quotient group lies in the variety of groups defined by M 
or as the union of all the images of M under all homomorphisms of F into 
G. Note that M{G) is a fully invariant subgroup of G but not necessarily 
an /-subgroup. 

Definition 5.1. Let i f be a fully invariant subgroup of F and if be a 
subgroup of an /-group G. Then H is said to be M-invariant or M{G)-
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invariant if and only if M (G) is contained in the normalizer of H in G. 
The /-group G is said to be M-representable if there exists a family of 
prime subgroups {P\} such that each P\ is M (G) -invariant and P\ P\ = 
{1}. A prime subgroup P of G is said to be a representing prime subgroup if 

C\ {x-lPx : x G G) = {1}. 

This is equivalent to saying that the Holland representation [6] of G on 
the cosets of P is faithful. 

If, in the following theorem, M = F then the listed conditions reduce 
to the well-known equivalent characterizations of representability (see 
[3]). Since the proofs are entirely analogous, they are not included. 

THEOREM 5.2. Let G be an l-group and M a fully invariant subgroup of F. 
Then the following statements are equivalent. 

(1) G is M-representable. 
(2) G is a subdirect product of l-group s with M-invariant representing 

prime subgroups. 
(3) a G G, u G M {G) and a A u~la u — 1 implies that a = 1. 
(4) a A b = 1 and u G M (G) implies that a A u~lbu = 1. 
(5) G G ^ M . 
(6) Every polar in G is M'(G)-invariant. 
(7) For any prime subgroup P of G, J = C\ {g~lPg : g G M (G)) is a 

prime subgroup. 
(8) Every minimal prime subgroup of G is M (G)-invariant. 
(9) If N is a prime subgroup of G and g G M (G) then N and g~xNg are 

comparable. 
(10) If a G G, a ^ 1 and Kis a convex I-sub group of G which is maximal 

with respect to (i) a & K and (ii) K is M(G)-invariant, then K is prime. 

6. Further remarks on 8%J(F). We will first show that the contain--
ment in Theorem 4.1 (9) can be proper. For each n G N, let 

Gn = {(H, h) G Z Wr (Z, Z) : H(i) = H (J) if i = j and mod n}. 

Then Gn is an /-subgroup of Z Wr (Z, Z), introduced by Martinez [8]. 
Scrimger [11] considered the varieties 5 ^ , now called Scrimger varieties, 
generated by the /-groups Gn. Each Gn is subdirectly irreducible. 

For each integer w, let An be the fully invariant subgroup of F cor
responding to the variety of abelian groups of exponent n. The verifica
tion of the following lemma is a straightforward exercise. 

LEMMA 6.1. (i) Gn G 0ti(An) (ii) Sfn C &(An). 

We will also need the following result due to Martinez [9]. 

LEMMA 6.2. LetV x, ^ 2 G i f . Then G e^iV^2if and only if G is 
a subdirect product of l-groups in'f \ and'f \. 
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Let m and n be relatively prime integers greater than 1. Then Gmn G 
8?(Amn) and Amn = Am H 4 n . Suppose that Gmn € ^ ( ^ w ) V 8ê(An). 
Then by Lemma 6.2, Gmn is a subdirect product of /-groups in 8% (Am) and 
8$(An). However, Gmn is subdirectly irreducible and so we must have 
Gmn 6 88 (Am) or Gmn £ <^(-4n). It is easily verified that this is not the 
case and therefore we have a contradiction. Hence Gmn i 88 (Am) V 
US (An). Therefore 

88 (Am) V 88 (An) ^88(AmnAn) = 88(Amn) 

and we see that it is possible to have proper containment in Theorem 
4.1 (9). 

With regard to the placement of the quasi-representable varieties in 
the lattice of varieties we have seen (Theorem 4.1) that the smallest 
quasi-representable variety is 88 F which is simply the variety of repre-
sentable /-groups. Thus all quasi-representable varieties contain 88. In 
Lemma 6.1 we have observed that $fn £ 8%An. Now let Bn denote the 
fully invariant subgroup of Fx defining the Burnside variety of exponent 
n. 

The variety ££n of /-groups defined by the law xnyn — ynxn was intro
duced by Martinez [8] and also studied by Scrimger [11] and Smith [12]. 

LEMMA 6.3. For any integer n,J£n C 8%Bn. 

The containment in Lemma 6.3 is clearly proper since 8% C 81 Bn but 

The smallest quasi-representable varieties that properly contain 8% are 
clearly those of the form 8%AP, where p is a prime. If p and q are distinct 
primes, then by Corollary 4.4, 88 Ap Pi 8%Aq = 88. It is therefore natural 
to consider whether these varieties actually cover 88. By Lemma 6.1, 
yn C 9tAn. Thus 

88 v yn c s%An 

for all integers n > 1. Now LAn £ 8$An. Moreover LAn is subdirectly ir
reducible. Hence, if LAn £ 88 V £f n then it must lie either in 8% or ¥ n. 
Since neither is the case it follows that LAn g 81 V 5fn- Therefore we 
have the following proposition. 

PROPOSITION 6.4. For any integer n > 1, 

8? V yn £ 8%An. 

For any group G let 

G(0) = G, G œ = [G, G], . . . , G^ = [G**-", G(w"1}] 

be the derived series for G. Le t s / denote the variety of all abelian /-groups 
and let s/n the product of s/ with itself under the Mal'cev product as 
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discussed by Glass et al. [5]. Then sén is solvable ( j / n ) w = 1 and so 
j / n C S%F^n\ It is established in [5] that V i " = Jf, the variety of 
normal valued /-groups. Hence we have. 

PROPOSITION 6.5. V { ^ £ 7 : U e J F, U * {I}} =JV. 

REFERENCES 

1. S. Adyan, Periodic groups of odd exponent, Proc. 2nd Internat. Conf. in the theory 
of groups, Canberra (1973), 8-12. 

2. A. Bigard, K. Keimel and S. Wolfenstein, Groupes et anneaux réticulé, Lecture notes 
in Math. (Springer-Verlag, 1977). 

3. P. Conrad, Lattice ordered groups, Lecture notes, Tulane University (1970). 
4. A. M. W. Glass, Ordered permutation groups, Bowling Green State University (1976). 
5. A. M. W. Glass, W. Charles Holland and S. H. McCleary, The structure of I-group 

varieties, Algebra Universalis 10 (1980), 1-20. 
6. W. C. Holland, The lattice ordered group of automorphisms of an ordered set, Mich. 

Math. J. 10 (1963), 399-408. 
7. V. M. Kopitov and N. Y. Medvedev, About varieties of lattice ordered groups, 

Algebra and Logic 16 (1977), 417-423. (Russian) 
8. J. Martinez, Free products in varieties of lattice ordered groups, Czech. Math. J. 22 

(1972), 535-553. 
9. Varieties of lattice ordered groups, Math. Z. 137 (1974), 265-285. 

10. A. U. Olshansky, On the problem of finite basis of identities in groups, Proc. Acad. 
Sci., USSR, Math. Sci. 34 (1970), 316-384. 

11. E. B. Scrimger, A large class of small varieties of lattice ordered groups, Proc. Amer. 
Math. Soc. 51 (1975), 301-306. 

12. J. E. H. Smith, The lattice of l-group varieties, Ph.D. thesis, Bowling Green State 
University (1976). 

Simon Fraser University, 
Burnaby, British Columbia 

https://doi.org/10.4153/CJM-1981-099-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-099-2

