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Abstract

This article is devoted to the historical study of the ADS-problem with a special emphasis on the use
of methods and techniques, emerging with the development of the theory of rings: accessible subrings,
iterated maximal essential extensions of rings, completely normal rings. We construct new examples of
classes for which Kurosh’s chain stabilizes at any given step. We recall the old nontrivial questions, and
we pose a new one.
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1. Introduction

All rings in this paper are associative but are not required to have a unity or to be
commutative.

Let M be a homomorphically closed class of associative rings. Put M1 =M1 =

M1
l =M and for ordinals α ≥ 2, defineMα, (Mα,Mα

l ) to be the class of all associative
rings R such that every nonzero homomorphic image of R contains a nonzero ideal
(one-sided ideal, left ideal) in Mβ (Mβ, Mβ

l ) for some β < α. In this way we obtain
a chain {Mα} ({Mα}, {Mα

l }), the union of which is equal to the lower radical class l(M)
(lower strong radical class ls(M), lower left strong radical class lsl(M)) determined
byM. The chain {Mα} is called Kurosh’s chain ofM.

To denote that I is an ideal (one-sided ideal, left ideal) of a ring R, we write
I C R (I < R, I <l R). Let n be a positive integer. A subring A of R is said to be
n-accessible (one-sided n-accessible, left n-accessible) in R, if there are subrings
R = A0, A1, . . . , An−1, An = A of R, such that Ai C Ai−1 (Ai < Ai−1, Ai <l Ai−1) for i =

1, 2, . . . , n, and A is said to be precisely n-accessible (precisely one-sided n-accessible,
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precisely left n-accessible), if it is not k-accessible (one-sided k-accessible, left k-
accessible) in R for any positive integer k < n. A subring A is accessible (one-sided
accessible, left accessible) in R, if it is n-accessible (one-sided n-accessible, left n-
accessible) for some n ∈ N. It is well known [20, Theorem 1], that if A is an idempotent
accessible subring of R, then A C R.

Recall that a radical class S is called stable (left stable), if for every L < R
(L <l R), S(L) ