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Abstract

This paper describes a mathematical model for a broadband integrated services net-
work offered traffic of many different types. Performance measures are introduced
related to revenue generation and overall grade-of-service, providing criteria for the
optimal management of resources. Simple asymptotic expressions are derived for
quantities termed the "implied costs", which measure the effect on performance of
changes in parameters that are controllable by network management, or that are
subject to variation. These implied costs may be used, both to implement optimal
bandwidth allocation polices, and also to indicate which services may share a single
facility without adversely affecting performance, and which might require a dedi-
cated facility. Asymptotic results are also used to examine how to make efficient
use of capacity that is shared between calls with fluctuating bit-rate requirements.

1. Introduction

Broadband integrated service networks (B-ISDN) are currently a subject of
great interest in the field of telecommunications. In Australia, experts at Tele-
com's Research Laboratories have been concerned with information transfer
protocols for B-ISDN. (See, for example, [2] and [3]). In particular these pa-
pers propose a technique known as virtual direct routing. A similar technique
of virtual paths has been developed independently at NTT in Japan and, to-
gether, these ideas could form the basis of a new international standard. This
paper looks at the problems of assigning and controlling the resources in a
high capacity integrated services network employing virtual path techniques.
Section 2 looks briefly at current ideas on B-ISDN that are relevant to the
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work reported here, and outlines the problems to be addressed. The long
Section 3 describes a mathematical model and related theoretical results for
the case of a single virtual path (VP) offered traffic of several different types.
This provides the theoretical background necessary to address the problems
outlined in Section 2. In Section 4 two problems of optimal resource sharing
are discussed in terms of the model of Section 3.

2. Virtual paths and bandwidth switching in B-ISDN networks

One of the main factors behind the current move towards B-ISDN is the
advent of optical fibres, which provide very high capacities at low cost per
unit capacity. Because the low unit cost of capacity is only achievable if
very high capacity systems are provided, there is a need to allow a range of
communication services to share the resources of a fibre-optic network and so
make use of the greater available bandwidth. It is now generally accepted that
fast packet switched (FPS) networks would allow the available bandwidth
to be used flexibly and efficiently by a mix of services, provided that call
establishment could be carried out with minimal delay. The technique of
virtual paths was designed primarily to achieve this.

A virtual path (VP) refers to a pre-calculated route between a pair of net-
work exchanges, together with an associated capacity; the route may include
any number of exchanges. A VP may be dedicated to a particular service type
or may carry a mix of services. As far as the call sub-layer is concerned, the
VP appears as a direct link between its origin and destination, with a fixed
capacity, and if an arriving call finds sufficient capacity available it may be
connected immediately. Only if insufficient capacity is available is it neces-
sary to go outside the call sub-layer and discover whether the network VP
manager is able to allocate more capacity to that VP. If more capacity is not
assigned, the call is lost. As well as reducing the complexity of call control,
the technique of virtual paths has an added bonus; it allows easy reconfigu-
ration of the network in case of failure of network equipment. This feature
is of great importance in improving network availability and reliability, and
is considered further in [1].

This paper is concerned with the central core network of a B-ISDN system,
where the use of fibre-optic transmission results in very large link capacities,
and the call concentration function performed by the access networks pro-
duces very high arrival rates to each VP. In these circumstances asymptotic
results are applicable.

For a given network with given resources, the problems that we wish to
analyse concern the optimal management of those resources by control of
VP's and their associated capacities. The decisions available include the
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setting up of VP's, to carry a mix of services or just a single service, the
reservation of capacity for new VP's, switching of capacity (or bandwidth)
between existing VP's, and clearing down of VP's where there is insufficient
demand. At the network design stage on the other hand, we need to look at the
problems of designing for optimal performance subject to budget constraints,
or designing to meet given performance criteria at minimum cost.

Performance criteria need to operate at two different ieveis, at the caii level
and at the packet level. In accepting or denying access to calls, both grade-
of-service and economic considerations are relevant. However a call should
not be accepted unless a minimum quality of service standard can be met
over the duration of the call, that is unless the probability of packet loss can
be kept acceptably low. Calls will generally have randomly varying bit-rate
requirements over the duration of a single holding time. We need to know
the properties of these random fluctuations in order to develop call accep-
tance policies that will maintain an optimal balance between minimising call
access denial probabilities, maximising revenue, and keeping the probability
of packet loss to an acceptable minimum.

The different services using a B-ISDN network are likely to have very
different characteristics. For example bit-rate requirements are likely to range
over several orders of magnitude (from a few hundred bits/sec up to possibly
135 Mbits/sec), and call arrival rates and holding times will also be very
different. This raises the question of which services can share a VP without
adversely affecting performance, and which services might require a dedicated
facility.

In the next section we develop a model framework that takes most of the
above factors into account, and will enable us to formulate and begin to
analyse the problems of optimal VP management and network design. There
already exists a large body of work on the analysis of mixtures of different
traffic types, both with respect to packet delay and call access denial. The
approach in this paper is chiefly indebted to the work of Kelly and Hunt
whose results on asymptotics, optimality criteria and implied costs is reported
in [6], [7], [9] and [10]. Their application of these results is mainly in the
context of optimal routing policies; the application to decisions on capacity
increases is also discussed but not in the context of the flexible allocation and
rearrangement of capacity in a bandwidth switching network.

3. Analysis of a single VP

3.1 The call acceptance model and its exact solution
We begin this section with a description of the model used to determine

whether an arriving call is accepted or not. Its essential feature is that an
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arriving call's peak bit-rate is the only information that is used at this stage.
To take account of the random fluctuations in each call's bit-rate require-
ment, capacity is assumed to have been overallocated, thus increasing call
acceptance probabilities so that efficient use can be made of the available ca-
pacity. Discussion on how to do this, while keeping the probability of packet
loss acceptably low, is deferred until Section 3.6.

Consider first a single VP (or, equivalently, a single link) which carries
a mix of S different services. For the present we take the capacity of the
VP to be a given and fixed integer M, where M will generally represent a
notional capacity rather than the true capacity. The units in which capacity
is measured require some explanation. We shall follow Zukerman and Kirton
[19] in their use of the term Fundamental Capacity Unit (FCU) and define
an FCU as the largest amount of capacity, say £ kbits/sec, such that the peak
bit-rates of calls of type s(s = 1, • • • , S) are all integral multiplies of £,.

For each service s we make the following assumptions:
(i) Calls arrive according to a Poisson process with a constant arrival rate

Xs.
(ii) Call holding times are independent and identically distributed with

mean ^ 7 ' . (Note that we do not need to assume exponential holding times).
(iii) Each call has a peak bit-rate or capacity requirement of as FCU's

where as is an integer.
(iv) Throughout holding times, call bit-rate or capacity requirements at

any instant of time are independent and identically distributed with mean
ms and variance vs. (This assumption is used only in determining the extent
to which capacity can be overallocated. See Section 3.6).

Let a and n be the column vectors a = (a\, a-i,..., as)' and (n\, «2, . . . , «s)'
where ns is the number of type 5 calls in progress. Then calls are accepted or
rejected according to the following rule. An arriving call of type s is accepted
provided that

a'n < M - as.

Otherwise it is rejected and lost. [Note that in a network context it may be
possible to increase the capacity of the VP and thus accept the call. For the
present it is assumed fixed. Note also that other characteristics of the arriving
call, ms and vs, are ignored for the purpose of deciding whether the call is to
be accepted or not.]

Under all these assumptions the unique, invariant distribution for n is
given by

if[1^ neS(M) (1)
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where

us = Xsfi-
1 (2)

S(M) = {nGZf:a'n<M} (3)

and

n€S(M)s=l "*'

(See, for example, [4].) If we define LS(M) to be the stationary probability
that a call of type 5 is rejected then

(1 - LS(M)) = G{M - as)G(Myl (5)

and from the probability distribution for n given by (l)-(4) it is easily shown
that

(6)
= as(M) (definition)

Var(«5) = as(M){l - (as{M) - as(M - a,))} (7)
Cov(/i,, /I,) = -a,(M){a((M) - a,(M - as)}

= -at(M){as(M)-as(M-at)}.
Roberts [16] and Kaufman [8] have independently shown that the LS(M)

may be obtained using a simple recurrence relation, and hence we can obtain
E{ns), Var(«j) and Co\{ns,nt) exactly.

3.2 Performance measures WK and W2

Consider first, performance functions that may be written in the form

\{k,r,M)= _
(9)

where ws may be regarded as the expected reward earned by accepting a call
of type s, so that wsfts is the expected reward earned per unit time. By setting
ws appropriately, such performance functions are able to take into account
both revenue generation and overall grade-of-service at the call level. (It is
assumed that the overallocation of capacity will be adjusted to take care of the
grade-of-service at the packet level.) The implications of setting ws equal to
1, /i~l, and asfi~

l respectively, are discussed in [5]. The setting ws = rs + gs is
also discussed, where the expected reward, ws, is explicitly separated into the
expected revenue, rs, and the expected goodwill, gs, valued in the same units
as revenue. The main limitation of the linearity of W\ with respect to the
as(M) is that accepting a new call of type s has the same value ws, regardless
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of the current grade-of-service provided. Performance functions of the form
given in (9) have been considered by Kelly [10] and Hunt [7], and lead to
tractable expressions for the derivatives of the function with respect to the
parameters ks and M. In [10], approximations to such derivatives form the
basis of a suggested procedure for adaptive routing within a network where
several routes are possible between any pair of nodes. The aim is gradually to
vary the routing patterns in response to changes in the demands placed on the
network, in such a way as to improve the value of the performance function.
In the context of optimal resource management we might wish gradually to
vary the number, types and capacities of VP's with a similar aim. In the
context of the adaptive routing scheme Kelly remarks that the quantities ws

need not be regarded as fixed but could be adjusted when necessary to force
routing changes that would reduce unacceptably high loss probabilities. This
would require intervention by a human operator. We shall introduce a grade-
of-service measure that is nonlinear in the as(M), and values call acceptances
more highly as access denial probabilities increase.

For each s, suppose that fs is a function, defined on [0, oo), with the fol-
lowing properties.

(i) /*(0) = 1.
(ii) fs(x) = 0 if x > 1.
(iii) Over [0,l)fs is continuously differentiable and strictly monotonically

decreasing, with an "elbow" at x - ps{0 < ps < 1), so that fs is negative
throughout [0,1), but small in magnitude between 0 andps and large negative
thereafter as x increases to 1. [The value of ps is assumed to represent a
desirable call acceptance probability for calls of type s].

Suppose now, that for each service s, we can define a number hs represent-
ing an upper limit to the call arrival rate for which we would aim to provide
a grade-of-service ps. Suppose, further, that defining

gs(x) = fs(x/hs) 0 < x < oo

we can choose a number qs, so that accepting a call of type s, when the
average number being accepted per unit time is xs, is assigned a value of

Xs) dollars per unit time over time /i~l. Now let

Gs(y)= f
Jo

and define the grade-of-service performance function W2 as
- LS{M)))

(10)
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Here qsGs{nsas{M)) is assumed to represent the total value, in dollars per
unit time, of all calls of type s being carried on the VP.
NOTE 1. It might be thought appropriate to use E(Gs(nsns)) in (10) rather
than Gs(/isE(ns)). However, using the asymptotic results in Section 3.4, it is
possible to show that the difference becomes negligible for large ks and M.
NOTE 2. The priority of the different services can be reflected by adjusting
the design gradc-of-Service parameters ps in the functions fs, or by adjusting
the quantities qs, and it may be sufficient to keep one of these constant over
all services and vary the other.
NOTE 3. If the functions fs are identical (= / ) , then the terms Gs(/J.sas(M))
in W2 may be thought of as design grade-of-service measures, weighted by
the reference arrival rates hs. This can be seen by showing, as is easily done,
that if two services, s and /, have the same call acceptance probabilities, and
ks = hs, X, = ht, then

Gs{iisas(M))IGt{vtat(M)) = hs/ht.

