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Pore-scale mushy layer modelling
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Equations describing mushy systems, in which solid and liquid are described as a
single continuum, have been extensively studied. Most studies of mushy layers have
assumed them to be ‘ideal’, such that the liquid and solid were in perfect thermodynamic
equilibrium. It has become possible to simulate flows of passive porous media at the pore
scale, where liquid and solid are treated as separate continua. In this contribution, we study
the simplest possible mushy layers at the pore scale, modelling a single straight cylindrical
pore surrounded by a cylindrical annulus representing the solid matrix. Heat and solute
can be exchanged at the solid–liquid boundary. We consider harmonic temperature
and concentration perturbations and examine their transport rates due to advection and
diffusion and the melting and solidification driven by this transport. We compare the
results of this numerical model with those of a one-dimensional ideal mushy layer and
with analytical solutions valid for ideal mushy layers for small temperature variations. We
demonstrate that for small values of an appropriately defined Péclet number, the results
of the pore-scale model agree well with ideal mushy layer theory for both transport rates
and melting. As this Péclet number increases, the temperature and concentration profiles
with radius within the pore differ significantly from constant, and the behaviour of the
pore-scale model differs significantly from that of an ideal mushy layer. Some effects
of mechanical dispersion arise naturally in our pore-scale model and are shown to be
important at high Péclet number.

Key words: magma and lava flow, porous media, solidification/melting

1. Introduction

Mushy layers are reactive porous media where a multicomponent liquid can exchange
mass with a solid matrix through melting and solidification (Huppert & Worster 1985;
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Anderson & Guba 2020). Mushy layers are found in a number of natural settings including
sea-ice (Wells, Hitchen & Parkinson 2019), magma chambers (Holness et al. 2017),
Earth’s mantle during its early evolution (Monteux et al. 2020) and possibly Earth’s inner
core–outer core boundary (Huguet et al. 2016). Mushy layers are also studied in metallurgy
as they arise during casting (Worster 1992b). A significant amount of experimental work
has been carried out using aqueous systems owing to the ease with which these can be
manipulated (Worster 1997; Huguet et al. 2016). An important aspect of mushy systems is
that solidification and melting are usually accompanied by a change in the concentration of
solute in the liquid. This change in concentration can result in the interstitial liquid having
either stable or unstable buoyancy, and the convection arising from unstable gradients has
been the subject of many studies (Worster 1997).

There have been a number of sets of theoretical equations used to describe mushy layers
(McDonald & Hunt 1969, 1970; Mehrabian & Flemings 1970; Copley et al. 1970; Hills,
Loper & Roberts 1983; Huppert & Worster 1985; Worster 1986, 1992a). All of these have
been based on a continuum approach, whereby a representative elementary volume (REV)
is assumed to contain a mixture of liquid and solid matrix. In particular, Worster (1997)
defined an ‘ideal’ mushy layer, one in which the interstitial liquid is assumed to be in
perfect local thermodynamic equilibrium with the host matrix and hence its temperature
and concentration are confined to the liquidus. Additionally, in an ideal mushy layer, the
solid phase is assumed to be stationary with permeability that depends only on porosity
while the fluid is assumed to be isotropic and Boussineq. Thermodynamic equilibrium
between the liquid and solid requires that thermal and solutal diffusion at the pore scale
occur over time scales that are short compared with the time for liquid to migrate through
a pore. As such, there are separations of length and time scales that are necessary in order
for a mushy layer to be ideal. Continuum-scale modelling of mushy layers also requires
using effective material properties for the combined solid and liquid.

The requirement that interstitial fluids remain on the liquidus can lead to
transport-induced melting or freezing due to the difference in diffusion and advection
rates of heat and solute in passive porous media (Butler 2011). Heat diffuses faster
than solute, leading to melting when there is a hot invading fluid and solidification
for a cold invading fluid in a diffusion-dominated system. For advection-dominated
systems, solute is transported faster owing to effects of thermal retardation. This leads
to the counterintuitive result that a hot invading fluid will induce freezing while a cold
invading fluid will induce melting. One goal of this study is to investigate the validity of
predictions made based on ideal mushy layer theory for this transport-induced melting and
solidification.

While most modelling of flows in porous media is carried out at the continuum scale,
assuming an REV containing a statistically representative volume of liquid and solid,
modelling of porous medium flows at the pore scale has been carried out for roughly
the last two decades (Meakin & Tartakovsky 2009; Bondino et al. 2013; Bird et al. 2014;
Golparvar et al. 2018). Pore-scale modelling can be used to determine continuum-scale
material properties such as permeability as well as effective properties such as thermal
conductivity and heat capacity. Pore-scale modelling can also be used to test assumptions
made in deriving continuum theories.

Effects of mechanical dispersion are typically neglected in mushy layer modelling or
are assumed to simply contribute to the effective solute and thermal diffusivities (Butler
2011; Wells et al. 2019; Anderson & Guba 2020; Boury et al. 2021). Mechanical dispersion
arises in porous media because fluid velocities in the centres of pores are higher than those
near pore walls and also because of different pore sizes and because fluid parcels that
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are initially close together may become separated at forks of pore networks (Bear 1972;
Freeze & Cherry 1979). In studies of passive porous media, effects of mechanical
dispersion are usually parametrized using velocity-dependent, effective thermal and
solutal diffusivities (Bear 1972). Pore-scale modelling inherently includes the effects of
mechanical dispersion. However, because of the simple straight pore geometry that we
will be using, only effects due to the velocity profile across the pore can be studied here.

In the current paper, we present a first attempt at pore-scale modelling of a mushy
system. As a simplest possible starting point, we consider a single straight cylindrical pore
surrounded by a solid cylindrical annulus with which heat and mass can be exchanged.
This is similar in spirit to the early investigation of mechanical dispersion in a straight
tube by Taylor (1953). The long axis of our domain is intended to mimic the length
scales over which macroscopic temperature and solute variations occur. A single straight
cylindrical pore clearly lacks many complexities associated with real porous media,
including variations in pore thickness and pore branches and interconnections. However,
our aim is to study macroscopic-scale transport that occurs as a result of transport at the
much smaller pore scale and conditions under which local thermodynamic equilibrium
persists at the pore scale. We envision that a simplified porous layer might be modelled
by a large number of parallel straight pores for which our cylindrical model serves as a
unit cell. In our investigation, the pore fluid is required to have the liquidus temperature
and concentration at the pore wall, and we consider the diffusive and advective transport
of a fluid with sinusoidally varying initial axial concentration and temperature profiles. In
passive porous media, temperature and solute fields diffuse and advect at different rates,
while in ideal mushy layers the temperature and concentration are constrained to be the
same and hence the advection velocities of temperature and concentration gradients must
also be equal. The transport of fluids with gradients in concentration and temperature
causes freezing or melting (Butler 2011) in mushy layers. The degree to which the solute
and temperature fields remain in equilibrium with those of the solid matrix depends on the
ratios of the thermal and solutal diffusion times to the advection time at the pore scale,
which we quantify with the pore-scale Péclet number. We thus compare the predictions of
our pore-scale mushy model with those of a one-dimensional ideal mushy layer model and
with an analytical solution for an ideal mushy layer for sinusoidally varying temperature
and solute based on the theory in Butler (2011). We seek to identify the Péclet number at
which the ideal mushy layer approximation begins to break down and to examine non-ideal
behaviour.

Non-ideal mushy layer behaviour may also arise from kinetic effects – if the time scale
to reach thermal equilibrium at solid–liquid boundaries is not short compared with time
scales for transport in the system. We note that this cause of local thermal disequilibrium
can be studied using continuum models. Consequently, we will set aside examination of
possible non-ideal behaviour due to kinetic effects for a future study and assume perfect
equilibrium at the pore walls.

Geophysical systems in which melting and solidifying fluids flow in channels have been
previously studied. Brine channels or chimneys can form in convectively unstable mushy
systems in which complete melting occurs in narrow regions and fluid velocities may be
significantly higher than within the mushy layers themselves. Because of their importance
in the evolution of sea-ice and for climate models, these have been studied extensively
(Schulze & Worster 1998; Chung & Worster 2002; Rees, David & Worster 2013). While
brine channels have some similarity to the system in our study, there are a number of
differences, including the fact that flow occurs from the mushy layer into brine channels.
Additionally, the degree of disequilibrium within the brine channel was not the main
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R2

R1

H

Figure 1. The solution domain is a cylinder with axial length H, inner radius R1, and total radius R2. The
liquid and solid regions are coloured red and blue.

focus of those previous studies. The propagation of magma through country rock is of
interest because of its geological implications for feeding volcanoes and the emplacement
of igneous dykes (Bruce & Huppert 1989; Holmes-Cerfon & Whitehead 2011). Unlike in
the current study, the injected fluid in those studies is assumed to be significantly out of
equilibrium with the country rock and is modelled as a single chemical component.

