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Abstract. The aim of this paper is to study the group of isomorphism classes
of torsors of finite flat group schemes of rank 2 over a commutative ring R. This, in
particular, generalizes the group of quadratic algebras (free or projective), which is
especially well studied. Our approach, however, yields new results even in this case.

1. Introduction. We are going to study the group of separable quadratic algebras,
which was introduced by Bass in [2, Section 4.3] and was extensively studied by several
authors (see, for example, [4], [7] and references therein), using the methods of two-
dimensional categorical algebra. Our methods are based on the fact that stackification
is an exact 2-functor.

Let R be a commutative ring and we denote by Qu(R) the group of isomorphism
classes of separable quadratic R-algebras [4, Ch. 12] and by Dis(R), the group of
isomorphism classes of nonsingular symmetric bilinear R-modules, which are finitely
generated and projective of rank 1 [4, Ch. 4C]. According to [4, Statement 12.6, p. 178],
one has an exact sequence of abelian groups

Qu(R) → Dis(R) → Dis(R/4R).

Our goal is to extend this important exact sequence on the left-hand side. It follows
from our results that the following is true.

THEOREM 1.1. If 2 is not a zero-divisor in R, one has an exact sequence of abelian
groups

0 → �2(R) → μ2(R) → Im(μ2(R/4R) → μ2(R/2R)) → Qu(R) → Dis(R)

→ Dis(R/4R).

Here,

μ2(R) = {r ∈ R|r2 = 1} and �2(R) = {r ∈ R|r2 = r}.
The operation in �2 is given by r +1 s = r + s − 2rs (see [4, p. 202]). The first nontrivial
map is given by r �→ 1 − 2r.

In order to obtain the above, we are going to define a symmetric categorical
group Qu(R) such that the groups Qu(R) and �2(R) are its π0 and π1, respectively (see
Section 2 for symmetric categorical groups). Similarly, behind of the groups Dis(R)
and μ2(R), there is a symmetric categorical group Dis(R), while the groups Dis(R/4R)
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and Im(μ2(R/4R) → μ2(R/2R)) are obtained from the symmetric categorical group
Dis

−2,1(R). Hence, it suffices to show that Qu(R), Dis(R) and Dis
−2,1(R) fit in an exact

sequence of symmetric categorical groups, and then apply the classical six-term exact
sequence [3, p. 84] involving πi, i = 0, 1. The symmetric categorical groups Qu(R) and
Dis(R) are classical and they appear (at least implicitly) in many papers, for example,
in [4]. However, Dis

−2,1(R) is new. The next observation is that, by varying R, these
symmetric categorical groups form stacks in the Zariski topology.

As it turns out, they can be seen as the stackifications of the analogue prestacks of
symmetric categorical groups, based on free modules instead of projective ones. It is a
fairly easy exercise to show that the ‘free’ versions of the above symmetric categorical
groups fit in an exact sequence. Since stackification sends exact sequences to exact
ones, the result then follows.

Actually, we will work in a more general setting than that of separable quadratic
algebras. In fact, we will fix a commutative and cocommutative Hopf algebra J, which
is free of rank 2 as an R-module. It is a classical fact that any such Hopf algebra
is uniquely determined by a pair (p, q) of elements of R, such that pq + 2 = 0 (see
[5, Theorem 1.2]). Our main object of interest will be the group Qupq(R) of J-Galois
algebras, with our main result being Theorem 4.7. Since Qu(R) = Qu−2,1(R), Theorem
1.1 is a specialization of Theorem 4.7.

2. Cat-groups. Recall that a symmetric categorical group, or cat-group for short,
is a groupoid G, equipped with a symmetric monoidal structure + : G × G → G,
such that for each object X , the endofunctor (−) + X : G → G is an equivalence of
categories [8]. In particular, one has an object Y and an isomorphism X + Y → 0,
where 0 is the neutral object with respect to the symmetric monoidal structure +. If G
and H are cat-groups, a morphism α : G → H is just a symmetric monoidal functor.

Let G be a cat-group. The monoidal structure induces an abelian group structure
on the set of connected components. This abelian group is denoted by π0(G). We also
have an abelian group π1(G), which is the group of automorphisms of the neutral
object of G. Since the functor (−) + X : G → G is an equivalence of categories for
every object X , the induced homomorphism π1(G) → AutG(X) is an isomorphism.
Because of this, we will identify the automorphism group of any object with π1(G).
Recall also that if α : G → H is a morphism of cat-groups, then α is an equivalence if
and only if the induced morphisms

πi(G) → πi(H), i = 0, 1

are isomorphisms.
We also note that if α : G → H is a morphism of cat-groups, one can define the

cat-group 2- Ker(α). Objects of 2- Ker(α) are pairs (X, x), where X is an object of G,
while x : α(X) → 0 is a morphism in H. A morphism (X, x) → (Y, y) in 2- Ker(α) is
a morphism f : X → Y in G, such that x = yα(f ). It is also well known [3, p. 84], [8]
that there is an exact sequences of abelian groups

0 → π1(2- Ker(α)) → π1(G) → π1(H) → π0(2- Ker(α)) → π0(G) → π0(H). (1)
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Recall the definition of an exact sequence of cat-groups [8]. A diagram

G
α

��

0

��
� �� ���κ

H
β

�� K

is called exact at H, provided the induced functor γ : G → 2- Ker(β) is essentially
surjective. More precisely,

γ (X) = (α(X), κ(X) : βα(X) → 0).

It follows that one has an exact sequence of abelian groups

π0(G) → π0(H) → π0(K).

If we are given a morphism α : G → H of abelian groups, then we can make a
cat-group Gα whose objects are the elements of H, and for h1, h2 ∈ H, we have

Hom(h1, h2) = {g ∈ G|h2 + α(g) = h1}.
The monoidal structure is induced by the additive group structure on G and H.
Here, the associativity and commutativity constraints are identities. We have π0(Gα) =
Coker(α) and π1(Gα) = Ker(α).

Let α : G0 → G1 and β : H0 → H1 be morphism of abelian groups and Gα and Gβ

their associated cat-groups. Observe that any commutative diagram of abelian groups
and group homomorphisms

G0 ��

α

��

H0

β

��
G1 �� H1

gives rise to a morphism of the abelian cat-groups Gα → Gβ . We denote by Pb the
pullback of the diagram

H0

β

��
G1 �� H1

The following result is well known.

PROPOSITION 2.1. Let Gα and Gβ be as above. We have an equivalence of cat-groups

2- Ker(Gα → Gβ) ∼= Gı,

where Gı is the abelian cat-group associated to the morphism ı : G0 → Pb.

COROLLARY 2.2. Let α : G → H be a homomorphism of abelian groups and denote
the associated cat-groups of G → 0 and H → 0 by GG and GH, respectively. There is an
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equivalence of cat-groups

2- Ker(GG → GH)
α∗−→∼ Gα.

3. Free J-Galois algebras.

3.1. The cat-group Qu
pq
f (R). Let R be a commutative ring and p and q two

elements of R such that pq + 2 = 0. These elements will be fixed during this section.
Of special interest is the case p = −2, q = 1.

Objects of the groupoid Qu
pq
f (R) are pairs [a, b], where a, b ∈ R and a2 + p2b ∈ R∗.

Morphisms [c, d] → [a, b] are pairs (u, r), such that r ∈ R, u ∈ R∗, and the following
relations hold:

c = au − pr and d = u2b − qrua − r2. (2)

The composition of morphisms is defined by

(v, s) ◦ (u, r) = (vu, rv + s).

The morphism (1, 0) : [a, b] → [a, b] is the identity morphism of [a, b]. We define the
functor

� : Qu
pq
f (R) × Qu

pq
f (R) → Qu

pq
f (R)

as follows: On objects, we have

[a1, b1] � [a2, b2] = [a1a2, a2
1b2 + a2

2b1 + p2b1b2],

where we write [a1, b1] � [a2, b2] instead of �([a1, b1], [a2, b2]), and on morphisms � is
given by

(u1, r1) � (u2, r2) = (u1u2,−pr1r2 + r1u2a2 + u1a1r2).

One checks that � defines a symmetric monoidal structure on Qu
pq
f (R), whose

associativity and commutativity constraints are identities. The neutral object is [1, 0].
Since the pair (a2 + p2b, pb) defines a morphism [a, b] � [a, b] → [1, 0], the symmetric
monoidal groupoid Qu

pq
f (R) is in fact a cat-group. Consider the set

�pq(R) = {r ∈ R|r2 = qr},
which is considered as an abelian group via the operation r +1 s = r + s + prs. It is
clear that the map r �→ (1 + pr, r) yields an isomorphism of groups

�pq(R)
	−→ π1(Qu

pq
f (R)).

We let Qupq
f (R) be the group of isomorphism classes of Qu

pq
f (R), that is, Qupq

f (R) =
π0(Qu

pq
f (R)).

Observe that if p = −2 and q = 1, the above relations are exactly the same as in
[4, pp. 29–30]. Hence, Qu−2,1

f (R) is the same as the free quadratic group introduced in
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[4, p. 31], where it is denoted by Quf (R). Recall that the group Quf (R) is the group of
isomorphism classes of free separable R-algebras of rank 2 [4, Ch. 3A]. We will see in
Proposition 4.1 that the groups Qupq(R) have a similar interpretation for all (p, q). See
[4] for an extensive study of Quf (R). The group �−2,1(R) is the group of idempotents
of R and it appears in many places, see for example [4, p. 202], where it is denoted by
�2(R).

PROPOSITION 3.1. [An equivalence of categories] Let (p, q) be a pair of elements
in R such that pq + 2 = 0. For any invertible element t ∈ R∗, there is an equivalence of
categories

t∗ : Qu
pq
f (R) → Qu

pt,t−1q
f (R).

