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Nilpotent Conjugacy Classes in p-adic Lie
Algebras: The Odd Orthogonal Case

Jyotsna Mainkar Diwadkar

Abstract. We will study the following question: Are nilpotent conjugacy classes of reductive Lie alge-

bras over p-adic fields definable? By definable, we mean definable by a formula in Pas’s language. In

this language, there are no field extensions and no uniformisers. Using Waldspurger’s parametrization,

we answer in the affirmative in the case of special orthogonal Lie algebras so(n) for n odd, over p-adic

fields.

1 Historical Background: Motivic Representation Theory

In a lecture given at Orsay in 1995, M. Kontsevich introduced the concept of motivic
integration. Since then it has become a tool of immense importance. The theory
of motivic integration has been developed and extended by Jan Denef and Francois

Loeser [1] and presented as arithmetic motivic integration. Their work strengthens
the belief that all natural p-adic integrals are motivic.

A construction of Denef and Loeser [1] attaches a virtual Chow motive to for-
mulae in Pas’s language. We give a brief introduction to Pas’s language in the next

section. Virtual Chow motives are designed to be independent of the p-adic field.
This paper is a small part of an effort initiated by T. C. Hales [6] to relate vari-

ous objects arising in representation theory of p-adic groups to geometry. In that
approach, expressing the concepts of representation theory of p-adic groups in Pas’s

language is the first step towards the goal. It is conjectured that many basic objects
in representation theory should be motivic in nature. If the conjecture is true, it will
enable us to do computations without relying on the specific value of p [5, 6]. In his
paper, Hales [6] achieves the goal for orbital integrals of p-adics by showing that un-

der general conditions p-adic orbital integrals of definable functions are represented
by virtual Chow motives. In her thesis, J. Gordon [2] proves that character values of
a class of depth-zero representations of symplectic groups (SP(2n)) and special or-
thogonal groups (SO(2n + 1)) over p-adic fields can be represented as virtual Chow

motives.
We call a mathematical object definable if it can be described (defined) by a for-

mula in Pas’s language. As we describe in the next section, this language makes no
reference to the specific value of p [10]. As a result, we can give a field-independent

description of nilpotent conjugacy classes. Moreover, the objects found in our proofs
will be formulae in this language of (somewhat new entities called) virtual sets. We
would like to point out that the word virtual in this context has no connection with
its use in virtual Chow motive.
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Nilpotent conjugacy classes are extremely important objects in the study of p-adic
groups. They appear prominently in the Shalika germ expansion [13,16]. Along with

these orbits, if other components of the expansion are shown to be definable, then it
would imply that Shalika germs exist independently of primes.

In this paper, we show that nilpotent conjugacy classes of so(n), for n odd, are in-
deed definable in Pas’s language. Why do we consider only this case? Can this method
be generalized to other reductive Lie algebras, or for that matter, to the even orthog-
onal case? First of all, our treatment of so(n) relies on Waldspurger’s parametriza-

tion [17]. He gives combinatorial data as parameters for the nilpotent conjugacy
classes of so(n) for odd n, but excludes the case where n is even. Secondly, there are
no field extensions in Pas’s language. At best, a finite field extension can be viewed as
a vector space, but it is not possible to extend the valuation to the vector space.

In Sections 1 and 2, we give a brief overview of Pas’s language and the use of virtual

sets in that context. Section 3 gives a somewhat tedious but detailed list of all the

required formulae. Section 4 deals exclusively with the formulation of the statement
of the main theorem and its proof.

2 Introduction: Pas’s Language

In this paper we will be dealing with local fields. A local field is locally compact; it is
complete with respect to its valuation and has a finite residue field. Since we desire
a field-independent description, we find it convenient to use Pas’s language, which

allows us to exploit the structure of a local field without referring to its individual
features, such as uniformiser of the valuation [10].

Pas’s language is a first order language with three sorts of variables: variables for
the elements of the valued field (F), variables for the elements of the residue field (F)
and variables for elements of the value group (Γ). It contains symbols for standard
field operations in the valued field and in the residue field (i.e., addition and mul-

tiplication) along with symbols for the usual operation (only addition) in the value
group (Γ). In addition, both field sorts have a symbol for equality (=). The value
sort has symbols ≤, ≥ and ≡n for congruence modulo each non-zero n ∈ N. With Z

as a structure for Γ, these symbols have the usual meaning.

Let LF be the language of fields for the field sort (F-sort) and L
F

the language
of fields for the residue field sort (F-sort). For the value group sort, let LΓ be the

language of ordered Abelian groups with an element ∞ on top given by

LΓ∞ = {+, 0, 1,∞,≤}.

Then the following is Pas’s language L:

L = (LF, L
F
, LΓ, val, ac).

Note With Z as a structure for the value group, Qp is a structure for the language L.
(See §2.1.2.)
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Moreover, in the valued field sort, there are symbols 0 and 1, respectively, for the
additive and multiplicative identities. Using these, we formally add symbols denoting

other integers to this language.

Example 2.1 Let P(t) be a formula in Pas’s language with t as a free variable, and
P(−1) is the abbreviation for

∃x P(x) ∧ (x + 1 = 0).

The language contains symbols for existential (∃) and universal (∀) quantifiers for
each sort. In particular, we have six symbols;

∀F, ∀
F
, ∀Γ, ∃F, ∃

F
, ∃Γ.

Whether the quantifiers range over the field sort, the residue field sort or the value
group sort will generally be clear from the context. If there is a possibility of confu-

sion, we will attach the respective sort symbol to the quantifier as shown above. Once
the sort of variable symbols used is clear, we will use them in a way that indicates that
meaning.

Pas’s language also has standard symbols for logical disjunction (∨), conjunction

(∧) and negation (¬). In addition, we use the following standard logical abbrevia-
tions for implication (⇒), biconditional (⇔), and exclusive or (∨), respectively:

φ⇒ ψ for ¬φ ∨ ψ, φ⇔ ψ for (φ⇒ ψ) ∧ (ψ ⇒ φ), φ ⊻ ψ for ¬(φ⇔ ψ).

The restriction of Pas’s language to the residue field sort coincides with the first
order language of rings. [4]

Pas’s language includes a function symbol “val” for the valuation map from the

valued field to the value group and another function symbol for an angular compo-
nent “ac” from the valued field to the residue field. We will explain the role of these
symbols in the next section after we introduce structures for this language.