In what follows, we first give a theoretical description of our pore-scale model, the
ideal mushy layer model and an approximate analytical solution for sinusoidally varying
temperature and solute in a one-dimensional ideal mushy layer. We then show results for
solute and temperature in a passive porous layer in order to illustrate the differences in
behaviour of temperature and solute as a function of Péclet number. We then show results
for transport-induced solidification and melting relevant to some common experimental
mushy systems consisting of aqueous salts.

2. Governing equations for the pore-scale model

We work in a domain consisting of an inner cylinder of initial radius R1 containing liquid
and a concentric cylindrical annulus of initial inner radius R1 and outer radius R2 which
is a solid region (see figure 1). The cylinder has axial length H, which we take to be a
length over which macroscopic thermal and solutal gradients occur. Coordinates r and z
represent the radial distance from the central axis and the distance from the base of the
cylinder. We will assume symmetry such that all quantities are unchanged by a rotation
about the cylinder axis. Note that the effects of gravity are not included in the model. We
intend for our concentric cylinders to represent a unit cell of a very simple porous medium
with long, straight, non-branching pores. However, we also note that it is impossible to
tile a plane with circles. A plane can be tiled with hexagons, however, and the use of a
domain consisting of a cylindrical liquid pore with a hexagonal outer domain boundary
would result in a change in porosity of roughly 10 %.
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Melting and solidification will cause changes in the radial position of the liquid–solid
boundary and so of the radius of the inner cylinder. We assume that these changes are
small enough that they do not significantly affect the axial velocity, and we do not allow
our simulation domain to change with time. However, we track the radial position of the
radius of the inner cylinder using the variable R̃1 which is a function of axial position and
time.

We impose a flow consistent with a constant pressure gradient along the long axis of the
inner cylinder of the form

w = −1
4η

dp
dz

(R2
1 − r2), (2.1)

where w is the z component of velocity, η is the fluid viscosity, p is pressure and r is the
radial coordinate (Turcotte & Schubert 2001).

The heat transport is described by the advection–diffusion equation in the liquid region,

∂T
∂t

+ w
∂T
∂z

= κl∇2T, (2.2)

and a diffusion equation in the solid,

∂T
∂t

= κs∇2T. (2.3)

Here, T is temperature, t is time, and κs and κl are the thermal diffusivities of the solid and
liquid, respectively, and are assumed to be constant.

We take the outer boundary, R2, to be thermally insulating:

∂T
∂r

∣∣∣∣
R2

= 0. (2.4)

Melting and freezing at the liquid–solid boundary will cause a change in the radius of the
fluid region as well as the release or absorption of latent heat. These processes result in
the following jump condition at the fluid–solid boundary:

−ks
∂T
∂r

∣∣∣∣
R+

1

+ kl
∂T
∂r

∣∣∣∣
R−

1

= −Lρs
∂R̃1

∂t
. (2.5)

Here, ks and kl are the thermal conductivities of the solid and liquid, L is the latent heat per
unit mass and ρs is the density of the solid. We also require that temperature be continuous
across the solid–liquid boundary.

A second advection–diffusion equation expresses the conservation of solute:

∂C
∂t

+ w
∂C
∂z

= D∇2C, (2.6)

where D is the solutal diffusivity and C is the concentration of a solute in the liquid.
Freezing or melting at the solid–liquid boundary will cause concentration or dilution of

the solute, and so mass balance on the liquid side of the boundary requires

ρlD
∂C
∂r

∣∣∣∣
R1

= ρs [Cs − C(R1)]
∂R̃1

∂t
. (2.7)

Here, Cs is the concentration of the solute in the solid, which we assume to be either 0 or 1.
We note that if the radial position of the pore wall varied with axial position, there would
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be an axial component of the normal to the pore wall and (2.5) and (2.7) would need to be
modified to take these components into consideration. In keeping with our approximation
that variations in the pore wall radius are small and that the geometry of the simulation
domain does not change, we assume that solute changes related to latent heat and phase
changes are adequately taken into account by the radial component only.

We need an equation describing the rate of change of the inner radius, R̃1, which we
assume to be proportional to the degree of disequilibrium at the inner wall boundary. The
temporal variation of the inner boundary at a given height is then given by (Kerr et al.
1990)

∂R̃1

∂t
= B

[
T(R1) − Teq(C(R1))

]
, (2.8)

where we have neglected boundary curvature effects. Here, B is a kinetic constant and Teq
is the equilibrium temperature (the liquidus), which we take to be linear:

Teq = m1C + Tm. (2.9)

Here, Tm and m1 are constants, (2.8) is used to update R̃1 as a function of time and z, and
∂R̃1/∂t is fed back into (2.5) and (2.7).

We calculate the porosity, φ, from the areal fraction occupied by liquid as a function of
height:

φ(z, t) = R̃1(z, t)2

R2
2

. (2.10)

3. Non-dimensional forms

We use the initial radius at the inner boundary, R1, the velocity along the midline, w0, and
the ratio R1/w0 as length, velocity and time scales. With these choices, the dimensionless
axial length of the domain becomes H′ = H/R1, while the velocity field becomes

w′ = (1 − r′2). (3.1)

Here, primes indicate dimensionless variables corresponding to dimensional variables
introduced in § 2. Equation (3.1) can be integrated over the area of a circular pore to give
the total volume flux:

Q = π

2
. (3.2)

We can further divide Q by the combined area of the pore and solid to get the Darcy
velocity:

wD = Q

πR′2
2

= 1
2R′2

2
= φ0

2
. (3.3)

The pore velocity, wc, is the mean velocity within the pore only and is given by

wc = wD

φ0
= Q

π
= 1

2
. (3.4)

The non-dimensionalized temperature and concentration are defined as

θ = T − T0

Tmax − T0
(3.5)
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and

c = C − Ceq(T0)

Ceq(Tmax) − Ceq(T0)
, (3.6)

where T0 and Tmax represent the average and maximum values of the initial temperature
while Ceq(T) is the liquidus concentration for a given temperature. Note that we assume the
initial temperature to vary sinusoidally in z and so c and θ ∈ [−1, 1] since the temperature
amplitude typically decreases with time. The liquidus relation then becomes simply

θ = c. (3.7)

With this non-dimensionalization, when the dimensional liquidus has a negative slope
(m1 < 0), Ceq(Tmax) − Ceq(T0) < 0 and the dimensionless concentration, c, decreases
with increasing dimensional concentration, C. The dimensionless temperature θ always
increases with the dimensional temperature T , however.

The non-dimensional forms of (2.2), (2.3) and (2.6) are

∂θ

∂t′
+ w′ ∂θ

∂z′ = 1
Pe

∇′2θ, (3.8)

∂θ

∂t′
= κr

Pe
∇′2θ, (3.9)

∂c
∂t′

+ w′ ∂c
∂z′ = ε

Pe
∇′2c, (3.10)

where Pe = w0R1/κl is a pore-scale Péclet number and κr = κs/κl represents the ratio of
the solid to liquid thermal diffusivities. The inverse Lewis number is ε = L−1

e = D/κl.
The Péclet numbers determine the relative magnitudes of advection and diffusion. Since
the chosen length scale is the pore radius, Pe and Pe/ε represent the ratios of time scales
for thermal and solutal diffusion to advection over a pore radius. It is additionally useful
to define a system or continuum-scale Péclet number with length scale determined by the
length of the simulation domain: Pec = w0wDH/κl = wDPeH/R1 = φ0PeH/(2R1). The
continuum Péclet number represents the ratio of the time scales for thermal diffusion and
advection over the distance H′ over which axial gradients exist. The Darcy velocity wD is
used rather than the central pore velocity in the definition of Pec so that it can be used in
the ideal mushy model where w0 is not defined. Note that w0wD is the dimensional Darcy
velocity.The solutal system Péclet number is given by the ratio Pec/ε. We additionally find
it useful to consider hybrid Péclet numbers Ph = (R2

1/κl)/(H/w0) = PeR1/H (thermal)
and Ph/ε (solutal). These represent the ratios of time scales for diffusive equilibration
across a pore radius to advective transport in the axial direction over the distances over
which axial gradients occur. The two time scales in this latter Péclet number are the same
as those identified by Taylor (1953).

The Péclet numbers are summarized in table 1, and in our simulations we investigate
behaviour from low to high Pe and Pec.

The thermal boundary conditions become

∂θ

∂r′

∣∣∣∣
R′

2

= 0, (3.11)

−ks
∂θ

∂r′

∣∣∣∣
R′+

1

+ ∂θ

∂r′

∣∣∣∣
R′−

1

= −SPe
∂R̃′

1
∂t′

(3.12)
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Description Symbol Formula

Pore-scale thermal Pe w0R1/κl
Pore-scale solutal Pe/ε w0R1/D
Continuum-scale thermal Pec w0Hφ0/(2κl)

Continuum-scale solutal Pec/ε w0Hφ0/(2D)

Hybrid thermal Peh R2
1w0/(κlH)

Hybrid solutal Peh/ε R2
1w0/(DH)

Table 1. Péclet numbers and definitions. Note that all quantities in the ‘Formula’ column are dimensional.

and
θ(R′+

1 ) = θ(R′−
1 ). (3.13)

Here S = ρsL/ρlcpl(Tmax − T0) is the Stefan number, which characterizes the relative
magnitudes of latent and sensible heat. For the solute boundary condition we have

∂c
∂r′

∣∣∣∣
R′

1

= ρ′
s(C − c)

Pe
ε

∂R̃′
1

∂t′
, (3.14)

where C = (Cs − Ceq(T0))/(Ceq(Tmax) − Ceq(T0)) is the concentration ratio which
characterizes the relative changes in concentration caused by melting or freezing versus
those caused by advection and diffusion. The non-dimensional solid density is ρ′

s = ρs/ρl.
The kinetic relation governing the rate of melting at the pore wall is

∂R̃′
1

∂t′
= B′[θ(R1) − c(R1)], (3.15)

where B′ = B(Tmax − T0)/w0.
The parameter B′ characterizes the relative rates of melting and freezing versus

advection and controls the degree of disequilibrium at the liquid–solid boundary. If
B′ = 0, there is no melting or freezing and we regain the equations for a passive pore.
In the calculations related to mushy layers, we use a value of B′ � 1 (B′ = 104) so that
θ(R1) ≈ c(R1).

In what follows, all variables are dimensionless and with this understanding we neglect
the primes.

4. Ideal mushy layer equations

As shown by Worster (1992b) and Butler (2011), the one-dimensional equations governing
the evolution of temperature and solute in an ideal mushy layer can be written as

ρcp
∂θ

∂t
+ wD

∂θ

∂z
= 1

Pec

∂

∂z
k̄
∂θ

∂z
− S

∂φ

∂t
(4.1)

and

φ
∂c
∂t

+ wD
∂c
∂z

= εφ

Pec

∂2c
∂z2 + ρs(C − c)

∂φ

∂t
, (4.2)

where, unlike for an ideal mushy layer where θ = c, we use the more general constraint

∂φ

∂t
= Bi(θ − c). (4.3)
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Equations (4.1) and (4.2) are solved on a one-dimensional domain in order to compare
with the single-pore mushy model. We also define ρcp = φ + (1 − φ)ρscps and k̄ =
φ + (1 − φ)ks as the heat capacity per unit volume and thermal conductivity that
are volume-averaged over an REV and have been non-dimensionalized by the liquid
properties. We note that constraints (3.15) and (4.3) differ in that the former is enforced
only on the pore wall in the two-dimensional simulations while the latter enforces
equilibrium everywhere in the simulation domain. The coefficients B and Bi are related by
Bi = 2

√
φφ0B. However, in all cases involving mushy layers, we use B � 1 and Bi � 1

such that c ≈ θ so that the exact values of B and Bi are not important.
We also note that in (4.2) we have taken the effective solute diffusivity to be proportional

to porosity, but we are neglecting terms due to axial gradients in porosity. We expect this
approximation to be reasonable given the small variations in porosity in our calculations.

5. Approximate analytical solutions for sinusoidal variations in an ideal mushy layer

As shown in Butler (2011), (4.1) and (4.2) can be rearranged to obtain separate evolution
equations for the temperature or solute, assuming θ = c as is appropriate for an ideal
mushy layer, and for the porosity:

∂θ

∂t
= A1,1

∂θ

∂z
+ A1,2

∂2θ

∂z2 (5.1)

and
∂φ

∂t
= A2,1

∂θ

∂z
+ A2,2

∂2θ

∂z2 . (5.2)

Here

A1,1 = −ρs(C − θ) − S
ρcpρs(C − θ) + Sφ

wD, (5.3)

A1,2 =
k̄

Pec
ρs(C − θ) + S

ε

Pec
φ

ρcpρs(C − θ) + Sφ
, (5.4)

A2,1 = ρcp − φ

ρcpρs(C − θ) + Sφ
wD, (5.5)

A2,2 =
φ

Pec
(k̄ − ερcp)

ρcpρs(C − θ) + Sφ
. (5.6)

We have neglected terms due to the product of gradients of temperature and porosity that
arise from the porosity dependence of the thermal conductivity and solutal diffusivity. The
coefficients multiplying the terms representing the products of the gradients are similar
in magnitude to the A1,2 and A2,2 terms, and hence the relative size of the ∂2θ/∂z2 ≈
	θ/H2 and (∂θ/∂z)(∂φ/∂z) ≈ 	θ	φ/H2 terms determines the relative size of these two
terms. Here, 	θ and 	φ represent typical changes in temperature and porosity from their
background values. For all of the results that we present, the porosity varies by only a few
per cent while the dimensionless temperature variation is of order 1, and so the error in
neglecting the term in the product of the gradients is of the order of a few per cent.
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If θ � C and φ changes by only small amounts, we can approximate A1,1, A1,2, A2,1 and
A2,2 as constants. We can then write a general travelling periodic solution for (5.1) as

θ = aei(kz−ωt), (5.7)

where k is the wavenumber and ω is angular frequency. Substituting (5.7) into (5.1), we
get

ω = −A1,1k − iA1,2k2. (5.8)

Substituting this form back into (5.7), we get

θ = a exp(i(kz − (−A1,1k − iA1,2k2)t)), (5.9)

where a is a constant that depends on the initial condition. Since we use sin(2πz/H) as our
initial condition, we can choose the imaginary part of (5.9) as the solution and recognize
that k = 2π/H, which gives

θ(z, t) = sin[2π/H(z + A1,1t)]e−4π2A1,2t/H2
. (5.10)

From (5.1), we can see that the coefficient A1,2 corresponds to the effective diffusivity
in an ideal mushy system. If C � S, melting or solidifying will have a greater effect on
the solute than temperature, and the form of A1,2 shows that the effective diffusivity will
approach the thermal diffusivity of a passive porous layer. If C � S, melting or solidifying
will strongly affect temperature while only weakly affecting solute concentration, and the
diffusivity will approach that of solute for a passive porous layer. Equation (5.10) shows
that the thermal disturbance will decay with time constant τ = H2/(4π2A1,2) as a result
of diffusion.

The thermal and solutal disturbance will be transported by the flow at speed weff =
−A1,1, which is the same velocity as that found by Butler (2011). As discussed in Butler
(2011), and can be seen by inspection of (5.3), weff is a weighted average of the thermal
advection speed, wT = wD/ρcp, and the solute advection speed (or pore velocity), wc,
for a passive porous layer. The thermal advection speed for a passive porous medium is
different from wD because of the effects of thermal retardation (Freeze & Cherry 1979) –
the temperature of the liquid will equilibrate with that of the solid as it flows, resulting in
the speed of a thermal front being different from that of the mean flow velocity. As shown
by Butler (2011), if C � S, which corresponds to a system where melting or solidification
changes the solute concentration more than the temperature, the mushy advection velocity
will approach wT . In the opposite limit, when C � S, melting or solidification will more
strongly affect the temperature than the solute concentration, and weff ≈ wc.

Using (5.10), we can derive expressions for ∂θ/∂z and ∂2θ/∂z2. We can substitute these
into (5.2) to get

∂φ

∂t
= Im(iA2,1k − k2A2,2ei(kz−ωt)). (5.11)

Integrating equation (5.11) with respect to time and using (5.8) gives

φ = Im
(−A2,1k − ik2A2,2

ω
ei(kz−ωt)

)
+ φ0

= Im
(

A2,1 + ikA2,2

A1,1 + iA1,2k
ei(kz+A1,1t)e−A1,2t2

)
+ φ0. (5.12)
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Pore-scale mushy layer modelling

Hence,

φ(z, t) = e−A1,2k2t

A2
1,1 + A2

1,2k2

[
(A1,1A2,1 + A1,2A2,2k2) sin[k(z + A1,1t)]

+ k(A1,1A2,2 − A1,2A2,1) cos[k(z + A1,1t)]
] + φ0. (5.13)

Butler (2011) examined transport-induced melting and solidification for the case of a front
propagating through an ideal mushy layer. Both the invading fluid and the host fluid had
temperatures and concentrations related by the liquidus but at different temperatures.
It was shown that for diffusion-dominated transport, a hot invading fluid will induce
melting while a cold invading fluid will induce freezing, because the temperature field
in a passive porous layer will diffuse faster than a compositional one. In contrast, for an
advection-dominated system, because compositional fields will advect faster than thermal
fields in passive porous layers, hot invading fluids will induce freezing while cold invading
fluids will induce melting. Note that the invading fluid may be either solute-rich or
solute-poor depending on the sign of the slope of the liquidus, but whether freezing or
melting occurs depends only on whether the temperature of the invading fluid is higher or
lower than that of the host fluid.

Examining equations (5.2) and (5.13), we can understand similar phenomena
for sinusoidally varying perturbations. Figure 2(a) shows an initial sinusoidal
thermal and compositional perturbation with a small degree of disequilibrium for a
diffusion-transport-dominated case. In regions where θ and c are high (sector 1 in
figure 2a), small degrees of disequilibrium will lead to the temperature being less than
the concentration since the temperature field diffuses faster than the solute field. In order
to restore equilibrium, freezing will then occur, which will raise the temperature due to
effects of latent heating and lower the dimensionless concentration due to the difference
in concentration between the solid and liquid. This is consistent with (5.2), which shows
that in regions with negative ∂2θ/∂z2, near θ maxima, porosity will decrease since A2,2
will always be positive. In sector 2 in figure 2(a), where θ is near a minimum, all
of the above phenomena will be reversed and we expect that melting will occur. For
a diffusion-dominated system, A1,2 and A2,2 will be much greater than A1,1 and A2,1.
Examining equation (5.13), we can see that under such circumstances, we expect that the
porosity will be in phase with the temperature field.

An advection-dominated system is shown in figure 2(b), where a perturbation is being
advected to the right (positive wD). If there is a slight degree of disequilibrium, the
concentration field will lead the thermal field due to differences in the advection rates.
If a warm fluid is moving into a cold one, ∂θ/∂z < 0 (region 1 in figure 2b), then
freezing must occur in order to raise the temperature by latent heating and decrease the
concentration. This is again consistent with (5.2) since A1,1 < 0 when wD is positive.
In region 2 in figure 2(b), where cold fluid is invading a hot fluid, melting will occur.
For an advection-dominated system, A1,1 and A2,1 are much greater in magnitude than
A1,2 and A2,2, and since A1,1 is negative, (5.13) shows that porosity will be 180◦ out
of phase with the temperature perturbation. For intermediate Pe where transport is a
mixture of diffusion and advection, porosity will have an intermediate phase relative to
the temperature perturbation. From (5.13) we can also see that, similar to θ , diffusion will
cause the porosity anomaly to decay with time scale τ = H2/(4π2A1,2).
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Figure 2. The temperature and compositional fields are shown when there is a small degree of disequilibrium
for the cases of (a) diffusion-dominated transport and (b) advection-dominated transport. Curves are divided
into sectors where melting and freezing are occuring.

5.1. Passive porous layers
We can recover the continuum-scale equations for a passive porous layer by setting
∂φ/∂t = 0 in (4.1) and (4.2), and the liquidus relation no longer applies.

Sinusoidal initial temperature and concentration variations in a domain of infinite height
or in a periodic domain of height H will then evolve according to

θ(z, t) = sin
[

2π/H
(

z − wD

ρcp
t
)]

exp
(

− 4π2k̄t
ρcpPecH2

)
(5.14)

and

c(z, t) = sin
[

2π/H
(

z − wD

φ
t
)]

exp
(

− 4π2εt
PecH2

)
. (5.15)

From these expressions we can see that the thermal field will be transported at the
thermal velocity wT = wD/ρcp and diffusion will cause a decay with time scale τth =
PecρcpH2/(4π2k̄), while solute will be transported at the pore speed wc = wD/φ and
decay with time scale τc = PeH2/(4π2ε). Note that in the results above, it is still assumed
that concentration and temperature are constant in the r direction, and so the time scale for
lateral diffusion is assumed to be small compared with the time scale for the advection in
the axial direction.

In passive porous layers, radial variations in solute and temperature are caused by
mechanical dispersion – by radial variations in the transport rate of the background
variation in these quantities with height. Our simulations start with solute and temperature
fields that do not vary with radius. Since the velocity in the liquid region decreases with r,
a phase difference between the concentration and temperature fields at r = 0 and r = 1
will be created by advection, which we will represent by βc and βθ . The size of the
advection-driven radial concentration difference will be proportional to the inverse of the
axial length scale over which the concentration is changing, 1/H. This will result in radial
diffusion which can balance the axial advective flux for low Peh/ε. A steady-state phase
difference between the concentration profile at r = 0 and r = 1 will result.
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Pore-scale mushy layer modelling

For large Peh/ε, radial diffusion cannot balance axial advection and the phase difference
between the concentration at r = 0 and r = 1 will vary continuously with time. For
sufficiently large Peh/ε, effects of diffusion are negligible and we can use the method
of characteristics to calculate the concentration or temperature fields starting with a
sinusoidal initial condition and velocity profile (3.1):

c(r, z, t) = sin
[
k(z − t + r2t)

]
. (5.16)

We can calculate the profile of the radially averaged concentration, c̄, with height, which
gives

c̄(z, t) = 2π
∫ 1

0 sin
[
k(z − t + r2t)

]
r dr

2π
∫ 1

0 r dr
= 2

sin
[
k
(

z − t
2

)]
sin

(
kt
2

)

kt
. (5.17)

From this expression, it can be seen that a sinusoidal concentration perturbation will travel
with speed equal to the pore velocity wc, which is half of the fluid velocity at the pore
centre for this geometry. The terms causing the oscillation of the amplitude and its decrease
with time are the result of the effects of mechanical dispersion. We can also see that the
effects of mechanical dispersion will be greater for disturbances at shorter length scales.

5.2. Parameter values
For ideal mushy systems, equilibration by diffusion must occur rapidly in the radial
directions compared with rates of transport in the axial direction. In order to achieve such
a separation of time scales, the dimensionless length of the tube, H, which also sets the
length scale for variations in temperature and concentration in the axial direction, must
be large compared with unity (the dimensionless pore radius). We thus used H = 200 for
many of the simulations and H = 1000 for some of the simulations at higher Pe.

The dimensionless parameters characterizing the mushy layers were set based on the
properties of aqueous NH4Cl and KNO3, which are salts commonly used in mushy layer
experiments. Table 2 is obtained from dimensional parameters presented in Butler (2011),
Peppin, Huppert & Worster (2008) and Hallworth, Huppert & Woods (2005), assuming
	T = 36 ◦C and 	C = 0.07 (mass fraction) for NH4Cl and 	T = 10 ◦C and 	C = 0.22
for KNO3. Here, all of the material properties have been scaled by the values for the
liquid so that ρ′

s = ρs/ρl, c′
ps = cps/cpl and k′

s = ks/kl. Also, all material properties are
assumed to be independent of temperature and concentration. Thus, the effective thermal
conductivity and heat capacity in a representative volume are k̄ = ks(1 − φ0) + φ0 and
ρcp = ρscps(1 − φ0) + φ0, respectively. We took the ratio of solute to thermal diffusivity
to be 0.01. The initial porosity for the KNO3 simulations was taken to be 0.56, similar to
the experiments of Hallworth et al. (2005), while φ0 for the NH4Cl simulations was taken
to be 0.5 for simplicity.

5.3. Estimates of errors due to model approximations
If the densities of the solid and fluid are not equal, melting or solidification will drive a
radial flow uρ given by uρ = (1 − ρs)(∂R̃1/∂t) (Glicksman, Coriell & McFadden 1986;
Worster & Batchelor 2000). However, we are assuming a constant, axial flow. We can use
the approximate solutions of § 5 to estimate the magnitude of this neglected radial velocity.
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Property Aqueous KNO3 Aqueous NH4Cl

ρs 2.109 1.457
cps 0.22 0.42
S 17.7 4.01
C 9.45 11.42
φ0 0.56 0.5
ks 3.5 4.07
ε 0.01 0.01
B 104 104

Bi 104 104

Table 2. Dimensionless parameters derived from Butler (2011).

From (2.10) we can show that

∂R̃1

∂t
= 1

2
√

φφ0

∂φ

∂t
≈ 1

2φ0

∂φ

∂t
. (5.18)

We can further use (5.2) to obtain

uρ = (1 − ρs)
∂R̃1

∂t
≈ (1 − ρs)

2φ0

(
A2,1

∂θ

∂z
+ A2,2

∂2θ

∂z2

)

≈ (1 − ρs)

2φ0

(
A2,1

2π	θ

H
+ A2,2

4π2	θ

H2

)
. (5.19)

Substituting in values from table 2 over the range of Pec used, we get values of uρ of at
most 10−3 for both NH4Cl and KNO3 parameters, much less than unity (the dimensionless
velocity on the midline).

Additionally, (3.12) and (3.14) are formulated assuming a solid–liquid boundary that
does not vary with z. For a mobile boundary, there will be a component of the normal to
the boundary that for small variations would be proportional to ∂R̃/∂z ≈ (1

2φ0)(∂φ/∂z) ≈
π	φ/H. Using the maximum value of 	φ from our simulations, we find that ∂R̃/∂z is at
most 10−3 while the radial component of the normal is similar to 1.

The change in domain geometry resulting from a change in R̃1 will result in a change
in the axial flow field (3.1). The leading-order effect of changing R̃1 will be to increase
the flow velocity in regions where R̃1 is decreased and decrease the velocity where R̃1 is
increased in order to conserve mass. Conserving mass, the change in axial velocity 	w
along the midline can be shown to be

	w ≈ −2(	φ/φ0). (5.20)

The largest 	φ/φ0 in our simulations is 0.06, giving a difference in velocity of less than
12 %. Assuming an incompressible flow, we can estimate that the radial velocity field u
will go like u ≈ 	w/H. Given the large values of H that we use, we can then expect the
radial velocity to be very small compared with the background flow field, and the flow
field is well approximated by purely axial flow.
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5.4. Numerical model description
For the pore-scale model, (3.8), (3.9) and (3.10) were solved in a domain shown in figure 1
using the finite element method as implemented in the commercial software modelling
package COMSOL Multiphysics (COMSOL 2022) subject to boundary conditions (3.11),
(3.12), (3.13) and (3.14). The ordinary differential equation (ODE) (3.15) was solved along
the boundary between the liquid and solid, and R1(z) was used to track the evolution of the
degree of melting and freezing. However, the geometry of the numerical domain does not
change with time and nor does the velocity profile, so we are making the approximation
that changes in φ are sufficiently small that they would not significantly change the flow
or the transport of heat and solute. Boundary conditions at z = 0 and z = H were taken to
be periodic for all of the fields. Axisymmetry was imposed along r = 0 and so the radial
derivatives of concentration and temperature were required to vanish there.

The initial condition for all of the models was

θ(r, z) = c(r, z) = sin
(

2πz
H

)
(5.21)

in both the liquid and the solid regions, while the initial condition for R1 was set using
(5.13). We assume symmetry with rotation about the cylinder axis and so we solve the
problem in cylindrical axisymmetric geometry. Note that the initial condition does not
depend on r and so corresponds to a solution for an ideal mushy layer. Note also that
(3.8)–(3.15) and (4.1)–(4.3) are nonlinear and so the solution may not remain sinusoidal
after some time evolution. However, for the NH4Cl and KNO3 parameters that we
investigate, C is significantly greater than θ and φ does not change by large amounts
compared with φ0, so the equations are close to linear and the solutions remain close to
sinusoidal. For the analytical solutions to (5.1) and (5.2) we are assuming that the system
is fully linear. We investigate sinusoidal disturbances in a periodic medium because it
allows us to study cases in which the length scale over which gradients of the temperature
and concentration occur, H, are large compared with the pore size R1. For the fully
linear system, thermal and solutal disturbances of arbitrary shape could be investigated
by superposing sinusoidal solutions of various wavelengths.

Triangular elements were used to create the finite element mesh, while Lagrange shape
functions were used for the heat and concentration equations and discontinuous Lagrange
shape functions were used to solve the boundary ODE. The direct solver MUMPS
(Amestoy, Duff & L’excellent 2000) was used to solve the large sparse systems arising
from the simulation. Simulations typically used around 300 000 elements and took 10 min
to run.

For the one-dimensional ideal mushy model, (4.1) and (4.2) were solved on a
one-dimensional domain of length H and coupled with ODE (4.3). These equations
were also solved using the finite element method in COMSOL Multphysics. The initial
conditions used were the same as those for the pore-scale model. Again, Lagrange
elements were used for the shape functions for the thermal and compositional evolution
equations while discontinuous Lagrange shape functions were used for the ODE.

6. Passive porous medium results

We can simulate a passive porous medium for our pore-scale model by specifying that
B = 0. In figure 3(a), profiles of the radial average over the liquid and solid are shown for
the temperature, while the radial average over the liquid is shown for the composition from
our pore-scale numerical simulation run with Pe = 0.002, H = 200 and the properties of
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Figure 3. Concentration and temperature averaged radially over the fluid region (meanliq) as well as the
temperature radially averaged over the fluid and solid region (meantot) from the two-dimensional model from
a simulation with NH4Cl properties and H = 200. The values are compared with predictions from (5.14)
and (5.17) as well as with the predictions of the one-dimensional model. (a) Péclet number Pe = 0.002,
Pec = 0.1 and t = τth; the temperature curves and the concentration curves are all overlapping. (b) Péclet
number Pe = 0.2, Pec = 10 and t = τth. (c) Péclet number Pe = 20 and Pec = 1000; the time is 0.75H or the
time that it would take a fluid parcel at the centre of the cylinder to travel 0.75 of the length of the domain.
(d) Péclet number Pe = 200, Pec = 10 000 and t = 0.75H.

NH4Cl. For these parameters, the continuum-scale Péclet number is 0.1 and so we expect
that axial diffusion will be greater than advection. The results are shown at t = τth = 0.74,
and the initial condition consisted of a sine curve of unit amplitude. As can be seen,
the shape of the disturbance has been preserved; however, the thermal disturbance has
decayed to e−1 of its original amplitude. Because ε � 1, the time scale for decay of the
composition is very long compared with that for temperature and so the composition field
has remained essentially unchanged from the initial condition. The numerical model result
is compared with the predictions of (5.14) (analytical θ ) and the agreement is excellent. The
results for the concentration were also compared with the predictions of (5.15); however,
these were always visually almost identical to the one-dimensional numerical model
solutions so they have been neglected. The agreement of the two-dimensional model with
the one-dimensional models indicates that the liquid and solid were laterally thermally
equilibrated.

In figure 3(b), similar calculations are shown for a case with Pe = 0.2 and Pec = 10. The
effects of axial advection will now be greater than the effects of axial diffusion. The results
are shown at time t = τth = 74. While θ has again decayed in amplitude to e−1 and c has
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essentially maintained its initial amplitude, the profiles have been shifted by the effects
of advection. The concentration profile has moved farther than the temperature profile,
showing the effects of thermal retardation caused by the equilibration of the temperature
in the liquid with that in the solid. In order to characterize the degree of variation in
the radial direction of the concentration field, the phase difference between profiles at
r = 0 and r = 1 was calculated. For this simulation, the phase difference was found to be
0.04 rad, indicating only a small radial variation in concentration.

The averaged concentration profiles maintain an amplitude that is considerably greater
than the prediction of (5.17), indicating that mechanical dispersion was not causing a
significant decrease in the amplitude for these cases because of the high degree of radial
homogeneity due to diffusion.