A network performance function reflecting both grade-of-service, as mea-
sured by W2, and generated revenue in the form W\, can be denned by

W{k,ft;M) = ^2(rsfisas(M) + qsGs(nsas(M))) (11)

where rs is the expected revenue generated by a call of type s. The analogy
with setting ws = rs + gs in W\ is obvious.

In the next section we look at derivatives of W\ and W2 with respect to the
model parameters ks and M. These derivatives are sometimes called "implied
costs", as in [7], or "shadow prices" as in [10]. Clearly derivatives with
respect to M are relevant when considering capacity alterations. Derivatives
with respect to the ks have a number of possible uses. First, they turn out to
be very simply related to the derivatives with respect to capacity, and give a
simple and intuitive understanding of the effect of accepting a single call of
type s. Secondly they indicate where accepting a call of type 5 results in a nett
loss in terms of the given performance function; the possible implications in
this case are discussed in Section 4.1.

3.3 W\, W2\ Exact derivatives and implied costs
We begin by considering the performance measure W\ given by (9). We

define

Defining the derivative of W\ with respect to M is less simple. Since all the
capacity requirements as are measured in integral numbers of FCU's, a ca-
pacity alteration of less than one FCU would have no effect on the probability
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distribution n(n) and hence no effect on W\. Let us define

. dW, „

and

_ dWx

= W^fi-M) - Wi(X,M;M - I).

Thus e+ and e~ are the changes in reward earned per unit time caused by re-
spectively adding or subtracting one unit of capacity. These quantities are not
necessarily useful, however, in the context of capacity alteration decisions.
Capacity alterations will usually involve more than one unit of capacity, and
the constraint, a'n < M that determines the feasible state space S{M), could
operate in such a way that larger changes in capacity result in changes in W\
that are not locally linear functions of e+ or e~. It is more convenient at this
stage to consider the implied costs cs defined by

cs = fi7l[Wi(X,p;M)-Wi(X,/i;M-as)] l<s<S. (12)

Let c and d be the S x 1 column vectors (C\,..., cs)' and (d\,..., ds)' respec-
tively. The vector c is closely related to d as we shall show. Moreover, as
pointed out in [7], it is of interest in its own right since cs is the expected cost
(when in equilibrium) of accepting a call of type s, reflecting the fact that the
VP must operate at a capacity M - as rather than M for an average holding
time n~x. In Section 3.5 we shall show that, asymptotically, e+ - e~ — e,
and cs is linearly related to e. In this section we give exact expressions for
the elements of d and c and show the relationship between them.

THEOREM 1.

(i) ds = ^{k,/i;M) = (1 - Ls(M))(ws - cs) where cs is as defined in (12).

[Recall that Cov(ns, ns) =
(iii) ds = Xjx J2, w,n,Cov(«,, ns).

PROOF. Part (i) may be proved by simple differentiation and applying the
definition of cs given in (12). Part (ii) follows from (12) and the expressions
for Var(/jj) and Cov(ns, n,) given in (7) and (8), and part (iii) is an immediate
consequence of parts (i) and (ii). (See [5], or [10] and [7] for a proof that
covers the general network case).
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NOTE 1. Theorem 1 expresses cs and ds in terms of moments of the probabil-
ity distribution 7i(n). Using Kelly's central limit theorem for the distribution
nin) ([9] and [6]), asymptotic expressions for cs and ds follow immediately
[7]. Note, however, that by using the recurrence relations of Roberts [16] and
Kaufman [8] exact values for the cs, and hence the ds are easily calculable.
NOTE 2. The relationship between ds and cs given by Theorem l(i), can be
interpreted as follows. An additional call of type s offered to the VF will be
accepted with probability (1 -LS(M))\ if accepted it will earn ws directly but
at a cost cs, where cs measures the effect of accepting a call of type s in terms
of the reward lost from other calls during its holding time. We shall follow
[7] and use the term "implied costs" when referring to the cs and ds.

Results similar to those given in Theorem 1 can be derived for the perfor-
mance function W2.

THEOREM 1'.

(i) I = ^-(X,f,;M) = (1 - Ls(M))(ws - cs)

where we define

and

' J2 - at{M - as)).

(ii) cs = f*7lJ2WtHt[Sts - (Cov(n,,ns)/E(ns))].
t

(iii) d5 = X~' ^ ) w, Cov(ns, n,).
t

PROOF. See [5].

Note that with the above definitions ofds, ws and cs, Theorem 1' is directly
analogous to Theorem 1. Note also, however, that although ds is directly
analogous to ds, cs is a linearised version of cs and ws, the value of accepting
a call of type s as explained in Section 3.2, is no longer a constant but a
function of fisE(ns), the expected number of calls accepted per unit time; it
is therefore a function of X and M.

In the next section we look at a limiting regime in which both capacity M,
and the arrival rates Xs, are increased together. Asymptotically, the pattern
of traffic carried on the VP has a very simple description enabling asymptotic
values for ds, cs, ds and cs to be calculated very simply.
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3.4 The limiting regime and related asymptotics
The analysis starts with the probability distribution n(n), given by (1)-

(4) and looks at the problem of finding the most likely state n. Following
the approach of Kelly [9], with some additions to the theory to handle the
difficulties that arise if ns = 0 for some s, we are able to prove the following
theorem.

THEOREM 2. Provided that M > 0, there exists a unique vector, x*, and a
unique scalar, B*. such that

x* = vs{\ - B*)a< \<s<S (13)

B* = 0 ifa'x*<M (14)

B*>0 if*'x*=M (15)

and
B*e[0,l). (16)

The vector x* is the unique solution to the problem of finding the most
likely state vector, where the integer vector n has been replaced by a real
vector x. The scalar y*, defined by

(I - B*) = exp(-y*)

is the unique solution to the corresponding dual problem.
PROOF. See [5].

NOTE 1. Theorem 2 is the single link equivalent of the theorem for a more
general network given by Kelly in [9]. His proof appeals to the strong La-
grangian Principle and requires the primal objective function, which is related
to the probability of state x, and is given by

' loS"•» ~ x* l o 8 ^ + **)

to be differentiate over the cone {x: xs > 0,1 < s < S}. However more
extensive analysis is needed to handle the lack of differentiability of P(x)
whenever xs = 0 for some s. Reference [5] uses the theorems proved by
Rockafellar in [17] to establish the results of Theorem 2. In the more general
network case considered by Kelly, the scalar B* is replaced by a vector B* —
(B*, ...,BD where L is the number of links in the network. Unlike the scalar
B* of Theorem 2, the vector B* is not in general unique and some care is
required when dealing with networks that exhibit such non-uniqueness. For
further details see [9],
NOTE 2. As pointed out in [9], relations (13)—(16) have a simple fluid in-
terpretation. Suppose that a service .s(l < s < S) offers a flow of size vs to
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the link. This flow is then thinned by a factor (1 - B*)a- so that a flow of
us{\ - B*)"! remains. Suppose now that a unit of flow of service s uses as

units of capacity. The relations (13)—(16) state that, if the capacity of the
link is not fully utilised by the superposition of the flows vs{\ — B*)"s, then
no thinning of the offered flows occurs. That is B* = 0. On the other hand,
if the capacity is fully utilised then two possible cases can arise. Either the
capacity requirement of the superposition of offered flows ua exactly matches
the link capacity, M, in which case B* = 0, or we have B* > 0, and the
offered flows vs are thinned until the capacity requirement of the superpo-
sition of flows vs(\ - B*Y! exactly matches the link capacity. We need to
distinguish these three cases since the asymptotic behaviour of the system we
shall consider is different in each case. In particular the case where offered
flow exactly matches link capacity requires careful handling; it is discussed
in detail in [6] and [7]. We label the cases as follows:
CASE 1. B* = 0, x* = vs (1 < 5 < S), a'x* < M.

CASE 2. B* = 0, x*s = vs (1 < s < S), a'x* = M.

CASE 3. B* > 0, x; = vs(l -B*)a' (I <s<S), a'x* = M.
NOTE 3. It is easy to show that given vs, as{\ < s < S) and M, it is simple,
computationally, to find the corresponding unique B* and x* of Theorem 2.
To see this consider the function

H(B) = £ > W 1 - B)a' B €[0,1]

and observe that H(0) = YtsWs and H{\) = 0. If H(0) < M then clearly
B* = 0 and x* = (vu..., i/s)' are the required unique B* and x*. If H(0) > M
then, since H{B) is a continuous and strictly decreasing function of B on
[0,1], it is easy to find B* such that H(B*) = M (for example, by bisection
or using a golden section algorithm); the x* follow immediately from (13).
The entities x* and B* are the basic parameters for the asymptotic results
that follow.

Consider now a sequence of distributions of the form (l)-(4), where the
parameters ks{\ < s < S) and M are replaced by XS(N)(\ < s < S) and
M(N), and the state vector n is replaced by n(iV) = (ns(N)). We make two
assumptions about these sequences. The first is that

XS(N)/N -+XS asN^oo l<s<S

M{N)/N-^M a sW —oo. (17)

Thus the arrival rates and the link capacity are increased in line with one
another. To examine the limiting behaviour of the stationary probability
distributions indexed by N, we examine first the limiting behaviour of the
most probable state and the corresponding blocking probability. Here we
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follow [6] which corrects the corresponding analysis in [9]. For each N we
define x*(N) = (x*(N)) and B*(N) to be the unique quantities of Theorem
2 with the vs — njlks replaced by vs{N) = fi~lXs(N), and M replaced, either
by M(N) (if Case 3 holds for M and v and the corresponding x* and B*),
or infinity (if Case 1 or Case 2 holds for M, v, x* and B*). Then it is easy to
show ([6] and [9]) that

x*(N)/N^x* asN^oo (18)

and
B*(N)-*B* asiV^oo. (19)

It follows that

(M(N) - a'x*(N))/N -+ M - a'x* as N -» oo (20)

which is either strictly greater than 0 (Case 1) or equal to 0 (Cases 2 and 3).
Our second assumption concerns the rate of convergence to 0 in (20). We
assume that

M(N)-&'xm(N) = o(N1'2) for Case 3 (21)

where this assumption is without loss of generality (see [9]). We further
assume that

M(N)-*'x*(N) = yNl'2 + o(N1/2) for Case 2 (22)

where y is some constant. That is to say, for Case 2 we consider a sequence in
which offered load matches link capacity to order Nl/2 since x*(N) — u(N).
For each N we now define the vector u(iV) = {ui(N),U2(N),...,us(N))' by
setting

us(N) = N-l'2[ns(N)-x;(N)] 1 < s < S. (23)

Thus the vector u(N) is obtained by centering and normalising n(JV). The
next theorem follows from the results of [9] and [6].

THEOREM 3.

Case 1. B' = 0, a'x* < M
The distribution ofu(N) converges weakly to the distribution of the vector u
whose components are independent normal random variables, us ~ N(0,x*).
If we define theSxS diagonal matrix £ = diag(x'), then u has the multivariate
normal distribution MVN(0, Z) and the distribution ofu(N) converges weakly
toMVN(0,I.).
Case 2. B* = 0, a'x* = M
The distribution ofu(N) converges weakly to the distribution of vector u =
(MI,...,Ms)' formed by conditioning independent normal random variables
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us ~ N(O,x*) on a'u < y, where y is the constant appearing in (22). Thus the
distribution ofu has probability density function

a ' u

5=1

where

and <f> and <I> are the standard normal density and distribution functions re-
spectively.
Case 3. B* > 0, a'x* = M
The distribution ofu(N) converges weakly to the distribution of a vector u =
(Mi,...,Ms)' formed by conditioning independent normal random variables
us ~ N(0,x*) on a'u = 0. That is the distribution ofu is multivariate normal
MVN(0,l.*), where the S xS matrix X* = (a*,) has elements given by

o» = *s,x; - asatx;x;/^2 <£*;• (26)
s

(see [15])
In each of Cases 1, 2 and 3, the moments ofn(N) converge to the moments

of the corresponding distribution ofu and

x; asN^oo l<s<S. (27)

Also in each case

\-{\-B*)a> asN^oo (28)

where LS(N) is the probability that a call of type s is lost under the N'th
probability distribution n(n(N)). This completes the statement of Theorem 3.

From (27) it is clear that

Wi{t.{N),ti;M(N))IN->W{(k,fi;M) as N -» oo (29)

where

J2 (30)
To examine the asymptotic behaviour of W2 we need to introduce a sequence
hs(N) such that

hs(N)/N->hs asW — oo. (31)

We define
W2{k{N),fi-M{N)) = ^qsG

{
s
N)(nsE(ns(N))) (32)
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where

(wo)* <33)

and then it is not difficult to show that

W2(X(N),M;M(N))/N -» W2*{X,/t;M) as N -» oo (34)

where

J2 x;). (35)

Coy(ni(N)ns(N))^Co,(ut,us)

This completes our description of the limiting regime and the associated
asymptotic results. In the next section we use these results to look at the
asymptotic behaviour of the implied costs denned in Section 3.3.

3.5 W\, W2\ asymptotic behaviour of implied costs
The following lemma establishes the basic results that will allow us to

describe the asymptotic behaviour of implied costs.

LEMMA 1.

(i)

(ii)

(iii) as(M(N)) - as(M(N) - at) - dts - Cov(us, u,)/x; as N - oo.

PROOF. Results (i) and (ii) are proved in [7]. They are an easy consequence
of the definition of u(AQ, the fact that moments of u(iV) converge to the
corresponding moments of u (Theorem 3), and (27). Result (iii) follows
from (7), (8) and Result (i) above.

Theorems 4 and 4', which follow, demonstrate the convergence of the
implied costs associated, respectively, with W\ and W2.

THEOREM 4. The implied costs ds{N) and cs(N), where these are defined in
the obvious way, converge to limiting costs as N —* oo. The limiting costs are
given by

H,, us)/x;y i<s<s
I

(ii) d; = A71 J2 wtHt Cov(u,, us) 1 < s < S

and

(iii) d; = {\-B*)a'(ws-c;).
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PROOF. Results (i) and (ii) follow immediately from Lemma l(i) and (ii).
Result (iii) follows from (i) and (ii).

Consider now the implied costs associated with W2. By analogy with The-
orem 1' we define ds(N) and cs(N) in the obvious way as

ds(N) = XS{N)-1 £u>r(A0/z,Cov(rt5(A0,rt,(A0) 1 < s < S (36)
t

and

cs{N) = iiJxY, titW/ttVt, - Cav(nt(N), ns(N))/E{ns(N))] l<s<S

(37)
where

= q,ft(n,E(nt(N))/ht(N)) l<t<S. (38)

THEOREM 4'. The implied costs ds(N) and cs(N) converge to limiting costs as
N -> oo where these are given by

(i) c; = n~l J^ ™lHt{S,s - COV(M,, W,)/*,*}
r

and

(ii) d; =KxYi t&*//' C o v ( M " M )̂
t

where
w; = qtft<jitx;iht) (39)

and

(iii) d; = (i-B*y>(w;-c;).

PROOF. Since ft is continuous it is clear that

wt{N) - n i ' as N —>• oo

from (27) and (31). The results are then immediate from Lemma l(i) and
(ii).

An immediate Corollary to Theorems 4 and 4' gives closed form expres-
sions for the c* and c*, and hence for the d* and d*, in Cases 1 and 3.

COROLLARY 4.1.

Case 1. B* =0, a'x* <M
(i) c ; = 0 (and hence ds^ = ws), 1 < s < S
(ii) c; = 0 {and hence d*s =w*), 1 <s<S.
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Case 3. B* > 0, a'x* = M
( i ) c ; = a s t i ~ ' ( £ , w t f i , a l X ; / £ , a j x ; ) , l < s < S
(ii) c?; = asnj' ( £ , u>tHtatx;i £ , a,2*;), 1 < 5 < S.

PROOF. The results follow from Theorems 4 and 4', and the expressions for
the moments of u given in Theorem 3 for Cases 1 and 3. Expressions for d*
and d* for Case 3 are immediate from Theorems 4 and 4', result (iii).

Note that in Case 2 it is not possible to find simpler expressions for c*
and c* than are given by Theorem 3 and Theorems 4 and 4'. The covariance
matrix of the distribution specified by (24) is required, and its elements are
not expressible in closed form.

The following Theorem 5 contains a result that, asymptotically, will enable
us to attach meanings to the derivatives of W\ and W2 with respect to VP
capacity.

THEOREM 5.

(i) There exists a quantity e* such that

Hsc* =ase" \<s< S. (40)

(ii) There exists a quantity e* such that

Msc;=ase* l<s<S. (41)

We may interpret (40) (and similarly (41)) as follows. By definition, /isc*
measures the worth per unit time of as FCU's, as measured by W\. Equation
(40) says that we may assign a worth of e* to a single FCU such that the
worth of as FCU's for any s = 1, . . . , S is just ase*, the appropriate multiple
of*?*.
PROOF. Result (i) is proved in [7]. Result (ii) has an exactly analogous proof
provided we can show that, for all k e Zs

ws(N)Mc*s(M(N)) - as(M(N) - k'a)} - £ nsksc*s as N - oo.
s

We can write this as a finite sum of K = J2S \ks\ terms of the form

- y'a) - as(M(N) - y'a - at)}\ (42)

for some y e Zs. Now ws(N) —• w* as JV -» oo. (See proof of Theorem
4'). Moreover the same asymptotics hold for a sequence of link capacities
M(N) - y'a as they do for the sequence M(N), and so by Lemma 1 (iii), (42)
converges to ±ntc* as N —• oo and the result follows. This completes the
proof of Theorem 5.
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NOTE. The proof of Theorem 5 also demonstrates that, asymptotically,
(i) of (or c*) is the amount we would gain by adding as FCU's to the link,

as well as the amount we would lose by removing as FCU's and
(ii) K units of capacity are worth Ke* (or Ke*) if K can be expressed as

K = a'k for some k e Z s where the elements of k are o(N). Thus Theorem
5 tells us that, asymptotically, we may define

and

In Cases 1 and 3, we can find explicit expressions for e* and e*. By
inspecting the expressions for c* and c* in Corollary 4.1, we see that

e* = e* = 0 Case 1 (43)

e*=Y,wsnsasx;/J2ah; Case 3 (44)
s s

and
j X ; Case 3. (45)

For large N, (44) and (45) are clearly well approximated by the corresponding
expressions with the x* replaced by x*{N), and the w* replaced by ws(N).

In Case 3 (B* > 0, a'x* = M) we are able to get a better idea of the
behaviour of Wx by looking at the behaviour of the function W*. We use the
relations

aV = M (46)

and
a'x*(N) = M{N) for all N > N' (47)

where N' is chosen so that B*(N) > 0 for all N > N'. Differentiating
(46) and (47) implicitly we obtain expressions for the derivatives of B*,
and hence x*, with respect to M and Xs, and analagous expressions for the
derivatives of B*(N), and hence x?{N), with respect to M{N) and ls(N). It
is easy to see then that dx;{N)/dM(N) and dx*{N)ldks{N) are 0(1) and
converge to dx*/dM and dx*/dXs respectively, while dB*{N)/dM(N) and
dB*{N)/dXs{N) are 0(W-'), and NdB*(N)/dM{N) and NdB*{N)/dXs(N)
converge to dB*/dM and dB*/dXs respectively. Consider now the function
W{ defined in (30). It follows from (18) that

W{ (X{N), fi;M{N))/N — Wf (X, fi;M) as N -» oo.
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By using the expressions for the derivatives of x*(N), x*,B*(N) and B*, we
can also show that

and

Thus, while W*{k{N),fi;M{N)) is 0(JV), the derivative of W{{k(N),/i;
M{N)) with respect to M(N) is 0(1) (and s £*), and the second deriva-
tive with respect to M{N) is O(N~l) so that, over capacity ranges of o(N),
W{{k(N),fi;M{N)) is nearly a linear function of M(N) while Case 3 holds.

The behaviour of W{{k{N),fi; M(N)) reflects the behaviour of W{ (k(N),p;
M(N)) as we can easily see. From (29)

Wi(k(N),/t;M(N))/N — W{{k,fi;M) as N - oo.

From Theorem 5 (i) the first differences

AaW,{M{N)) = Wx{k{N),M;M{N)) - Wx{k{N),p;M{N) - as)

converge to ase* as N —* oo for all 1 < 5 < S. Finally, it is easily shown, by
an argument similar to that of Theorem 5(ii), that the second differences

4 L , Wx (M(N)) = Aa, Wx (M(N)) - Aas Wx (M(N)) - a,)

converge to 0 as N —* oo for all 1 < s, t < S. Thus, over capacity ranges of
o(N), Wx{k(N),fi\M{N)) is nearly a linear function of M{N).

The behaviour of the function W2 for Case 3 can be examined in a similar
way.

This completes Section 3.5. In the next section we shall look at the actual
capacity use of a VP, as compared with the nominal use based on the assump-
tion that calls of type s (1 < s < S) occupy as units of capacity throughout
their holding times.

3.6 Capacity overallocation
For each service s(l < s < S), we recall that call capacity requirements,

at any instant of time throughout a call's holding time, are independent and
identically distributed random variables with mean ms and variance vs. We
shall begin by assuming that the link (or VP) has infinite capacity, and that
the Xs are large so that, asymptotically, the ns ~ NID(us, vs). Let us consider
the distribution of y, the actual capacity used at any instant of time.

Suppose, first, that we fix a value for the state vector n = (n\,...,ns)',
where ns is the number of calls of type s in progress (1 < s < S). Since
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the Xs are assumed large, the vs and ns may also be assumed large. While
in state n, the capacity requirement of type s calls at any instant of time is
a random variable ys, which is the sum of ns independent and identically
distributed random variables with mean ms and variance vs. Thus, by the
central limit theorem, ys, conditioned on the state vector n, is approximately
normally distributed with mean msns and variance vsns. It follows that if we
define m = (mi , . . . , si j) ' and v = (u\,..., ug)' then, conditional on the value
of n, the instantaneous total capacity requirement of all calls, y = J2sys, is
a random variable which is approximately normally distributed with mean
m'n and variance v'n. That is

(48)

and
n~MVN{v,T) (49)

where
I = diag(i>$).

Now if we define the random vector z = (z\, z2)' by setting

z\ = m'n and z-i = v'n

then, since n ~ MVN(t/,I.), z has the bivariate normal distribution with
mean y = (m'u,v'v)' and covariance matrix *F = (y/jj) where

U Vi2 = V21
s s s

See [14].
It is not difficult to see that the distribution of y, defined by (48) and (49),

can be equivalently defined by

y/z~N(zuz2) (50)

and
z~BVN{y,x¥). (51)

Let

J2{Z~ V)IX¥'1{Z ' y)\
be the bivariate normal density function with mean vector y and covariance
matrix *P, and

be the normal density function with mean z\ and variance z2. Then the
probability density function of y is approximately given by

/•OO /-OO

g(y)= / q{y,zuz2)p{zl,Z2)dzldz2. (52)
J — oo J— oo
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[Note that the normal approximations which lead to this formula are a conse-
quence of the assumption that the components of n and v are assumed large,
of O(N) say, and hence the components of z and y, the elements of *F, and
the scalar y are also O(N). This means that, practically speaking, the limits
of integration in (52) may be severely truncated, and, in particular, that the
lower limits of integration may be replaced by positive values; the problem
of z\ < 0 in q{y; z\,zi) need not arise. The expression given in (52) is, there-
fore, quite tractable computationally. Notice, also, that the distribution of y
given by (52) may be thought of as a generalisation of the familiar concept
of offered traffic]

Using (52) it is easy to show that

E{y) = Y\= m V

and

Var(j>) = y2 + Wn

We may compare the distribution of y, the actual instantaneous total capacity
requirement, with the distribution of a'n which is approximately normally
distributed with mean ^2sasvs and variance J2sasus- Comparing moments
it is easy to show that E(y) < E(a!n), Var(y) < Var(a'n).

One approach to the problem of making the best use of the capacity of a
VP might be to use the distributions of y and a'n just derived for the case of
a link of infinite capacity, to determine an overallocation factor, / , for the
associated mix of traffic. This would need to be done in such a way that the
resulting probability of packet loss was small. For example we might set

- E(afn) + AVVar(an) . .
/ = —— v. ' for some k

E(y) + k/Vrtyjor
/ = M\{e)IMi(e.) for some e

where /'(a'n > M\(e)) = e and P(y > Miie)) = e. Both these suggested
formulae for / depend on the assumed arrival rates ks. It may be that these
/ are very sensitive to changes in the Xs and we discuss this possibility and
its consequences in Section 4.1.

Another approach to the overallocation of capacity is the following. If the
actual capacity available on a VP may be assumed known, and is denoted,
say, by A/b, then the problem is to find a nominal capacity M, and hence a call
acceptance policy, such that the resulting random variable y, representing the
instantaneous actual capacity requirement, has an acceptably low probability
of exceeding Mo. Assume first that we choose a nominal capacity M so big
that all arriving calls are accepted. Then the distribution of the instantaneous
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capacity requirement, y, is given by (52), and we may use this to check
whether P(y > Mo) is acceptably small. If it is not then let us choose an M
such that a'n > M. Then, in our limiting regime, B* > 0 and Case 3 applies.
Theorem 3 now tells us that, asymptotically, n ~ MVN(\*,1,*) where

x; = i/,(l - B*)a<, 1 < s < S and I* = (a*)

where cr* = 5stx* - (asaiX;xn/(Es ajx;), 1 < s, i < S.

It is then easily shown that the distribution of y is given by

y/z ~ N(z, z2)

and

where y* = (m'x'.v'x*)' and *¥* = (m,v)'E*(m,v). (See [14].) Using these
results it is a simple matter computationally to adjust M so that some chosen
criterion is satisfied. For example, P(y > Mo) < e. The above procedure
finds a nominal capacity M > Mo, depending on both the call arrival rates
ks, and Mo, such that the chosen criterion is satisfied.

This completes the model description for the case of a single VP or link.
Its purpose has been to provide tools for analysing problems concerned with
the optimal sharing of capacity between services and VP's in a high capacity
core network, and also problems concerned with design and provision of
capacity in such a network. In Section 4 we discuss briefly two problems
of optimal resource management. Section 4.1 looks at the case of different
services sharing the resources of a single VP and Section 4.2 considers the
case of different VP's sharing the resources of a given network. Problems of
optimal network design can also be formulated in terms of this model but are
not considered in this paper. Before moving on to Section 4 let us examine
for a moment some of the assumptions on which the model is based.

3.7 Discussion
Two assumptions have been made in this section that bear closer exam-

ination in cases where services differ markedly, either with respect to their
capacity requirements, or with respect to the time scales on which they op-
erate, or both. The first relates to the limiting regime, in which we have
assumed that arrival rates and link capacity are increased in line with one
another, and that asymptotic results may be used when these quantities be-
come sufficiently large. For this purpose we require that the total link capacity
becomes very large compared with each individual as; for a service such as
video, this may not be the case. The second assumption concerns our use of
stationary probability distributions. When considering together services that
operate on very different time scales, for example voice and video, it is pos-
sible that stationary probabilities may not tell us enough about the behaviour
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of the system. The problem of sharing resources among services with such
markedly different characteristics is currently the subject of a separate study.

4. Optimal resource management

4.1 Sharing resources between services

A problem, already mentioned in this paper, is how to discover which ser-
vices can successfully share the resources of a single VP, and which services
would require a dedicated VP tailored to their particular requirements. Some
of the quantities introduced in Section 3 may indicate answers to such ques-
tions. For example, the elements of the implied cost vector d = (dW/dXs)
may be informative, where W may be of the form W\ or W2, or a linear
combination of the two. If dW/dXs < 0 for some s, then the gain of accept-
ing a call of type s on the VP is not sufficient to offset the cost incurred by
reducing the capacity available to other services. This could indicate that the
particular service for which dW/dks < 0 should have a dedicated VP so that
its effect on other services can be controlled by altering its own VP capac-
ity. Alternatively it could indicate that the call acceptance model should be
adjusted to take account of factors other than available capacity. (It might
also, of course, indicate that a call of this type should be charged more so as
to compensate for the effect on other calls.) Another quantity of interest is
the capacity overallocation factor discussed in Section 3.6. If overallocation
factors, calculated as we have described in Section 3.6, turn out to be unduly
sensitive to changes in the call arrival rates, Xs, this could indicate an insta-
bility in actual capacity requirement caused by an inappropriate mixture of
services. It could mean, however, that what is inappropriate is the system
of accepting or rejecting calls of different services on the basis of each call's
peak capacity requirements, and a nominal VP capacity calculated using a
single overallocation factor. Another possibility is to work with the actual VP
capacity, to introduce new quantities, bs, representing "typical" call capacity
requirements, and to accept a call of type s if and only if at least bs units
remain unallocated. The model, its solutions, and all the asymptotic results,
remain essentially unaltered, but it is possible that the bs will be less sensitive
to changes in the Xs than the single overallocation factor / . A possible way
of choosing the bs would be to set bs = ms + ksy/v~s for some ks. It is not clear
yet which is the best way to handle this problem of the efficient use of capac-
ity being shared between calls with fluctuating bit-rate requirements, but as
a start we would wish to examine the feasibility of the methods suggested in
Section 3.6 with respect to sensitivity to changes in arrival patterns.
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4.2 Sharing resources between VP's

As we have noted, the models introduced in this paper are designed to
give a macroscopic description of network use when the system is in statis-
tical equilibrium. This makes them very suitable for analysis at the network
design stage, for example for dimensioning purposes. However their use also
extends to problems of network VP management when the aim is to alter
VP structure and capacities in response to changes in demand patterns and
network form, rather than to optimise capacity ultilisation on the timescale
of very short term statistical fluctuations, or to control capacity use at the
packet or burst level. An adaptive scheme based on the models of this sec-
tion would make adjustments to the VP structure and capacities as indicated
by changes in the implied cost vectors, and these adjustments would be made
gradually to ensure stability in the resulting traffic patterns. For changes on
such a time scale, equilibrium models would not be inappropriate. Opti-
mising network performance at the network design stage leads to problems
of global optimisation, while an adaptive VP management scheme would be
more concerned with local optimisation. An interesting question is whether
a local approach to optimisation via an adaptive capacity allocation scheme
would tend to move the system in the direction of the global maximum.

In this section we shall briefly indicate how the results of Section 3 could be
made the basis of an algorithm for switching capacity or bandwidth between
VP's so as to optimise network performance. The study of these and other
related optimisation problems is proceeding.

Suppose that there are C different VP's sharing the resources of a core
network. For each VP, c, (1 < c < C) we make the following assumptions.

(i) There are Sc services that share VP c, and for each service s (1 < s < Sc)
we make the same assumptions that are made in the model of Section 3.1,
with ks, Us, Os, tns and vs replaced by ksc, fiSc, Osc, msc and vsc respectively.

(ii) There is a nominal capacity Mc assigned to VP c, and an arriving call of
type s is accepted provided that a£.nc < Mc-asc, where &c = {a\c, a2C, ••-, ascc)'
andnc = (nic,/i2c,...,«scc)/-

(iii) The VP performance function Wc is a function of Xc and Mc and for
definiteness we shall assume it is of type W\; that is, it can be written as

Sc

Wc(Xc,pc\M) = ^2wscfiscE{nsc).
5=1

(iv) An overallocation factor fc can be calculated, where fc may be a func-
tion of Ac.
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We define the overall performance function W by

fc;Mc). (53)
c=\

Suppose, now, that the Xc are fixed and known, the corresponding fc are
known, and the current capacity allocations Mc are given. We may calculate
the gradient or implied cost vector e* given by e* = (e*,.. . ,e£)' , where
e* = dWc/dMc, and consider altering the vector M = (Mi,...,Me)' so as to
improve the overall performance function W subject to constraints imposed
by the actual resources available on the links of the network. In the simplest
situation, in which a single link of actual capacity D is shared between the C
VP's, these reduce to a single constraint given by

bIc=[

Mc<D. (54)
c=\

If the network consists of L links, each of actual capacity D/(l < I < L),
then the constraints are of the form

BFM < D (55)

where D = (Di,...,DL)', F = diag(£~') and B = {bk) is an L x C matrix
whose elements are given by

0 if link / is not part of VP c,
(56)

1 if link / is part of VP c.

An obvious approach to improving the value of W is to use one of the
methods used at each iteration of a global optimisation algorithm to choose
a new direction in which to move. A number of these are discussed in [11]
and [18], and include a variety of projected-gradient or reduced-gradient tech-
niques. For the single constraint (54) all these methods give easily computable
new directions. For the constraints (55), determining a new direction is com-
putationally more complex, commonly involving a matrix inversion.

4.3 Discussion
In Section 4.2 we have taken a preliminary look at the local optimisation

of the performance function W. A deeper study of the properties of W and
the nature of these optimisation problems is proceeding. The function W is
not, in general, concave so that no easy results are likely. However the linear-
ity of the constraints, the decomposability of the objective function, and its
near linearity with respect to M in Case 3, point to a number of possible ap-
proaches to both the local and global optimisation problems via duality, and
decomposition. An interesting discussion in [10], referring to the behaviour
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of an adaptive routing scheme rather than an adaptive capacity allocation
scheme, considers the behaviour of the scheme in the event that W has local
maxima other than the global maximum. By analogy with the convergence
of simulated annealing algorithms (see [12] and [13]), it is suggested that
an adaptive scheme that relies, at each stage, on estimates of current traffic
parameters to indicate optimal local changes, has inherent stochastic fluctua-
tions that might allow it to escape from the region around a nonoptimal local
maximum. It is further suggested that if the global maximum is sufficiently
greater than other maxima, the equilibrium distribution of the scheme might
assign a relatively high probability to the region around the global maximum.

Optimisation problems that arise in the context of the design and dimen-
sioning of a core B-ISDN network may involve nonlinearities in the con-
straints as well as in the objective function and the feasible region need not
be convex. Further study of such problems is required.

5. Conclusions

The model formulated in this paper gives a macroscopic description of
a B-ISDN network employing virtual path techniques. Using performance
measures that reflect both revenue and grade-of-service at the call level, im-
plied cost vectors can be calculated that quantify the effect of small changes
in network parameters that are either controllable by network management,
or liable to vary. Within this framework a number of problems can be ad-
dressed. For example the problem of optimal management of capacity can
be formulated mathematically and the implied cost vectors used to suggest
locally optimal changes. Implied cost vectors, as well as suggested capac-
ity overallocation factors, can also be used to indicate answers to questions
concerning optimal mixes of services sharing the same VP.
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