2.1 Pas’s Structures

We make a distinction between the variable symbols used and their interpretation.
Here we discuss structures (in the model theoretic sense) for Pas’s language L [10].

We will state explicitly the conditions on these structures.

2.1.1 Conditions on Pas’s Structures

Definition 2.2 An SPL is a structure R for Pas’s language that consists of the follow-

ing:
• A structure for the field sort (F,+F,−F, ·F, 0F, 1F), where F is the domain for the

field sort, and F is assumed to be a valued field of characteristic 0.
• A structure for the residue field sort (F,+

F
,−

F
, ·

F
, 0

F
, 1

F
), where F is assumed to

be a finite field.
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• For the value group sort: (Z,+, 0,∞,≥).
• The valuation function, val, on F. (See §2.1.3.)
• An angular component map, ac, on F. (See §2.1.3.)

Remark 2.3 We mention in passing that in his paper [10], Pas placed an additional
condition that F be Henselian. It was required for the quantifier elimination proved
in that paper. This condition is not used in this paper.

Let R be the domain of the structure. A structure with domain R attaches a set

A(R) to every virtual set A and an interpretation θR to every formula θ. (See 2.2.)
Since the three sorts of this language are fields, finite fields and Abelian groups,

respectively, the language comes equipped with field and group axioms. Thus we have
the theories of fields and Abelian groups at our disposal. In the following sections we

prove some theorems where we will need to make use of the theory of fields. We use
the notation (even though R is a structure and not a model)

R |= φ

to indicate that a formula φ in Pas’s language holds in SPL R. An example of an SPL
is a p-adic field.

2.1.2 p-Adic Fields

Definition 2.4 Let Q denote the field of rational numbers and p a prime integer.
Then the p-adic norm | · |p is defined as follows: Given x ∈ Q×, there is a unique

r,m, n ∈ Z such that (m, n) = 1 and p 6 | m, p 6 | n and x = pr m
n

. Then |x|p = p−r .
Set |0|p = 0.

Definition 2.5 The completion of Q with respect to the p-adic norm | · |p is de-
noted by Qp, and Qp is called a p-adic field.

Thus, any non-zero element of Qp can be written as a power series in p.

Example 2.6 In Q5, 37 = 2 × 50 + +2 × 51 + 1 × 52.

Note Any finite extension of Qp is also called a p-adic field.

2.1.3 Function Symbols: ac and val

Here we explain the role played by the function symbols ac and val.
Let F be a valued field with valuation val : F → Z ∪ {∞}. We write

o = {x ∈ F/ val(x) ≥ 0} and p = {x ∈ F/ val(x) > 0}

for the valuation ring and valuation (maximal) ideal, respectively. Denote the residue
field o/p by F. The set of units of o is denoted by u, i.e., u = {x ∈ o | val(x) = 0}.
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Definition 2.7 An angular component map modulo p on F is a map

ac : F → F

x 7→ ac(x)

such that
• ac(0) = 0;
• the restriction of ac to F∗ is a multiplicative morphism from F∗ to F

∗
;

• the restriction of ac to u coincides with the canonical projection from o to p.

To illustrate how the functions val and ac work, consider the following example.

Example 2.8 Let F be the field Q5. Recall that every non-zero element in Q5 is of
the form

∑∞

i=N ai5
i , where N is an integer, ai ∈ {0, 1, 2, 3, 4} and aN 6= 0. Then

val(
∑∞

i=N ait
i) = N , ac(

∑∞

i=N ait
i) = aN . So from Example 2.6 we have val(37) = 0

and ac(37) = 2.

This language is highly restrictive, with no notion of sets. More specifically, the
set membership predicate ∈ is absent. We introduce virtual sets into the language

by means of various logical formulae. The notion of virtual sets is similar to what
Quine [11] refers to as virtual classes.1

2.2 Virtual Sets

A virtual set is a construct of the form {x : φ(x)}, where φ is a formula in Pas’s
language with free variables x1, x2, . . . , xn and x is a multi-variable symbol

x = (x1, x2, . . . , xn).

In this case, we say that the variable symbol x has length n. We write

(1) y ∈ {x : φ(x)} for φ(y).

Thus a serviceable “∈” of ostensible class membership can be introduced as a

purely notational adjunct [12]. The whole combination y ∈ {x : φ(x)} reduces
to φ(y), so there remains no trace of the existence of a class {x : φ(x)}. We could
rephrase y ∈ {x : φ(x)} by (∃x)

(

(x = y) ∧ φ(x)
)

, but we prefer to view ∈ and class
abstraction as fragments of the entire combination of (1).

When we write x ∈ V , we mean V (x). (This is an extension of the notation φ(x).)
It is also to be understood that the length of x is the same as the number of free
variables used in the formula defining V .

The virtual set theory shares some aspects of set theory. We note that the usual

set operations union, intersection and a notion of subset are present. If A and B are
virtual sets defined by formulae φ(x) and ψ(x), respectively, then

1Quine states, “. . . classes are freed of any deceptive hint of tangibility, there is no reason to distinguish
them from properties. It matters little whether we read x ∈ y as ‘x is a member of the class y’ or ‘x has the
property y’ ” [11, p. 120].
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• A ∪ B is a virtual set defined by {x : φ(x) ∨ ψ(x)}.
• A ∩ B is a virtual set defined by {x : φ(x) ∧ ψ(x)}.
• We say that A is a subset of B and denote it by A ⊂ B, where A ⊂ B is an abbrevi-

ation of the formula ∀x(φ(x) ⇒ ψ(x)). Since x is a multi-variable symbol, ∀x is a
quantified n-tuple.

Note Although a set can be a member of another set, a virtual set cannot be a mem-
ber of another virtual set. Thus A ∈ B is not permissible.

Here are two examples of virtual sets:

• The ring of integers o of any valued field is a virtual set defined thus:

{x ∈ F : val(x) ≥ 0};

• The maximal ideal p in o is a virtual set defined thus:

{x ∈ F : val(x) > 0}.

We conclude this section with one more definition. Let Ψ(x, y) be a formula with
free variables x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). We define a virtual set

with parameters y by

u ∈ {x : Ψ(x, y)} for Ψ(u, y),

where u = (u1, u2, . . . , un)

One should note that the quantifiers are not allowed to range over virtual sets.
Hence, there is no such expression as ∀V where V is a virtual set.