On objects, the functor t∗ is given by

t∗([a, b]) = [at, b],

while on morphism it is given by t∗(u, r) = (u, r).

3.2. The cat-group G(R) and the morphism αf : Qu
pq
f (R) → G(R). Consider the

homomorphism of abelian groups

R∗ sq−→ R∗, sq(r) = r2.

Denote its associated cat-group by G(R). We have

π0(G(R)) = U2(R) and π1(G(R)) = μ2(R),

where

U2(R) = R∗/(R∗)2 and μ2(R) = {r ∈ R|r2 = 1}.

Define the morphism of categorical groups

αf : Qu
pq
f (R) → G(R)

as follows: For an object [a, b] of Qu
pq
f (R), one puts

αf ([a, b]) = a2 + p2b.

If (u, r) : [c, d] → [a, b] is a morphism in Quf (R), then we have

c2 + p2d = (au − pr)2 + p2(u2b − qrua − r2) = u2(a2 + p2b)

thanks to equalities in (2). Thus, u can be considered as a morphism c2 + p2d →
a2 + p2b in G(R), and we put

αf (u, r) = u : α([c, d]) → α([a, b]).
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The morphism of cat-groups αf : Qu
pq
f (R) → G(R) induces the homomorphisms

of abelian groups

�pq(R) = π1(Quf (R)) → π1(G(R)) = μ2(R)

and

Qupq
f (R) → U2(R).

The first homomorphism is given by a �→ 1 + pa. It is well known that for p = −2, q =
1, the second homomorphism fits in the exact sequence (see [4, (3.6), p. 32])

Quf (R) → U2(R) → U2(R/4R). (3)

We wish to extend this sequence on the left-hand side (for arbitrary (p, q)), as well
as lift it to the level of cat-groups. This will yield analogous exact sequences after
stackification. Observe that the obvious candidate

Qu
pq
f (R) → G(R) → G(R/p2R)

does not work, as the composite functor Qu
pq
f (R) → G(R/p2R) is not the trivial one,

not even when p = −2, q = 1. As such, we have to modify the last cat-group.

3.3. The cat-group Gp(R) and the morphism βf : G(R) → Gp(R). We will need
the following easy and well-known fact.

LEMMA 3.2. Let R be a commutative ring and r ∈ (R/pR)∗. If r̃ ∈ R/p2R is a lifting
of r, then r̃ ∈ (R/p2R)∗. Moreover, there is a well-defined homomorphism

Sq : (R/pR)∗ → (R/p2R)∗

given by Sq(r) = r̃2.

Proof. If r is invertible and s = r−1 in R/pR, then r̃s̃ = 1 + px for some x ∈ R/p2R.
Here, s̃ is a lifting of s in R/p2R, and we obtain r̃s̃(1 − px) = 1. Hence, r̃ is invertible.
To show the last assertion, observe that for any x ∈ R/p2R, one has (r̃ + px)2 = r̃2 +
2prx = r̃2. This is because 2 = −pq and p2 = 0 in R/p2. �

Let Gp(R) be the cat-group corresponding to the homomorphism Sq : (R/pR)∗ →
(R/p2R)∗.

LEMMA 3.3. We have

π0(Gp(R)) = U2(R/p2R)

and

π1(Gp(R)) = Ker((R/pR)∗
Sq−→ (R/p2R)∗) ∼= Im(μ2(R/p2R) → μ2(R/pR)).

Proof. To see the first isomorphism, it suffices to note that Im(Sq) =
Im((R/p2R)∗

sq−→ (R/p2R)∗). The second statement is obvious. �
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Since the following diagram of abelian groups

R∗ ��

sq

��

(R/pR)∗

Sq
��

R∗ �� (R/p2R)∗

commutes, it gives rise to a morphism of categorical groups

βf : G(R) → Gp(R).

3.4. The natural transformation δf : βf αf → 1. Take an object [a, b] in Quf (R).
Since a2 + p2b ∈ R∗, the element a(mod pR) is invertible in R/pR. As such, it can
be considered as a morphism a2(mod p2R) → 1 in Gp(R). We denote this map by
δf ([a, b]) and obtain δf ([a, b]) : (βf ◦ αf )([a, b]) → 1. Moreover, if (u, r) : [c, d] → [a, b]
is a morphism of Qu

pq
f (R), one has c = ua(mod pR), thanks to the equations in (2).

This means that the following diagram

c2(mod p2R)
δf ([c,d]) ��

u(mod pR)
��

1

a2(mod p2R)

δf ([a,b])

�����������������

commutes in Gp(R). Thus, δf : βf αf → 1 is a natural transformation from βf ◦ αf to
the trivial functor.

3.5. Qu
pq
f (R) as a 2-kernel. We can now formulate the main result of this section.

THEOREM 3.4.

(i) The sequence of cat-groups

Qu
pq
f (R)

αf
��

1

��
� �� ���δf

G(R)
βf

�� Gp(R)

is exact at G(R). That is, the induced functor

γf : Qu
pq
f (R) → 2- Ker(βf )

is essentially surjective.
(ii) If p is not a zero-divisor in R, then γf is an equivalence of cat-groups.

Proof.

(i) According to Proposition 2.1, the cat-group 2- Ker(G(R) → Gp(R)) is
equivalent to the cat-group Gh associated to the following homomorphism
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of abelian groups:

R∗ h−→ {(x, s)|x ∈ R∗, s ∈ (R/pR)∗, x ≡ s̃2(mod p2R)}.
Here, s̃ ∈ R/p2R is a lifting of s and

h(u) = (u2, u (mod pR)).

Hence, the induced functor

γ : Quf (R) → Gh

is given by

γf ([a, b]) = (a2 + p2b, a (mod pR)) (on objects)

γf (u, r) = u (on morphisms).

Take an object (x, s) in Gh. By assumption x ∈ R∗ and there are elements
a, b ∈ R such that x = a2 + p2b and s = a (mod pR). Thus, γf ([a, b]) = (x, s),
and so γf is surjective on objects.

(ii) Thanks to part (i), we only need to show that the functor γf is full and
faithful. Take two objects [a, b] and [c, d] in Qu

pq
f (R) and let (u, r) and (u′, r′)

be two morphisms [c, d] → [a, b]. In particular, c = ua − pr = u′a − pr′. If
γf (u, r) = γf (u′, r′), then u = u′, and so pr = pr′. Thus, r = r′, implying that
γf is faithful. Take a morphism u : γf ([a, b]) → γf ([c, d]) inGh. By definition,
u ∈ R∗ and the following two conditions hold:

c2 + p2d = u2(a2 + p2b) and c ≡ ua (mod pR).

The last condition implies that there exist an element r ∈ R such that c =
ua + pr. We have

p2d = −c2 + u2(a2 + p2b) = −(ua − pr)2 + u2(a2 + p2b)

= p2(u2b − qrua − r2).

Since p is not a zero-divisor in R, we see that d = u2b − qrua − r2. This,
together with the equality c = ua + pr, shows that the pair (u, r) is a
morphism [c, d] → [a, b] in Quf (R), implying that γf is full.

�
COROLLARY 3.5.

(i) For any commutative ring R, one has an exact sequence of abelian groups

Qupq
f (R) → U2(R) → U2(R/p2R).

(ii) If p is not a zero-divisor in R, one has an exact sequence of abelian groups

0 → �pq(R) → μ2(R) → Im(μ2(R/p2R) → μ2(R/pR)) → Quf (R)

→ U2(R) → U2(R/p2R).
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(iii) For any commutative ring R, the functor Qu
1,−2
f (R) → G(R) is an equivalence

of cat-groups. In particular, Qu1,−2
f (R) ∼= U2(R).

Proof. (i) By applying π0 to the exact sequence of cat-groups constructed in
Theorem 3.4(i), one obtains the exact sequence (i). Similarly, exact sequence (ii) is
a specialization of the above, thanks to Theorem 3.4(ii). If p = 1, p is not a zero-divisor
and as such we can use Theorem 3.4(ii). The result now follows since G1,−2(R) is the
trivial cat-group. �

REMARKS.

(i) The exact sequence in Corollary 3.5(i) in the case p = −2, q = 1 is well-
known (see [4, Statement 3.6, p. 32]). The second exacts sequence however
is new, even in the case p = −2, q = 1.

(ii) If 2 is invertible in R, the categories Qu
−2,1
f (R) and Qu

1,−2
f (R) are equivalent

(see Proposition 3.1). In this case, we recover the well-known isomorphism
Qu−2,1

f (R) ∼= U2(R), see [4, Statement 3.4(i), p. 32].

3.6. An exact sequence. In this section, we generalize the result [4, Exercises 6–10,
p. 41] to arbitrary Qupq(R). Define the set

V1(R) = {r ∈ R|1 + pr ∈ R∗}
and equip it with the operation +1 by declaring

r +1 s := r + s + prs.

One easily sees that under this operation V1(R) is an abelian group (0 is also the zero
with respect to +1). We also need the following set:

V2(R) = {x ∈ R|1 + p2x ∈ R∗},
which is also an abelian group under the operation +2, where

x +2 y := x + y + p2xy.

It is straightforward to check that the map

ζ : V1(R) → V2(R), ζ (r) = r2 − qr

is a group homomorphism and as such defines a cat-group, which we denote byVpq(R).
We have

π1(Vpq(R)) = {r ∈ R|r2 = qr and 1 + pr ∈ R∗},
whose group structure agrees with +1. We also set

Vpq(R) = π0(Vpq(R)).

In the case, when p = −2 and q = 1, this group is the same group as one defined in
[4, Exercise 6, p. 41]. We construct the symmetric monoidal functor

ρ : Vpq(R) → Qu
pq
f (R)
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as follows: On objects it is given by ρ(x) = [1, x]. If r is a morphism from y to x inVpq(R)
(that is, y = x + (−qr + r2)(1 + p2x)), then ρ(r) = (1 + pr, r), which is considered as a
morphism [1, y] → [1, x] in Qu

pq
f (R).

We also need a cat-group Spq(R). The objects of Spq(R) are elements a ∈ R for
which there exist b ∈ R such that a2 + p2b ∈ R∗. Let a and c be objects of Spq(R). A
morphism c → a is an element u ∈ R∗, for which there exist an element r ∈ R, such that
c = au − pr. The composition of morphisms and the symmetric monoidal structure is
induced by the multiplication in R. Its associativity and commutativity constraints are
identity maps. Since for any object a of Spq(R), the element v = a2 + p2b is invertible
in R, we see that v defines a morphism a2 → 1. Hence, Spq(R) is a cat-group. One sets

Spq(R) := π0(Spq(R)).

Define a symmetric monoidal functor ω : Qu
pq
f (R) → Spq(R) as follows: On objects, we

set ω([a, b]) = a. If (u, r) : [c, d] → [a, b] is a morphism of Qu
pq
f (R), we set ω(u, r) = u.

As already mentioned, the following result is well-known when p = −2 and q = 1
[4, Exercises 9 and 10, p. 41].

PROPOSITION 3.6. (i) One has a short exact sequence of abelian groups

0 → Vpq(R)
ρ∗−→ Qupq

f (R)
ω∗−→ Spq(R) → 0,

where ρ∗ and ω∗ are induced by the functors ρ and ω.
(ii) If R is a local ring, then Spq(R) = 0.
(iii) If p ∈ Rad(R), then Spq(R) = 0. Here, Rad(R) is the intersection of all maximal

ideals of R. In particular, if p = 0, then

Qu0q
f (R) = R/R0, where R0 = {r2 + qr|r ∈ R} ⊂ R.

Proof.

(i) Let us show that ω∗ is an epimorphism. Take an object a of Spq(R). By
definition, there exist b ∈ R such that a2 + p2b ∈ R∗. Thus, [a, b] ∈ Qu

pq
f (R)

and ω([a, b]) = a. Since 1 + p2x ∈ R∗, it is straightforward that ω∗ ◦ ρ∗(x) =
1. Next, we will show exactness at Qupq

f (R). Take an object [a, b] of Qu
pq
f (R)

such that ω∗([a, b]) = 0. This means that there exist u ∈ R∗ and r ∈ R such
that 1 = au − pr. We set d = u2b − qrua − r2. Then, (u, r) is a morphism
(1, d) → (a, b). Thus, the class of [a, b] in Qpq

f (R) equals the class of [1, d] =
ρ(d) and exactness at Qupq

f (R) follows. It remains to show that ρ∗ is a
monomorphism. Assume x ∈ R is an element satisfying 1 + p2x ∈ R∗ for
which there exists a morphism [1, 0] → [1, x] in Qupq

f (R). There exist u ∈
R∗ and r ∈ R, such that 1 = u − pr and 0 = u2x − qru − r2. It follows that
u = 1 + pr ∈ R∗ and 0 = (1 + pr)2x − qr(1 + pr) − r2. The last equation is
equivalent to 0 = x + (r2 − rq)(1 + p2x), or 0 = x +2 ζ (r). So, r defines a
morphism from 0 → x in Vpq(R). As such, the class of x is zero in Vpq(R),
proving (i).

(ii) Assume R is a local ring with maximal ideal m. Take an object a of Spq(R).
We have a2 + p2b = v ∈ R∗ for some b ∈ R. If p ∈ m, then v−1a2 = 1 −
p2bv−1 ∈ m, showing that v−1a2 is invertible. This implies that a is invertible
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and a−1 defines a morphism 1 → a inSpq(R). Therefore, the class of a is zero
in Spq(R). If p ∈ m, p is invertible in R. If a is invertible, the same argument
works as before, so we assume a ∈ m. Then, 1 + a is invertible in R. Since

a = 1 · (1 + a) − p
1
p
,

we see that the pair (1 + a, 1
p ) defines a morphism a → 1 in Spq(R). Hence,

the class of a is zero in Spq(R), implying that Spq(R) = 0.
(iii) Take an object a ofSpq(R), that is we have a2 + p2b = v ∈ R∗ for some b ∈ R.

Thus, v−1a2 = 1 − p2bv−1 and by Nakayama 1 + Rad(R) ⊂ R∗. Hence, a is
invertible and a−1 defines a morphism 1 → a in Spq(R), so the class of a is
zero in Spq(R) and Spq(R) = 0.

�

4. Projective J-Galois algebras.

4.1. Remarks on stacks. We will assume that the reader is familiar with the theory
of stacks [6], which are the 2-categorical analogues of sheaves. By definition, a fibered
category is nothing other than a contravariant pseudofunctor. It is additionally a stack
if some gluing condition holds [6]. One easily observes that if α : S1 → S2 is a morphism
of stacks, then 2- Ker(α) is also a stack. It is well-known [6] that for any fibered category
A, there exists a stack A+ called the stackification of A. This construction preserves
2-kernels. Recall also that if S is a stack of cat-groups, then π1(S) is a sheaf but π0(S)
need not be a sheaf in general.

The underlying site which we will work with throughout this paper is the Zariski
site of affine schemes over Spec(R). However, we prefer to work with commutative
R-algebras instead of affine schemes. Accordingly, a covariant pseudofunctor from
commutative R-algebras to the 2-category of cat-groups is called a stack if the
corresponding contravariant pseudofunctor on affine schemes over Spec(R) is one.
It is clear that the assignments A �→ Qu

pq
f (A),G(A),Gp(A), where A is an R-algebra,

define fibered categories. Indeed, all of these are prestacks in the sense of [6] because
π1 of the corresponding cat-groups are sheaves. This is clear for Zpq and μ2 because
they are representable functors. For π1(Gp(R)), this follows from Lemma 3.3. We will
identify the stackifications of these prestacks and then use Theorem 3.4 to obtain an
exact sequence in Theorem 4.7. The case p = −2, q = 1 yields exactly Theorem 1.1,
which involves the well-studied [4], [7] group Qu(R).

4.2. The stack Qu
pq. Let p and q be two elements in R such that pq + 2 = 0. We

let J be a commutative and cocommutative Hopf algebra, which is freely generated as
an R-module by 1 and x, with

x2 = qx and �(x) = x ⊗ 1 + 1 ⊗ x + p · x ⊗ x.

It is well known that any Hopf algebra, which is free of rank 2 as an R-module, is of
this form [5, Theorem 1.2]. Recall that a commutative and associative algebra with unit
A is called a J-Galois algebra, provided A is a faithful, finitely generated, projective
R-module, and there is given an algebra homomorphism η : A → A ⊗ J, which makes
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A a right J-comodule. Further, the composition

A ⊗ A
id⊗η−−→ A ⊗ A ⊗ J

μ⊗id−−→ A ⊗ J

needs to be an isomorphism, where μ is the multiplication in A [5]. The last condition
means that the affine scheme Spec(A) is a torsor over the group scheme Spec(J). It
follows that the rank of A is 2.

Denote by Qu
pq(R) the cat-group of J-Galois algebras. Morphisms of Qu

pq(R) are
isomorphism of J-Galois algebras. The monoidal structure is induced by the cotensor
product of J. We denote the isomorphism classes of the groupoid Qu

pq(R) by Qupq(R)
(the same group is denoted by A(J) in [5]).

Let F : A → B be a functor and consider {B ∈ B | there are A ∈ A and F(A)
∼−→

B}. We call this the essential image of F.

PROPOSITION 4.1.

(i) There is a symmetric monoidal functor

Qu
pq
f (R) → Qu

pq(R),

which sends an objects [a, b] to (A, η). Here, A = R[t]/(t2 − aqt − b), while the
algebra homomorphism η : A → A ⊗ J is given by η(v) = a · 1 ⊗ x + v ⊗ 1 +
p · v ⊗ x, where v denotes the class of t in A. Moreover, if (u, r) : [c, d] → [a, b]
is a morphism in Qu

pq
f (R), the corresponding morphism B = R[s]/(s2 − cqs −

d) → A is induced by s �→ ut + r.
(ii) The functor Qu

pq
f (R) → Qu

pq(R) is full and faithful.
(iii) The essential image of Qu

pq
f (R) → Qu

pq(R) consists of J-Galois algebras that
are free as R-modules.

Proof. We will prove only part (iii) as the rest is straightforward to check. Take a
J-Galois algebra A. Thanks to [5, Corollary 2.5], the submodule spanned by 1 is a free
R-module, which is a direct summand of M as an R-module. Hence, A = R · 1 ⊕ V ,
where V is projective of rank 1. If A is free as an R-module, then V is a free R-
module of rank 1 (see [5, Lemma 1.1]). Denote a generator of V by v. It follows that
v2 = mv + b, η(v) = l0 · 1 ⊗ 1 + l1 · v ⊗ 1 + a · 1 ⊗ x + l3 · v ⊗ x and η(1) = 1 ⊗ 1, for
some a, b, m, l0, l1, l3 ∈ R. Since (Id ⊗ ε) ◦ η(v) = v, where ε : A → R is the counit of
J and ε(1) = 1, ε(v) = 0, one obtains l0 = 0 and l1 = 1. Thus,

η(v) = v ⊗ 1 + a · 1 ⊗ x + l3 · v ⊗ x. (4)

The condition (id ⊗ �) ◦ η(v) = (η ⊗ id) ◦ η(v) implies that

al3 = ap and l2
3 = l3p. (5)

Next, consider 1 ⊗ 1, 1 ⊗ v, v ⊗ 1, v ⊗ v as a base of A ⊗ A, and 1 ⊗ 1, v ⊗ 1, 1 ⊗
x, v ⊗ x as a base of A ⊗ J. One easily computes that the matrix of (μ ⊗ id) ◦ (id ⊗ η) :
A ⊗ A → A ⊗ J in the chosen bases is

⎛
⎜⎜⎝

1 0 0 b
0 1 1 m
0 0 a l3b
0 0 l3 a + l3m

⎞
⎟⎟⎠ .
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Hence, (μ ⊗ id) ◦ (id ⊗ η) : A ⊗ A → A ⊗ J is an isomorphism if and only if

a2 + al3m − l2
3b ∈ R∗. (6)

It follows from equations (5) that

(l3 − p)(a2 + al3m − l2
3b) = (l3 − p)a · a + (l3 − p)a · l3m − (l3 − p)l3 · l3b = 0,

and by condition (6) that l3 = p. Thus, we have

η(v) = v ⊗ 1 + a · 1 ⊗ x + p · v ⊗ x and a2 + pam − p2b ∈ R∗. (7)

As η is an algebra homomorphism, we have

m · v ⊗ 1 + ma · 1 ⊗ x + mp · v ⊗ x + b · 1 ⊗ 1 = η(mv + b) = η(v2)

= (v ⊗ 1 + a · 1 ⊗ x + p · v ⊗ x)2,

from which we obtain that

am = a2q, and mp = −2a.

Finally, we have

(m − aq)(a2 + pam − p2b) = 0,

and thus m = aq. It follows that v2 = aqv + b and a2 + pam − p2b = −(a2 + p2b) ∈ R∗.
Hence, A is in the image of the functor Qu

pq
f (R) → Qu

pq(R). �
COROLLARY 4.2. The stackification of R �→ Qu

pq
f (R) is R �→ Qu

pq(R).

Proof. The descent theory of projective modules implies that the assignment R �→
Qu

pq(R) is a stack, which, by abuse of notation, we denote by Qu
pq. Proposition 4.1

shows that the natural morphism Quf → Qu is a weak equivalence in the sense of
[6, Definition 2.3], and hence the result follows. �

4.3. The stack Pic. Let R be a commutative ring. We let Pic(R) be the following
cat-group: The objects of Pic(R) are projective R-modules of rank 1, while its
morphisms are isomorphisms of R-modules. The tensor product ⊗R equips Pic(R)
with the structure of a cat-group. If f : R → S is a homomorphism of commutative
rings, the functor f∗ : Pic(R) → Pic(S), given by f∗(M) = M ⊗R S, is a morphism of
cat-groups.

It follows from the descent theory that R �→ Pic(R) is a stack, which we denote
by Pic. Actually, it is the stackification of the prestack assigning to R the cat-group
corresponding to the homomorphism R∗ → {1} (see [6, Example (ii), p. 11]).

It is well known that

π1(Pic(R)) = R∗, and π0(Pic(R)) = Pic(R).

4.4. The stack Dis. Objects of the category Dis(R) are pairs (M, μ), where M is
a finitely generated projective R-module of rank 1 and μ is a nonsingular, symmetric,
bilinear form on M. Morphisms (M, μ) → (M′, μ′) are isomorphisms of R-modules h :
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M → M′, such that μ′(h(x), h(y)) = μ(x, y). Define the symmetric monoidal structure
on Dis(R) by (M′, μ′) ⊗ (M′′, μ′′) = (M ⊗ M, μ), where

μ(m′
1 ⊗ m′′

1, m′
2 ⊗ m′′

2) = μ′(m′
1, m′

2)μ′′(m′′
1, m′′

2).

The neutral object is (R, μ), where μ(r1, r2) = r1r2.

LEMMA 4.3. One has an equivalence of cat-groups

Dis(R) ∼= 2- Ker(sqR : Pic(R) → Pic(R)).

In particular, Dis is a stack, which is the stack associated to the prestack R �→ G(R).

Proof. Let μ be a nonsingular, bilinear form on a projective module M of rank 1.
Then, μ : M ⊗R M → R is an isomorphism, where R is seen as the unit object of the
cat-group Pic(R), and hence defines an object of 2- Ker(sqR : Pic(R) → Pic(R)). One
easily checks that this construction yields an equivalence of categories

Dis(R) ∼= 2- Ker(sqR : Pic(R) → Pic(R)).

We use Corollary 2.2 to show the last statement. It says that the cat-groupG(R) is the 2-
kernel of the morphism of cat-groups (associated to the vertical arrows), corresponding
to the commutative diagram of abelian groups

R∗ sq ��

��

R∗

��
1 �� 1.

We see that the stackification of R �→ G(R) is the 2-kernel of sq : Pic → Pic, which is
Dis, since stackification preserves 2-kernels. �

Note that equivalent prestacks give rise to equivalent stackifications and recall the
exact sequence (1) on page 152. Denote Dis(R) := π0(Dis(R)). We have the following
results.