A case where the Péclet number is 20 at the pore scale is shown in figure 3(c).
The solution is shown at the time needed for fluid at the centreline velocity to transit
three-quarters of the domain (t = 150). The concentration is again shifted relative to the
temperature due to the effects of thermal retardation. It can also be seen that the profile
of the concentration for the two-dimensional model has significantly lower amplitude than
the profiles from the one-dimensional model. This reduction in amplitude is caused by
the effects of mechanical dispersion, and the amplitude of the concentration profile is
tending towards the prediction of (5.17). The temperature in the two-dimensional model
both averaged over only the fluid domain and averaged over the entire domain remains
similar to that of the analytical solutions assuming perfect lateral equilibration, indicating
that the temperature remains well equilibrated laterally. The reduction in amplitude of the
concentration profile by mechanical dispersion indicates that it is not well equilibrated
radially. The phase difference between the concentration profiles at r = 0 and r = 1 did
not converge to a steady value, while for temperature profiles the phase difference was
0.07.

In figure 3(d), solutions are shown for Pe = 200 again at the time when fluid at the
centre has travelled three-quarters of the length of the column (t = 150). The concentration
has once again moved ahead of the temperature, and it can be seen that the average
concentration from the two-dimensional model differs significantly in amplitude from that
of the one-dimensional model but now is in very good agreement with the pure advection
solution (5.17). The temperature, averaged over both the liquid and the solid and only over
the liquid, is significantly reduced in amplitude compared with the one-dimensional and
equilibrated analytical solutions, indicating that mechanical dispersion is now significant
for the temperature field as well. The phase difference between temperature profiles plotted
along r = 0 and r = 1 was steady and had value 0.7, while again the phase difference
for the concentration profiles did not converge to a steady state. It can also be seen that
the temperature, when averaged only over the liquid, is slightly leading the temperature
averaged over the liquid and solid. This indicates imperfect thermal equilibration between
the solid and liquid at these high flow velocities.

Figure 4(a) shows snapshots of the concentration field for the values of Peh/ε shown
in a domain of height 200 for NH4Cl parameters. The simulations had been run to time
1000 so the disturbance had passed through the domain many times. Note the very large
difference in scale between the horizontal and vertical axes. For simulations with Peh/ε
values of 0.5, lateral diffusion results in almost constant concentration with radius. The
concentration field along the midline leads the field at r = 1 by only a small amount
(βc = 0.2 rad). When Peh/ε = 3, the shearing of the concentration field by the flow has
become more significant (βc = 1.2 rad). However, βc still reaches a steady-state value. The
phase difference between the inside and outside is sufficient to reduce the amplitude of
the radially averaged concentration profile, however. For the two larger values of Peh/ε

983 A30-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

15
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.150


F. Amiri and S.L. Butler

0.5 1.0

r
0 0.5 1.00 0.5 1.00 0.5 1.00

20

40

60

80

100

120

140

160

180

200

20

40

60

80

100

120

140

160

180

200

20

40

60

80

100

120

140

160

180

200

20

40

60

80

100

120

140

160

180

200

z

–0.5 0 0.5

r

–0.05 0 0.05

r

–0.01 0 0.01

r

–0.02 0 0.02

0 0.01 0.02 0.03 0.04 0.05 0.06
0.045

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0

4.03.53.02.52.0

Peh/ε

Peh/ε = 0.5 Peh/ε = 3 Peh/ε = 6 Peh/ε = 12

Peh

1.51.00.50

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

βc βθ

(b)

(a)

Figure 4. (a) The concentration field for the values of Peh/ε indicated at time 1000 (time for five transits of
the domain) for simulations run with NH4Cl parameters. (b) The phase difference between the concentration
on the cylinder midline and that along the solid boundary (βc, blue ‘+’ symbols) plotted against Peh/ε (blue
left-hand vertical axis and lower horizontal axis) and the similar phase difference for the temperature (black
circles) plotted against Peh (black right-hand vertical axis and top horizontal axis).
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shown, lateral diffusion is unable to establish a concentration field that is steady in a
reference frame moving with the flow, and so βc is not well defined. The shearing of
the concentration field results in a radially averaged profile that decreases in amplitude in
time but also oscillates as the inner and outer radii fields go in and out of phase.

Many simulations were run with B = 0 for various values of Pe, H and ε. We plot the
steady-state difference in phase of a profile in concentration along the midline relative to
that at the solid wall with Peh/ε in figure 4(b). For Peh/ε < 4, βc goes to a steady state.
Results shown in figure 4 were run with Pe varying from 0.2 to 4.2, H varying from 100 to
400 and ε varying from 0.005 to 0.01, and all results collapse reasonably well onto the line
βc = 0.42Peh/ε. For these steady-state cases, the concentration field becomes constant in
a reference frame moving with axial speed wc relative to the cylinder. As βc increases, the
amplitude of the radially averaged concentration decreases and so the amplitude is lower
than the predictions of the ideal one-dimensional model and (5.15). When Peh/ε > 4,
the predicted phase difference becomes a significant fraction of π. Once the concentration
perturbations along the inner and outer radii are almost completely out of phase, it becomes
impossible for diffusion to create a steady state. The results shown in figure 3(a,b) were
in the regime of a steady βc and βc � π and so the approximation that the solutions were
constant in the radial direction was reasonable. The results shown in figure 3(c,d) were
both in the unsteady regime, with the latter approaching a state where radial diffusion was
negligible.

Similarly, for NH4Cl parameters, the phase difference between temperature profiles
plotted along r = 0 and r = 1 was found to obey βθ = 0.69Peh when Peh < 4 (figure 4).
These phase differences were smaller than those for the concentration field owing to the
much higher thermal diffusivity. For the results shown in figure 3(d), βθ = 0.7 and was
steady. In all other calculations, βθ was very small and the temperature field was very close
to constant in the radial direction. Unlike βc, βθ varied with φ0, ρs and cps, as would be
expected since these parameters affect the thermal retardation. Similar scaling behaviours
for βc and βθ were found for KNO3 parameters.

To summarize the passive porous layer results, we have shown that for Pec < 1 (axial
diffusion greater than axial advection), the temperature perturbation decays faster than the
concentration perturbation, leading to the prediction that porosity will be in phase with
the thermal and solutal disturbances in mushy layers. For Pec > 1, solute perturbations
are transported faster than thermal ones, leading to the prediction of porosity being
out of phase with the thermal disturbance in mushy layers. The radial equilibration of
the temperature and solute fields is determined by Peh and Peh/ε. For Peh/ε less than
approximately 4, the concentration field reaches a steady state in a reference frame
moving with the pore velocity. For larger values of Peh/ε, the concentration field is
continuously sheared by the background flow and does not reach a steady state. Because
thermal diffusivity is much greater than solute diffusivity, the temperature field remains
laterally equilibrated to much higher values of Pe. We thus expect that for systems in
which solidification and melting are taking place at the solid–liquid boundary, Peh/ε
will determine whether the liquid and solid remain in thermodynamic equilibrium with
a critical value of order unity. For our simple system consisting only of straight tubes, this
value Peh/ε also determines when effects of mechanical dispersion become significant.

7. Mushy layer results

Figure 5(a,b) shows the temperature and composition profiles at the time for thermal
disturbances in an ideal mushy layer to decay by e−1, t = τ, for a simulation with
Pe = 0.002 for NH4Cl properties and Pe = 0.0018 for KNO3 properties (Pec = 0.1 for
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Figure 5. (a,b) Concentration and temperature averaged over the fluid region (meanliq) as well as the
temperature averaged over the fluid and solid regions (meantot) from the two-dimensional model for Pec =
0.1 and H = 200 compared with predictions from (5.10) (analytical) and the one-dimensional model for
(a) NH4Cl and (b) KNO3. Markers for wc, wT and weff indicate the predicted position of a rising zero-crossing
for a sinusoid moving at these velocities. (c,d) Porosity, φ, for the two-dimensional model compared
with predictions from (5.13) (analytical) and predictions of the one-dimensional model for (c) NH4Cl and
(d) KNO3. For all plots, t = τ.