Remark 2.9 In Section 3.2 we prove some facts in linear algebra using virtual sets

defined by formulae in Pas’s language. Many of the proofs are classical, and at times,
instead of giving the entire proof, we say “ . . . the rest of the proof is classical.” How-
ever, caution must be exercised in making such statements. It may not always be
possible to lift proofs from classical mathematics and fit them into Pas’s language.

Virtual set theory is more restrictive than set theory. Concepts and objects of set the-
ory may not always have virtual set analogues. For example, the empty set has no
virtual counterpart. Since our quantifiers do not range over formulae, there is no
effective way to define an empty set.

Remark 2.10 In the most recent version of motivic integration, Cluckers and
Loeser2 avoid some of the aforementioned difficulties by using a category-theoretic
construct called definable subassignments. Their setting admits a good dimension
theory and makes a general integration version possible.

2R. Cluckers and F. Loeser, Constructible motivic functions and motivic integration. In preparation.
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3 A List of Formulae in Pas’s Language

3.1 Introduction

We wish to speak about linear algebra in this language, so we will start with vectors.
By a vector x we mean an n-tuple (x1, x2, . . . , xn) where the xi are variable symbols of
either the valued field sort or the residue field sort. Hence, when we say ∀x(x ∈ V )
we really mean ∀x1, ∀x2, . . . ,∀xn((x1, x2, . . . , xn) ∈ V ),

Example 3.1 If x is an n-tuple (x1, x2, . . . , xn) of variables of the field sort and y is
an n-tuple (y1, y2, . . . , yn) of variables of the field sort as well, then x + y, too, is an
n-tuple (x1 + y1, x2 + y2, . . . , xn + yn).

Example 3.2 If the context is an n× n matrix, we will use variable symbols xi j , yi j ,
and so forth rather than labelling the n2 entries in a sequence x1, x2, . . . , xn2 .

Example 3.3 If X is an n × n matrix (xi j) of variable symbols of the (say) valued
field sort, then ∃FX is an abbreviation of ∃Fx11, ∃Fx12, . . . ,∃Fxnn.

And finally, we define an operation on matrices.

Definition 3.4 If A is an n × n matrix (ai j) of variable symbols of the valued field
sort and B is an m × m matrix (bi j ) of variable symbols of the valued field sort, then
A ⊕ B is an (n + m) × (n + m) matrix (a ⊕ b)i j where

(a ⊕ b)i j =











ai j if 1 ≤ i, j ≤ n,

bi−n j−n if n + 1 ≤ i, j ≤ n + m,

0 otherwise.

The following section gives a long list of formulae. While the list seems tedious, it
contains formulae for all the objects needed in the proof of our main result. We hope
that this will allow us to present a short and clean proof.

3.2 Formulae

Formula 1. If V is a non-empty virtual set, let Lin(V ) be the formula:

0 ∈ V ∧ ∀λ1, ∀λ2∀x1, ∀x2 (x1, x2 ∈ V ⇒ λ1x1 + λ2x2 ∈ V ).

Here λ1 and λ2 are variable-symbols of the valued field sort (or residue field sort)
and x1 and x2 are vectors of variable-symbols of the valued field sort (or residue field
sort). We use Lin(V ) to define a virtual vector space over the valued field (or the

residue field, respectively).

Definition 3.5 Let TR be the theory consisting of sentences that are true for all
SPL R. If TR |= Lin(V ), then we say that V is a virtual vector space.
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(In the first order language of rings, our structure would be a ring. In that case,
Lin(V ) would assert that V is a module.)

Formula 2. Let Lin-ind(e1, . . . , en,V ) be the formula

∀λ1, λ2, . . . , λn

(

n
∑

i=1

λiei = 0
)

⇒ (λ1 = · · · = λn = 0)

∧ V (e1) ∧ V (e2) ∧ . . . ∧ V (en).

This formula asserts the linear independence of vectors e1, e2, . . . , en in V , where V

is a virtual set with M free variables and ei are vectors of length M each consisting of
terms.

Formula 3. Let Lin-comb(e1, e2, . . . em, u) be the formula

∃λ1, . . . , λm (u =

m
∑

i=1

λiei).

This formula states that u is a linear combination of e1, e2, . . . , em.

Formula 4. Let Span(e1, e2, . . . , em,V ) be the formula

∀v
(

V (v) ⇔ Lin-comb(e1, e2, . . . em, v)
)

.

This states that V is the span of vectors (e1, e2, . . . , em).

Formula 5. Let Basis(e1, e2, . . . , em,V ) be the formula

Lin-ind(e1, e2, . . . , em,V ) ∧ Span(e1, e2, . . . , em,V ).

This formula states that (e1, e2, . . . , em) is a basis for V .

Formula 6. For m, a fixed natural number, let Dim(m,V ) be the formula

∃e1, e2, . . . , em Basis(e1, e2, . . . , em,V ).

We wish to point out that here m is not a variable in Pas’s language.

Formula 7. At times we will need to say that a vector space has odd (respectively
even) dimension. We will be dealing with only finite dimensional vector spaces so, a

priori, there will be an upper bound n on the dimension.

• Let Odd-Dim(n,V ) be the formula

Dim(1,V ) ∨ Dim(3,V ) ∨ · · · ∨ Dim(2k − 1,V ) where n − 1 ≤ 2k − 1 ≤ n.

The formula asserts that the virtual set V is a vector space of odd dimension that is
less than or equal to n.
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• Let Even-Dim(n,V ) be the formula

Dim(0,V ) ∨ Dim(2,V ) ∨ · · · ∨ Dim(2k,V ) where n − 1 ≤ 2k ≤ n.

Formula 8. Let Int-comb(e1, e2, . . . em, u) be the formula

∃λ1 . . . λm (val(λi) ≥ 0) ∧ u =

m
∑

i=1

λiei .

This formula asserts that u is an integral combination of vectors (e1, e2, . . . , em).

Formula 9. Let Int-basis(e1, . . . , en, L) be the formula

Lin-ind(e1, . . . , en) ∧ (∀w ∈ L Int-comb(e1, . . . , en,w)).