COROLLARY 4.4.

(i) There is an exact sequence [4, (12.4), p. 176]

0 → U2(R) → Dis(R) → 2Pic(R) → 0.

(ii) We have an isomorphism of abelian groups

π1(Dis(R)) ∼= μ2(R) = {x ∈ R|x2 = 1}.
(iii) Propositions 3.1 and 4.1 imply that one has an equivalence of cat-groups

t+∗ : Qu
pq(R) → Qu

pt,t−1q(R).

(iv) From Corollary 3.5(iii), we immediately get that Qu
1,−2 ∼= Dis. If 2 is

invertible in R, the second part of the remark on page 159 yields the equivalence
of cat-groups

Qu
−2,1(R) ∼= Dis(R).
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After applying π0, we get the classical result [4, (12.8), p. 183]

Qu(R) ∼= Dis(R).

4.5. The stack Dis
pq. We will need some morphism of stacks. The first one

sq : Pic → Pic is given by sq(M) = M ⊗R M, M ∈ Pic(R).

PROPOSITION 4.5. There is a morphism of cat-groups

Sq : Pic(R/pR) → Pic(R/p2R),

for which the following diagram

Pic(R/p2R) ��

sq
��

Pic(R/pR)

sq

��

Sq

�����
���

���
��

Pic(R/p2R) �� Pic(R/pR)

commutes up to natural isomorphisms. Here, the horizontal arrows are induced by the
obvious ring homomorphism R/p2R → R/pR.

Proof. Since the kernel of the ring homomorphism R/p2R → R/p is a nilpotent
ideal, the functor Pic(R/p2R) → Pic(R/pR) is full, essentially surjective and reflects
isomorphisms (see, for example, [1, Proposition 2.12]). Hence, it suffices to show that for
two morphisms f, g : M → N in Pic(R/p2R), whose induced maps f∗, g∗ : M/pM →
N/pN coincide, sq(f ) = sq(g) : sq(M) → sq(N). This can be checked locally and so we
may assume that M = N = R/p2R. The result now follows from Lemma 3.2. �

We now put

Dis
pq(R) = 2- Ker(Sq : Pic(R/pR) → Pic(R/p2R)).

Since the 2-kernel of a morphism of stacks is again a stack, we see that Dis
pq is the

stack associated to the prestack R �→ Gp(R).

LEMMA 4.6. One has natural isomorphisms

π0(Dis
pq(R)) = Dis(R/p2R) and π1(Dis

pq(R)) ∼= Ker(Sq : (R/pR)∗ → (R/p2R)∗).

Proof. By our construction, we have a diagram of cat-groups

Pic(R/p2R)
sq ��

��

Pic(R/p2R)

id
��

Pic(R/pR)
Sq

�� Pic(R/p2R)

which commutes up to a natural isomorphism. We apply the exact sequence (1) to the
horizontal morphisms. It follows from the discussion in [3, p. 88] that one obtains a
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commutative diagram with exact rows

0 �� μ2(R/p2R) ��

��

(R/p2R)∗
sq ��

��

(R/p2R)∗ ��

id

��

Dis(R/p2R) ��

��

Pic(R/p2R)
sq ��

��

Pic(R/p2R)

id

��
0 �� π1(Dispq(R)) �� (R/pR)∗

Sq
�� (R/p2R)∗ �� π0(Dispq(R)) �� Pic(R/pR)

Sq
�� Pic(R/p2R).

This already implies the result for π1(Dis
pq(R)). Since the kernel of R/p2R → R/pR

is a nilpotent ideal, the vertical map Pic(R/p2R) → Pic(R/pR) is an isomorphism and
(R/p2R)∗ → (R/pR)∗ is an epimorphism [1, Proposition IX.3.4]. Hence, the result is
also true for π0(Dis

pq(R)), thanks to the five lemma. �

4.6. The main result. After stackification of the prestacks involved in the diagram
described in Theorem 3.4, one obtains the diagram of stacks

Qu
α

��

1

		
� �� ���δ

Dis
β

�� Dis
pq.

By general properties of stackification, Theorem 3.4(i) implies that the induced functor

γ : Qu → 2- Ker(β)

is locally essentially surjective.
Assume that p is not a zero-divisor in R. One easily sees that the same property

holds for the localization ring Rr, where r ∈ R. It follows that p is not a zero-divisor
for any of the rings involved in the process of stackification. By Theorem 3.4 (ii), the
induced morphism

γ (R) : Qu
pq(R) → 2- Ker(Dis(R)

β(R)−−→ Dis
pq(R))

is an equivalence of cat-groups. The following is now a specialization of the exact
sequence (1).

THEOREM 4.7. If p is not a zero-divisor of R, one has an exact sequence of abelian
groups

0 → �pq(R) → μ2(R) → Im(μ2(R/p2R) → μ2(R/pR)) → Qupq(R) → Dis(R)

→ Dis(R/p2R).
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