both) and with B = 104 and H = 200. Note that τ = 0.74 for NH4Cl, while it is 1.1 for
KNO3 because of the different material properties. At these low Pe values, diffusion is
dominant at both the pore and the system scales. Also shown are points labelled wc,
uT and weff , which are plotted at z = wcτ, uTτ and weff τ, respectively. These give the
predicted position of the rising zero-crossing of the temperature and concentration curves
if these were travelling at the speed of the solute in a passive porous layer, the speed
of the temperature field in a passive porous layer or the effective advection speed in a
mushy layer, respectively. At this low Pe, these points have not moved appreciably from
0. In general, there is good agreement between all of the model predictions, indicating
that the conditions for an ideal mushy layer are essentially met, as would be expected for
such low Pe, and that effective diffusivity calculated from (5.4) is correctly calculating
the effective diffusivities for both of these aqueous systems. However, it can be seen that
the amplitudes of the predictions of (5.10) (analytical θ ) are slightly lower than those of
the other models. This indicates some error due to the assumption of constant A1,1 and
A1,2. There is also a small difference between the averaged temperature and averaged
composition in the pore-scale model, indicating that even at this very small Pe there is
some degree of disequilibrium due to finite radial diffusion.
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In figure 5(c,d), porosity profiles are shown. We have also included a plot of the porosity
at t = 0 for comparison. The amplitude of the porosity perturbation has clearly decayed
for both aqueous systems to a degree that is predicted well by (5.13) (analytical). There
are small differences between all of the solutions, indicating both a small degree of
disequilibrium and some effects of non-constant coefficients in (5.2). For both NH4Cl
and KNO3 the porosity and temperature perturbations are well correlated, as is predicted
by (5.13) for a purely diffusive ideal mushy system.

Similar results are shown for a case that is dominantly advective at the system scale
(Pe = 0.2 for NH4Cl parameters, Pe = 0.18 for KNO3 parameters and Pec = 10 for both)
in figure 6. The time is again t = τ , which corresponds to t = 74 for NH4Cl and 108
for KNO3. The porosity, temperature and concentration fields have again decayed in
amplitude, but at this Pec they have been shifted appreciably by the effects of advection.
Note that for both the NH4Cl case and the KNO3 case, the position of the rising
zero-crossing is well predicted by weff . The KNO3 perturbation has been transported by
advection farther than the NH4Cl case, due mostly to the longer time that the model has
been run. Also, because S/C is greater for KNO3 than it is for NH4Cl, weff is slightly
closer to wc. In figure 6(c,d), we can see that porosity has been both reduced in amplitude
compared with its initial value and shifted in position because of the effects of advection.
All of the models agree reasonably well, indicating again that (5.13) predicts the melting
and freezing caused by the transport of the temperature anomaly and that the system
is close to an ideal mushy layer. Additionally, the differences in phase for profiles of
concentration and temperature at r = 0 and r = 1 for the NH4Cl case were βc = 0.07 and
βθ = 0.0006 rad, also indicating that concentration and temperature were almost constant
in the radial direction. As predicted by (5.13), when diffusion and advection are of similar
magnitude, the phase of the porosity will be between 0◦ and 180◦, and as can be seen in
this case, it is close to 90◦.

Temperature and concentration profiles are shown for a simulation with Pe = 0.4
(NH4Cl parameters), Pe = 0.36 (KNO3 parameters) and Pec = 100 (both), where
advection strongly dominates at the system scale, in figure 7(a,b). The system size, H,
was increased for this calculation in order to remain close to radial equilibrium but also
allow for a system where advection is dominant at the system scale. Here, the solution
is shown at the time needed for fluid at the centreline velocity to transit three-quarters
of the domain. Again, the temperature and concentration profiles are very similar for the
pore-scale model, ideal mushy model and (5.10), indicating that this equation, based on
ideal mushy layer theory, is accurately predicting the effective diffusion and advection
rates. Although the system is mostly advective at the system scale, the temperature and
concentration have decayed from their initial amplitude of 1 due to effects of diffusion. In
accord with the radially averaged temperature and concentration profiles agreeing with
the predictions of ideal mushy layer theory, the phase differences between profiles of
concentration and temperature at r = 0 and r = 1 were βc = 0.027 and βθ = 0.00027 rad,
indicating very small radial variations in concentration and temperature.

Figure 7(c,d) shows that the phase of the porosity has been shifted relative to its original
position by the advection of the thermal and compositional perturbation. For both the
KNO3 and the NH4Cl simulations, the porosity profile from the pore-scale model is
in good agreement with the predictions of ideal mushy theory, indicating good lateral
equilibration at the pore scale. The porosity perturbation can be seen to be close to 180◦
out of phase with the temperature perturbation, as predicted by (5.13) for a system that is
dominantly advective at the system scale.

An extreme case where Pe = 40 (NH4Cl parameters), Pe = 35.7 (KNO3 parameters)
and Pec = 10 000 (both) is shown in figure 8. The solutions are shown at the time that it
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Figure 6. (a,b) Concentration and temperature averaged over the fluid region (meanliq) as well as the
temperature averaged over the fluid and solid regions (meantot) from the two-dimensional model for Pec =
10 and H = 200 compared with predictions from (5.10) (analytical) and the one-dimensional model for
(a) NH4Cl and (b) KNO3. Markers for wc, wT and weff indicate the predicted position of a rising zero-crossing
for a sinusoid moving at these velocities. (c,d) Porosity, φ, for the two-dimensional model compared
with predictions from (5.13) (analytical) and predictions of the one-dimensional model for (c) NH4Cl and
(d) KNO3. For all plots, t = τ.

would take a fluid parcel at the centre of the cylinder to travel 0.75 of the length of the
domain of length H = 1000. For both aqueous systems, the concentration and temperature
of the pore-scale model differ significantly while they remain the same for the ideal mushy
models. This demonstrates that effects of lateral diffusion are no longer able to maintain
thermodynamic equilibrium in the radial direction. The temperature in the pore-scale
model is being advected at speed uT while the concentration profile is being advected
considerably faster and is approaching speed wc. The amplitudes of the temperature and
especially the concentration profiles can also be seen to be reduced from their initial
values due to the effects of mechanical dispersion that are not included in the ideal mushy
formulation. The temperature profiles averaged over the liquid region only and over the
entire volume remain essentially the same, however, indicating that this fluid velocity is
not high enough to cause a solid–liquid thermal disequilibrium.

In figure 9(a) the concentration and temperature fields in the liquid region are shown for
the same time and simulations as the profiles plotted in figure 8 for the NH4Cl case. Note
the very different scales on the two axes. The temperature and concentration at r = 1 are
identical because of the liquidus constraint at this boundary. However, the high thermal
diffusivity results in the temperature field being constant in the radial direction, while the
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Figure 7. (a,b) Concentration and temperature averaged over the fluid region (meanliq) as well as the
temperature averaged over the fluid and solid regions (meantot) from the two-dimensional model for Pec =
100 and H = 1000 compared with predictions from (5.10) (analytical) and the one-dimensional model for
(a) NH4Cl and (b) KNO3. Markers for wc, wT and weff indicate the predicted position of a rising zero-crossing
for a sinusoid moving at these velocities. (c,d) Porosity, φ, for the two-dimensional model compared
with predictions from (5.13) (analytical) and predictions of the one-dimensional model for (c) NH4Cl and
(d) KNO3. For all plots, t = 0.75H.

concentration field has been sheared by the variation in flow velocity with radius. At this
Péclet number, the shearing continued and βc did not reach a steady value, while βθ did
reach a steady value of 0.028 rad.

In figure 8(c,d) the porosity is compared with the predictions from (5.13) and the
one-dimensional model. The porosity in the two-dimensional model differs significantly
from the ideal mushy layer prediction and the porosity profile has decreased significantly
in amplitude and has moved slightly in the opposite sense to the background flow. The
porosity from the ideal mushy models is close to 180◦ out of phase with the temperature,
while the pore-scale model differs significantly due to non-ideal effects.