Formula 10. Let V = U ⊕W be the formula

(W ⊂ V ) ∧ (U ⊂ V ) ∧ (U∩W = 0) ∧
(

∀v ∈ V (∃w ∈ W, u ∈ U (v = u+w))
)

.

This formula states that V is the direct sum of U and W . (The lack of conditions on
U , W and V is intentional. This decomposition allows us to talk about direct sums

of lattices, vector spaces or modules.)

Formula 11. Let Q-space(U ,V/W ) be the formula

Lin(V ) ∧ Lin(W ) ∧ Lin(U ) ∧ V = U ⊕W.

Observe that the quotient of a vector space by a subspace is identified with its com-

plement in the decomposition.

Remark 3.6 Henceforth, objects defined on quotient spaces will be identified with
objects on complements.

Formula 12. Let Q-Basis(e1, . . . , en,U ,V/W ) be the formula

Q-space(U ,V/W ) ∧ Basis(e1, e2, . . . , en,U ).

This says that the vectors e1, . . . , en form a basis for the quotient space V/W = U .

Formula 13. A lattice in a linear space V is an integral-span of a basis of V . Let

Lattice(L,V ) be the formula

Lin(V ) ∧ (L ⊂ V ) ∧ ∃e1, . . . , en

(

Basis(e1, . . . , en,V ) ∧ ∀w (w ∈ L ⇐⇒ Int-comb(e1, . . . , en,w))
)

.

This asserts that the virtual set L is a lattice in V .
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Formula 14. Let lattice(e1, e2, . . . , em) be the virtual set:

{u | ∃Fα1, . . . , αm val(αi) ≥ 0(u =

m
∑

i=1

αiei)}.

Remark 3.7 What is the difference between this formula and the earlier one? In the
previous formula we assert that L, a known virtual set, is a lattice; whereas, in this
formula we construct a lattice. It seems as though we are splitting hairs here, but we
are not. This allows us to use (say) L as an abbreviation for a virtual set. The formula

L = lattice(e1, e2, . . . , em) will thus mean “Label this particular virtual set as L.”

Formula 15. Similarly, let vectorspace(e1, e2, . . . , em) be the virtual set

{u | ∃Fα1, . . . , αm(u =

m
∑

i=1

αiei)}.

Formula 16. Let L, L̃ and V be virtual sets. Let J be an M by M matrix of terms,

where M is the number of free variables in V . The formula Dual-lattice(L, L̃, J,V ) is

Lattice(L,V ) ∧ (L̃ ⊂ V ) ∧

∀w ∈ V
(

w ∈ L̃ ⇐⇒
(

∀v(v ∈ L ⇒ val(tv Jw) ≥ 0)
))

.

This asserts that L̃ is the dual of lattice L with respect to matrix J.

Formula 17. Let sym-bil-nd( J,V ) denote the formula

∃e1, . . . , en

(

Lin(V ) ∧ Basis(e1, . . . , en,V ) ∧ det(A) 6= 0 ∧ (Ai j = A ji)
)

,

where Ai j = tei Je j . Here, ei are vectors of variable symbols of length M, and J is an
M by M matrix of terms, where M is the number of free variables in V .

Lemma 3.8 Under these definitions, a dual-lattice is a lattice. More precisely, if R is

an SPL, then

R |= sym-bil-nd( J,V ) =⇒
(

Dual-lattice(L, L̃, J,V ) ⇒ lattice(L̃,V )
)

,

where J is an M × M matrix of terms, V is a virtual set with M free variables, L is a

virtual set with M free variables, and L̃ is a virtual set with M free variables.

Proof Let R be an SPL. Then

R |= sym-bil-nd( J,V )

=⇒ ∃e1, . . . , en Lin(V ) ∧ det(A) 6= 0 ∧ Ai j = A ji1 ≤ i ≤ n, 1 ≤ j ≤ n,
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where Ai j = tei Je j . The proof is constructive in the sense that using the basis
{e1, . . . , en} for lattice L, we will produce a basis {e ′1, . . . , e

′
n} such that L̃ is a lat-

tice with respect to this basis. In other words, we will show that R |= ∃e ′1, . . . , e
′
n

such that Basis(e ′1, . . . , e
′
n,V ) ∧ (∀w(w ∈ L̃ ⇔ Int-comb(e ′1, . . . , e

′
n,w)) . Refer to

Formula 13.
Define e ′i as follows.

(2) e ′i =

M
∑

j=1

αi je j such that te ′i Je j = δi j .

We need to show that

Basis(e ′1, e
′
2, . . . , e

′
n,V ) ∧ ∀w ∈ V (w ∈ L̃ ⇔ Int-comb(e ′1, . . . , e

′
n,w)).

To say that these e ′i ’s exist and are unique is equivalent to saying that the αi j ’s exist
and are unique.

For each i, (2) gives a system of n linear equations in n variables. Since Ai j = tei Je j

is a square non-degenerate matrix (i.e., det(Ai j) 6= 0), the αi j ’s exist and are unique.
Thus the e ′i ’s are uniquely defined and form a basis of V . The rest of the proof is
classical.

Formula 18. A lattice L is said to be almost self dual if the following hold:

pL̃ ⊂ L ⊂ L̃.

While A ⊂ B is a formula in Pas’s language, a comment is needed on the meaning
of pL̃. It is the following virtual set: {v ∈ V : ∃α ∈ p, ∃w ∈ L̃(v = αw)}. Let
ASD(L, J,V ) be the following formula:

Lin(V ) ∧ lattice(L,V ) ∧ Dual-lattice(L̃, L,V, J) ∧ (L ⊂ L̃) ∧ (pL̃ ⊂ L).

Formula 19. We will need a formula for lattices of quotient spaces. Recalling that
we identify quotients of vector spaces with orthogonal complements, we will let
Q-Lattice(L,U ,V/W ) denote the formula

Q-space(U ,V/W ) ∧ lattice(L,U ).

Formula 20. Let Grami j(e1, e2, . . . , em, J) be the entry tei Je j . Here J is an M × M

matrix of terms.

Formula 21. Let Gram-det(e1, e2, . . . , em, J) be the determinant of matrix (tei Je j).

Formula 22. Let Θ(sq, J,V ) be the formula

∀e1, . . . , en

(

Basis(e1, . . . , en,V ) ⇒
(

∃ξ ∈ F ξ 6= 0 ∧ ξ2
= ac(Gram-det(e1, . . . , en, J))

))

.

This states that the Gram-determinant of the quadratic form on V , given by matrix
J is a square class in the residue field.

https://doi.org/10.4153/CJM-2008-004-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-004-6


Nilpotent Conjugacy Classes in p-adic Lie Algebras: The Odd Orthogonal Case 99

Formula 23. Let Θ(nsq, J,V ) be the formula

∀e1, . . . , en

(

Basis(e1, . . . , en,V ) ⇒
(

∄ξ ∈ F ξ 6= 0 ∧ ξ2
= ac(Gram-det(e1, . . . , en, J))

))

.

This states that the Gram-determinant of the quadratic form on V given by matrix J

is a non-square class in the residue field.

Formula 24. Let Q-dim(L1, L2,V, k) be the formula

(L1 ⊂ L2) ∧ Lin(V ) ∧ lattice(L1,V ) ∧ lattice(L2,V )

∧ ∃e1, . . . , en ∈ V
(

∀Fα val(α) = 1(Int-basis(e1, . . . , en, L2))

⇒ Int-basis(αe1, . . . , αek, ek+1, . . . , en, L1)
)

.

This formula asserts that the dimension of the vectorspace L2/L1 (over the residue
field) is k.

Formula 25. As in Formula 7, we will write formulae stating that the dimension of
the aforesaid quotient is odd (respectively even).

• Let Odd-Qdim(n, L1, L2,V ) be the formula

Q-dim(L1, L2,V, 1) ∨ Q-dim(L1, L2, V, 3) ∨ · · · ∨ Q-dim(L1, L2,V, 2k − 1),

where n − 1 ≤ 2k − 1 ≤ n.
• Let Even-Qdim(n, L1, L2,V ) be the formula

Q-dim(L1, L2,V, 0) ∨ Q-dim(L1, L2,V, 2) ∨ · · · ∨ Q-dim(L1, L2,V, 2k),

where n − 1 ≤ 2k ≤ n.

Formula 26. Let Anisotropic(e1, e2, . . . , em, J,V ) be the formula

Lin(V ) ∧ Lin-ind(e1, e2, . . . , em,V )

∧ ∀λ1, . . . , λm

( t(
m

∑

i=1

λiei

)

J
(

m
∑

i=1

λiei

)

= 0
)

⇒ (λ1 = · · · = λm = 0).

Recall that in Lin-ind(e1, e2, . . . , em,V ), the ei are vectors of terms, V is a virtual set
with M free variables, and J is an M × M matrix of terms. This formula states that if

V is a vector space and if J is the matrix of a quadratic form on V , then the linearly
independent vectors {e1, . . . , em} span a subspace of the anisotropic kernel of V .

Formula 27. Let Dim-aniso(m, J,V ) be the formula

∃e1, e2, . . . , em Anisotropic(e1, e2, . . . , em, J,V )

∧ ∄e1, e2, . . . , em+1 Anisotropic(e1, e2, . . . , em+1, J,V ).

This asserts that m is the dimension of the anisotropic kernel of V .
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Formula 28. Let Iso-aniso(V, JV ,W, JW ) be the formula

∃ev1
, . . . , evm

, ew1
, . . . , ewm

(

Anisotropic(ev1
, . . . , evm

, JV ,V )

∧ Anisotropic(ew1
, . . . , ewm

, JW ,W ) ∧ tevi
JV evi

=
tewi

JW ewi
∀i1 ≤ i ≤ m

)

∧ ∄ev1
, . . . , evm

, evm+1
, ew1

, . . . , ewm
, ewm+1

Anisotropic(ev1
, . . . , evm+1

, JV ,V )

∧ Anisotropic(ew1
, . . . , ewm+1

, JW ,W ).

This formula asserts that the vector spaces have isomorphic anisotropic kernels under
their respective quadratic forms.

Formula 29. Now we would like to be able to talk about direct sums of vector spaces
formed by annexing 2 arbitrary vector spaces. Let e be a vector of terms of length n.
Let f be a vector of terms of length m. We construct a vector of terms of length
n + m by concatenating e with f . We denote this by e ⊕ f . Thus, if e is given by

(e1, e2, . . . , en) and f by ( f1, f2, . . . , fm), then e ⊕ f is given by

(e1, e2, . . . , en, f1, f2, . . . , fm),

where the free variables ei are distinct from the free variables f j .
Moreover, if e and h have length n and f and k have length m, then define

(e ⊕ f ) + (h ⊕ k) := (e + h) ⊕ ( f + k).

Let Dir-sum(V,W,U ) denote the formula

Lin(V ) ∧ Lin(W ) ∧
(

∀ f ( f ∈ U ) ⇐⇒
(

∃ fv ∈ V ∃ fw ∈ W ( f = fv ⊕ fw)
))

.

Lemma 3.9 The direct sum of two vector spaces is a vector space. More precisely, let R

be an SPL. Then R |= Dir-sum(V,W,U ) ⇒ Lin(U ).

Proof Now the symbol λ(e ⊕ f ) will denote a vector of terms of length n + m

where the first n terms are that of the vector λe (scalar multiplication by the field
constant λ) and the remaining n terms are those of the vector λ f .

R |= ∀ f∀e( f ∈ U ∧ e ∈ U ∧ Dir-sum(V,W,U ))

⇒
(

(∃ fv∃ fw fv ∈ V, fw ∈ W ( f = fv ⊕ fw))

∧ (∃ev∃ewev ∈ V, ew ∈ W (e = ev ⊕ ew))
)

⇒∀λ1∀λ2

(

λ1 f + λ2e = λ1( fv ⊕ fw) + λ2(ev ⊕ ew)

= λ1 fv ⊕ λ1 fw + λ2ev ⊕ λ2ew

= (λ1 fv + λ2ev) ⊕ (λ1 fw + λ2ew)
)

,

Lin(V ) ⇒ λ1 fv + λ2ev ∈ V,

Lin(W ) ⇒ λ1 fw + λ2ew ∈ W ⇒ λ1 f + λ2e ∈ U ⇒ Lin(U ).
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4 Nilpotent Orbits in p-Adic Lie Algebras: The Odd Orthogonal Case

We follow closely Waldspurger’s treatment of the parametrization of nilpotent orbits
in the classical p-adic Lie algebras [17]. Since it is essential for our purpose, Sec-

tion 4.1 is nearly a verbatim quote from [17, I.5, I.6, I.7].