Simulations were run with varying values of Pe, H and ε. Results are shown for the
NH4Cl simulations in figure 9(b). Up to Peh/ε ≈ 2, βc ≈ 0.64Peh/ε. Above approximately
Peh/ε = 2, βc did not reach a steady state. In these cases, the concentration field continued
to be sheared by the background flow. Because of the small value of ε, βθ did reach a
steady state in all of our simulations and went roughly like 0.7Peh. The KNO3 simulations
(not shown) behaved similarly, with βc ≈ 0.5Peh/ε and βθ ≈ 0.55Peh. In order for the
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Figure 8. (a,b) Concentration and temperature averaged over the fluid region (meanliq) as well as the
temperature averaged over the fluid and solid regions (meantot) from the two-dimensional model for
Pec = 10 000 and H = 1000 compared with predictions from (5.10) (analytical) and the one-dimensional
model for (a) NH4Cl and (b) KNO3. Markers for wc, wT and weff indicate the predicted position of a rising
zero-crossing for a sinusoid moving at these velocities. (c,d) Porosity, φ, for the two-dimensional model
compared with predictions from (5.13) (analytical) and predictions of the one-dimensional model for (c) NH4Cl
and (d) KNO3. For all plots, t = 0.75H.

temperature and concentration to remain roughly the same functions of z, it is required
that βc − βθ be small. Since βc � βθ , and taking 10◦ as a rough threshold value, we
get that a condition for the concentration and temperature to remain close to the liquidus
throughout the liquid is Peh/ε � 0.3. Note that the slope of βc is significantly different
from the B = 0 case because of the mass exchange between the solid and liquid which acts
in a way that is similar to thermal retardation.

8. Discussion and conclusions

We have presented a first attempt at modelling mushy layers at the pore scale – using
separate sets of continuum equations for the fluid and solid regions for the highly simplified
geometry of two concentric cylinders. Our pore-scale models are shown to be in excellent
agreement with the predictions of governing equations whose derivation is based on
the assumption of an ideal mushy layer – that the liquid and solid are in near perfect
local thermodynamic equilibrium – provided that Peh/ε < 0.3. Kinetic effects, leading to
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Figure 9. (a) The concentration field and temperature for a simulation with Pe = 40 and H = 1000 at the
time for a fluid packet at the midline to travel three-quarters of the length of the domain. The simulation used
NH4Cl parameters. (b) Steady-state phase difference in the concentration field at the inner and outer boundary
for the concentration field (blue symbols and lower and left-hand axes) and temperature field (black symbols
and upper and right-hand axes). The solid lines are fits to the data with slopes 0.64 and 0.7.

lagging equilibrium at the pore walls, could further lead to non-ideal mushy behaviour.
We leave investigation of these effects to a future study but note that kinetic effects can
also be addressed using single-continuum approaches to mushy layer theory.
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In addition to verifying ideal mushy layer theory for these lower-flow regimes, these
calculations also serve as a test of the equations for effective combined solid and liquid
properties such as heat capacity, thermal conductivity and solutal diffusivity, based on
simple volume averages. The effects of mechanical dispersion are inherently included
in pore-scale modelling, while they are typically parametrized as a velocity-dependent
diffusivity or simply neglected in mushy layer theory. For Peh/ε < 0.3 we have shown
that the neglect of mechanical dispersion does not lead to large errors. We note that
this criterion for dispersion to become important is similar to the criterion of Taylor
(1953), who conducted experiments in straight tubes. It can be shown (Bear 1972) that
for dispersion in simple tubes, the dispersion coefficient goes like the velocity squared.
However, experimental studies with real porous media show that the dispersion coefficient
increases roughly linearly with velocity once Pe > 1 (Delgado 2007). While our simple
study gives a criterion for the maintenance of local thermodynamic equilibrium and hence
the applicability of ideal mushy theory, real mushy systems with branching pore networks
and variable pore sizes will probably have hydrodynamic dispersion that behaves more
like that in passive porous layers.

As an application to a real mushy system, we consider the case of sea-ice whose
characteristic pore size (approximating R1) is in the range of 10−3–10−4 m (Maus,
Schneebeli & Wiegmann 2021). We take thermal and compositional gradients to occur
over a typical ice thickness of 0.1 m (approximating a dimensional H) and further use
a solute diffusivity of D = 10−8 m2 s−1. Niedrauer & Martin (1979) gave a maximum
velocity of brine flow in their experiments of 2.5 × 10−4 m2 s−1. Combining terms, this
gives a maximum Peh/ε = 0.25, indicating that the fastest-flowing brine plumes may be
only marginally in the ideal mushy regime in sea-ice.

For the KNO3-based experiments reported in Hallworth et al. (2005), the grain size
was R1 ≈ 5 × 10−3 m while the distance over which gradients occurred was similar to
the system size, so H ≈ 0.1 m. The experimental thermistor data give the Darcy speed of
a fast-moving transient early plume of roughly 10−5 m s−1. Using D = 10−8 m2 s−1 and
w0 = 2wD/φ (here wD is the dimensional Darcy speed) gives Ph/ε ≈ 1, indicating that
these early fast-moving plumes in the experiments may have not been in the perfect ideal
mushy regime.

The rates of solute and thermal advection are equal in mushy layers and are intermediate
to those for solute and temperature in passive porous media and depend on the material
properties of the mushy layers. Theoretical expressions for these rates based on ideal
mushy layer theory were presented by Butler (2011), and we have shown here that
pore-scale models are in good agreement with these predictions. Transport of solute and
heat induces melting and freezing in mushy layers, where hot invading fluids induce
melting if the system-scale transport is dominantly diffusive while they will induce
freezing if the system-scale transport is dominantly advective. For sinusoidally varying
temperature and solute fields, these melting patterns manifest as porosity profiles that
correlate with temperature when transport is diffusion-dominated at the system size and
anticorrelate with temperature when transport is advection-dominated. For Peh/ε < 0.3,
the results of our pore-scale mushy model were in excellent agreement with the simulations
assuming an ideal mushy layer and with predictions of an analytical model that assumed an
ideal mushy layer and small variations in porosity. We note that the prediction of porosity
assuming ideal mushy layers diverged from those for our pore-scale model to a greater
degree than temperature and concentration for our highest-Pe calculation displayed. We
attribute this discrepancy to the fact that the porosity field is a result of the time-integrated
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variation of the temperature and concentration and so the effects of small differences in
these with those of ideal mushy layers add up over time.

For passive porous layers, when Pec > 1, the effects of advection dominate those of
axial diffusion and we have identified regimes where the concentration and temperature
fields reach a steady state in reference frames moving at wc and wT , respectively. In this
regime, the concentration magnitude may still be significantly less than that predicted by
models assuming radially constant concentration, since the concentration field at different
radii will have different phases. Above Peh/ε � 2, the concentration field becomes time
dependent in any reference frame and will decrease in amplitude with time because
of the effects of mechanical dispersion. Similar regimes would exist for temperature;
however, because thermal diffusion is much greater than solutal diffusion, the flow
velocities required would be much higher. In reactive porous layers, the calculation with
the highest Peh reached a regime where mechanical dispersion significantly decreased the
concentration field relative to the thermal field in amplitude but the thermal field reached
a state with a constant phase difference between the profiles of concentration at r = 0 and
r = 1.

We have shown that the criterion for flow to be in the ideal mushy regime depends
inversely on the length scale over which thermal and solutal variations are taking place,
H. Our simulations have assumed sinusoidal variation and hence a long length scale for
the size of the solution domain. If we had instead investigated the transit of a sharp thermal
and composition front through a reactive layer, we expect that non-ideal effects would have
manifested for smaller values of Pe.

Our solution domain is clearly a great simplification compared with real mushy layers
with tortuous pore networks and for which the deforming pores can feed back onto the
flow. Experiments and linear theory for systems including gravity (Coriell et al. 1984;
Fang et al. 1985; Glicksman et al. 1986) have shown that for a single-component system,
the interaction between the melt-driven deforming boundary and background flow can
lead to significant instabilities. These studies considered concentric cylinders with a long
axis and flow direction oriented parallel to gravity, and the unstable modes that they found
had wavelengths much shorter than the wavelengths considered in this paper. It will be
interesting to include fully deforming boundaries in a future investigation.

We have also limited this investigation to parameters that are appropriate for aqueous
NH4Cl and KNO3 where the parameters S and C are significantly greater than 1 and
to systems with large porosity. Sea-ice has C ≈ 1 and typically low porosity, both of
which will result in advection, diffusion and melting rates that depend on temperature
and porosity, and hence the evolution will be nonlinear. In these cases, the assumptions
made in deriving the analytical mushy solutions will not be valid. For sea-ice parameters
at very high Pe, ideal mushy theory predicts that the temperature evolves to a shock (Butler
2011). These nonlinear effects will be interesting to investigate using our two-dimensional
model in a future study.

Additionally, it will be interesting to investigate effects of mechanical dispersion due
to varying pore sizes and branching networks. These will add complexity and will likely
affect the simple criterion developed here for determining if a mushy layer is likely to be
close to ideal.
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