4.1 Parametrization of Nilpotent Orbits

Let F be a p-adic field with Fq as its residue field. Let g be the Lie Algebra so(r) with
r odd, and let X ∈ g be a nilpotent element. The following discussion is restricted to
the odd orthogonal case.

Let (V, qV ) be the underlying vector space of g with the qV as the quadratic form

in the definition of g. Let the set of partitions of r be denoted by P(r). Now consider
the subset of P(r) consisting of partitions Λ = (λ j) of r with the following property.

(∗) In the orthogonal case, for any even i ≥ 2 , ci(Λ) is even, where ci(Λ) denotes the
number of λ j that equal i.

We can associate with X a partition Λ of r: for all integers i ≥ 1, ci(Λ) is the number

of Jordan blocks of X of length i in the natural matrix representation. This parti-
tion automatically satisfies the above condition. Such a Λ will be our first parameter
for the conjugacy class of X. The remaining parameters are given by the following
construction:

(3) Vi = ker(Xi)/[ker(Xi−1) + X ker(Xi+1)],

for all i ≥ 1, i odd.
Define the quadratic form q̃i on ker(Xi), for all odd i by

(4) q̃i(v, v ′) = (−1)[ i−1
2

]qV (Xi−1(v), v ′)

where [ · ] denotes the integer part of the fraction. (We ignore even values of i, since

they do not enter the parametrization in the orthogonal case.)
Passing to a quotient, we get a non-degenerate form qi on Vi . Moreover, in the

orthogonal case, the forms qi satisfy the condition [See 4.2]:

⊕

i odd

qi ∼a qV .

The relation ∼a indicates that the two forms have the same anisotropic kernel.
The family (Λ, (qi)) parameterizes the conjugacy class of X. In turn, the set

{(Λ, (qi))} parameterizes the nilpotent conjugacy classes, where Λ is a partition of
r satisfying (∗).

Now we need invariants for the isomorphism class of (Vi , qi). In the orthogonal
case, these invariants are di (the dimension of Vi) and the quantities [17, I.3]

(d ′
i , d

′ ′
i , η

′
i , η

′′
i ) ∈ (Z/2Z)2 × (F

∗
q/F

∗2
q )2.
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These quantities are defined as follows: for each odd i, start with a lattice L (i.e., an
oF-module, where oF is the valuation ideal of F) in Vi that generates Vi over F. Define

its dual thus:

(5) L̃ = {v ∈ Vi : ∀w ∈ L, qi(v,w) ∈ oF}.

A lattice is said to be almost self-dual if

(6) L̃ ⊃ L ⊃ pFL̃.

Such L determines two vector spaces over Fq:

(7) l ′ = L/pFL̃, l ′ ′ = L̃/L.

Furthermore, they are equipped with quadratic forms that are of the same type as qV

with values in Fq defined by

ql ′(v,w) = qi(v,w) for v,w ∈ L,(8)

ql ′ ′(v,w) = ̟Fqi(v,w) for v,w ∈ L̃,(9)

where̟ is any uniformiser of the valuation on F.
Now we are in the realm of finite fields, and we can make use of the following fact.

• The isomorphism class of (V ′, qV ′), defined over Fq, is determined [15, IV.1.7]

by the quantities d(V ′) ∈ N and η(qV ′) ∈ F∗
q/F∗2

q , where η(qV ′) is the image of

(−1)[ d(V ′)
2

] det(qV ′) in F∗
q/F∗2

q .

Let η ′
i = η(ql ′) and η ′ ′

i = η(ql ′ ′). The invariants of (l ′, ql ′) and (l ′ ′, ql ′′) are

(d(l ′), η ′
i ) and (d(l ′ ′), η ′ ′

i ), respectively. In the orthogonal case, the anisotropic ker-
nels of ql ′ and ql ′ ′ do not depend on L. These kernels, together with dimension di , the
dimension of Vi , determine the isomorphism class of (Vi , qVi

). For the anisotropic
kernel, we only need to worry about the reduction of the dimensions of these vec-

torspaces mod 2Z [14, pp. 11–18]. Let d ′
i (respectively d ′ ′

i ) be the reduction of d(l ′)
(respectively d(l ′ ′)) in Z/2Z. They satisfy the condition d ′

i + d ′ ′
i ≡ di mod 2Z.

We now state a theorem for the orthogonal case.

Theorem 4.1 (Waldspurger [17, I.3, I.6]) Let F be a finite extension of the field Qp

with F as its residue field. Let V be a vector space over F with dim V = d, where d is odd

and p ≥ 3d + 1. Let J = ( Ji j) where

Ji j =

{

1 if i + j = d + 1,

0 otherwise.

Let g = Lie algebra (V, J). Let Σ = (Λ, (d ′
i , d

′′
i , η

′
i , η

′ ′
i )).

Then the set of nilpotent conjugacy classes are in bijection with the set {Σ} and are

denoted by NΣ, where
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• Λ ∈ P(d) is a partition of d satisfying the condition ∀i ∈ 2Z ci(Λ) ∈ 2Z.
• ∀i 6∈ 2Z, if ci(Λ) 6= 0, we have d ′

i ∈ Z/2Z, d ′ ′
i ∈ Z/2Z and d ′

i + d ′ ′
i ≡ ci(Λ)

mod (2Z).
• η ′

i ∈ {s, ns} and η ′ ′
i ∈ {s, ns}, where s and ns denote square classes and non-square

classes in the field F, respectively.

Furthermore, we have

(∗,Σ)
⊕

i odd

qi ∼a qV ,

where the relation ∼a indicates that the two forms have the same anisotropic kernel.

Proof See Waldspurger [17].

4.2 The Relation
⊕

i odd qi ∼a qV

This is quoted verbatim from J. L. Waldspurger’s personal notes. Let H = F × F and
qH be the quadratic form on H given by qH((x, y)(x ′, y ′)) = xy ′ + yx ′. Let V be a

finite dimensional vectorspace on F equipped with a non-degenerate quadratic form.
Then there exists an orthogonal decomposition

(V, qV ) = (Va, qVa
) ⊕ (H, qH) ⊕ · · · ⊕ (H, qH),

where qVa
is anisotropic. The equivalence class of (Va, qVa

) is well determined.

Definition 4.2 We say that (V, qV ) ∼a (V ′, qV ′) if (Va, qVa
) ∼= (V ′

a , qV ′

a
)

Now suppose V is a finite dimensional space over F equipped with a nondegenerate
quadratic form qV . Let X be a nilpotent element of the orthogonal Lie algebra of

(V, qV ). Then there exists an orthogonal decomposition

(V, qV ) ∼=
⊕

j∈ J

(V j , qV j
),

such that each V j is stable under X; denote the restriction of X on V j by X j .

Recall that the family (Λ, (qi)) parameterizes the conjugacy class of X. For odd i,
the form qi is equivalent to

∑

j a jx
2
j . For even i, the anisotropic kernel is zero, for

odd i the anisotropic kernel is of the form ax2 where a is a non-zero element of the
field F. Hence, qv is ∼a to the form

∑

j a jx
2
j summed over the j in the orthogonal

decomposition. This is nothing but the condition
⊕

i odd qi ∼a qV .

4.3 Definability of Nilpotent Conjugacy Classes in so(n), n Odd: The Main Theorem

We will now show that the conjugacy classes parameterized by the set {Σ} and the
condition (∗,Σ) are definable. Recall that Σ = (Λ, (d ′

i , d
′ ′
i , η

′
i , η

′ ′
i )).
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4.3.1 A Brief Outline

What are we trying to do here? In the odd orthogonal case, the nilpotent conjugacy

classes are uniquely parameterized by the family (Λ, (Vi , qi)). (Refer to equations (3)
and (4) and the subsequent comment in §4.1.) Each (Vi , qi) is uniquely determined
by the 4-tuple (d ′

i , d
′′
i , η

′
i , η

′ ′
i ), where

• d ′
i = 0 (respectively 1) means that the dimension of the vectorspace l ′i = L/pL̃

(over the residue field) is even (respectively odd). In our case, L is any almost self

dual on the quotient space Vi given by equation (3).
• d ′′

i = 0 (respectively 1) means that the dimension of the vectorspace l ′ ′i = L̃/L

(over the residue field) is even (respectively odd).
• η ′

i = sq (respectively nsq) means that the Gram-determinant of the quadratic

form on l ′i given by equation (8) is a square (respectively non-square) in the
residue field.

• η ′′
i = sq (respectively nsq) means that the Gram-determinant of the quadratic

form on l ′ ′i given by equation (9) is a square (respectively non-square) in the

residue field.

In the proof, we fix n = Dim(V, F) and select a partition of n satisfying the condi-
tion ci(Λ) ∈ 2Z for all i ∈ 2Z. For each i such that ci(Λ) 6= 0, select a 4-tuple for the
parameters (d ′

i , d
′′
i , η

′
i , η

′ ′
i ) from the set {0, 1}× {0, 1}× {sq, nsq}× {sq, nsq}. We

claim that there is a formula in Pas’s language for each of the aforementioned four
statements and for the condition (∗,Σ). (This condition is satisfied by the quadratic
forms and quotient spaces (Vi , qi) and (V, q) considered here.)

Finally, the main claim is that the virtual set cut out by these formulae is either

empty or a nilpotent conjugacy class. The definition of the parameters indicates that
there are 24 = 16 possible choices for the 4-tuple (d ′

i , d ′ ′
i , η

′
i , η

′′
i ). Some of these will

be ruled out by the condition d ′
i +d ′ ′

i ≡ ci(Λ)( mod 2Z), but many options remain. It
will be extremely cumbersome to write out all these options together. Hence, we will

state as clearly as possible how they are to be pieced together instead of presenting a
long formula containing concatenated conjunctions and disjunctions.

4.3.2 The Statement

Theorem 4.3

(i) For Σ = (Λ, (d ′
i , d

′′
i , η

′
i , η

′ ′
i )), Sd = {Σ} is a finite, field-independent set and

there exists a formula φΣ in Pas’s language for each Σ ∈ Sd.

(ii) (*,Σ) can be expressed by a formula φ∗,Σ in Pas’s language.

(iii) Let F be a p-adic field (see 2.1.2) such that its residue field F is finite. Let V be

a virtual set such that Lin(V ) ∧ Dim(d,V ) holds. Let J be a matrix of terms

satisfying the condition Ji j = J ji . Let g be the virtual set {Y : tY J + Y J = 0}.

(Here Y is a matrix of terms of the valued field sort.) Then

(10) {X ∈ g : φΣ(X) ∧ φ∗,Σ(X)}

is either empty or a nilpotent conjugacy class in g.

(iv) For each F, every nilpotent class appears exactly once in this set.
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Proof For convenience of notation, define

P̃(d) = {Λ ∈ P(d) : ∀i ∈ 2Z, ci(Λ) ∈ 2Z ∧ ∀i 6∈ 2Z, ci(Λ) 6= 0}.

Step 1: Any integer d has a finite number of partitions and thus, only a finite number
of them appear as Λ in the set {Σ}. The partitions depend only on d and not on the
field.

Step 2: Let Λ ∈ P̃(d). There is a unique JΛ (the Jordan block matrix) associated with
the partition Λ. Let JΛ(X) denote the formula:

( JΛ(X)) ∃(gi j)1≤i, j≤d(gi j)X = JΛ(gi j) ∧ det(gi j) 6= 0.

This states that X is conjugate to JΛ.

Now Λ is fixed for the rest of the proof.

Step 3: For each i 6∈ 2Z such that ci(Λ) 6= 0, the following are virtual sets with a

parameter X ranging over n × n matrices:

Ki := Ki(X) := ker(Xi) := {v ∈ V | Xi(v) = 0}

for all i ∈ 2Z with ci(Λ) 6= 0,

Wi := Wi(X) := {y ∈ V | Φ(y,X)},

where Φ(y,X) is the formula

∃y1, y2, u2, (y = y1 + y2 ∧ Xi−1(y1) = 0 ∧ X(u2) = y2 ∧ Xi+1(u2) = 0).

The virtual set Wi replaces the space [ker(Xi−1) + X ker(Xi+1)] in Section 4.1.

Now i is fixed until the last step. Thus ci(Λ) is fixed; call it ci .

Step 4: We need a formula for the set of elements in {Σd} that correspond to

(d ′
i , d

′ ′
i , η

′
i , η

′′
i ). This lengthy construction is divided into five substeps. To keep

us on track, we will give appropriate parallel references to Waldspurger’s treatment
from Section 4.1. In the final formula, all the quantities will be bound by appropriate
quantifiers.

Step 4a: First, we need to cut out a formula that gives an almost self-dual lat-

tice in Vi = Ki/Wi . Note that we will use the labels Vi , Ki and Wi in the sense
of formula 14 in Section 3.2. (Q-space(Vi ,Ki/Wi) ∧ Basis(ei1

, . . . , eici
,Vi) ∧

ASD(Li ,
tXi−1 J,Vi)) where Ki = Ki(X), Vi = vectorspace(ei1

, . . . , eici
) and Li =

lattice(ei1
, . . . , eici

) Call this formula φ(1)
i (X, ei1

, . . . , eici
).

Note The i refers to the fixed i and the superscript (1) refers to Step 4a.
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Step 4b: Now we need to cut out a formula stating that the dimension of the quotient
space l ′i is even, (odd) respectively. Recall that this number is bounded above by ci .

This would be: Even-Qdim(ci, pL̃i , Li,Vi), respectively Odd-Qdim(ci , pL̃i, Li ,Vi)),
where L̃i = {u | val(tei j

tXi−1 Ju) ≥ 0} for j = 1, . . . , ci , and Li , Vi are as in Step 4a.

Call these formulae φ(2)
i,ǫ (X, ei1

, . . . , eici
). Here ǫ refers to “odd” or “even”.

Step 4c: Now suppose that the value selected (at random) for the parameter η ′
i is

sq (respectively nsq). This is given be the following formula: Θ(sq, tXi−1 J,Vi) (re-
spectively Θ(nsq, tXi−1 J,Vi)). Piecing together one formula each from steps 4b and
4c gives the pair (d ′

i , η
′
i ). Call these formulae φ(3)

i,ǫ (X, ei1
, . . . , eici

). Here ǫ refers to
“square” or “non-square”.

Now we need to construct formulae for the pair (d ′ ′
i , η

′ ′
i ). Recall, d ′ ′

i is the dimen-
sion of the vector space l ′ ′ = L̃/L modulo 2Z. (See 4.1(7))

Step 4d: The formula for d ′ ′
i = 0 (respectively 1) is Even-Qdim(ci , Li, L̃i ,Vi) (re-

spectively Odd-Qdim(ci , Li, L̃i ,Vi)), where Vi , Li and L̃i are as above. Call these for-
mulae φ(4)

i,ǫ (X). Here ǫ refers to “odd” or “even”.

Step 4e: The formula for η ′ ′
i = sq (respectively nsq) is given by:

∀e ′1, . . . , e
′
ci

(Basis(e ′1, . . . , e
′
ci
,Vi) =⇒ ∃η ∈ o ∧ ∃ξ ∈ F

∗

such that

val(η) = ci + val(Gram-det(e ′1, . . . , e
′
ci
, tXi−1 J)

∧ ξ2
= ac(η) ∧ ac(η) = ac(Gram-det(e ′1, . . . , e

′
ci
, tXi−1 J))

where Vi is as above.
The formula for nsq follows similarly. Call these formulae φ(4)

i,ǫ (X). Here ǫ refers

to “square” or “non-square”. Piecing together one formula each from Steps 4d and
4e gives the pair (d ′ ′

i , η
′ ′
i ).

Step 5: Finally, we show that the condition (∗,Σ) is definable. Note that if (∗,Σ) is
not satisfied by the parameters, then the parameters give an empty conjugacy class.
Now recall that (∗,Σ), i.e.,

⊕

i odd qi ∼a qV is a concise notation for ((V1⊕V3⊕· · ·⊕
V j)a, (q1 ⊕ q3 ⊕ · · · ⊕ q j)a) ∼= (Va, qa) where j is the largest odd integer less than or
equal to d for which c j(Λ) 6= 0 and the subscript a refers to the anisotropic part. This
is given by the formula [refer to formula 28]

Iso-aniso(V1 ⊕V3 ⊕ · · · ⊕V j , J ⊕ tX2 J ⊕ · · · ⊕ tX j−1 J,V, J),

where Vi = vectorspace(ei1
, . . . , eici

)

Step 6: How do we piece all this together to present a virtual set in the form given by

equation (10)? Recall Σ = (Λ, (d ′
i , d

′′
i , η

′
i , η

′ ′
i )). Now, for each Λ ∈ P̃(d), consider

(11) {X ∈ g | ∃Fei1
, . . . , eici

φΣ(X, ei1
, . . . , eici

) ∧ φ∗,Σ(X)},

where 1 ≤ i ≤ n, and i ranges over all odd numbers appearing in the partition Λ.
(For brevity, we use the notation i ∈ Λ to indicate this condition on i.)
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• φΣ(X, ei1
, . . . , eici

) is the conjunction

JΛ(X)
∧

(
∧

i∈Λ

φi(X)
)

,

where φi(X, ei1
, . . . , eici

) stands for

φ(1)
i (X, ei1

, . . . , eici
) ∧ φ(2)

i,ǫ (X, ei1
, . . . , eici

) ∧ φ(3)
i,ǫ (X, ei1

, . . . , eici
)

∧ φ(4)
i,ǫ (X) ∧ φ(5)

i,ǫ (X),

combining the formulae from step 4a and one each (for the choice of ǫ) from steps

4b to 4e.
• φ∗,Σ(X) is the formula

Iso-aniso(V1 ⊕V3 ⊕ · · · ⊕V j , J ⊕ tX2 J ⊕ . . . ⊕ tX j−1 J,V, J).

In conclusion, the virtual set given by equation (11) is either empty or a nilpotent
conjugacy class in g. This gives definability in the orthogonal case.

5 Concluding Remarks

The use of Pas’s language to reformulate p-adic representation theory gives rise to
many important directions for research. Is this language powerful enough to ex-
press other representation theoretic objects? One would naturally be interested in

extending this language to determine if Cartan subgroups, conjugacy classes of Car-
tan subgroups are definable. If an effective way to define field extensions could be
found, we could use them to show that nilpotent conjugacy classes over unitary Lie
algebras are definable.
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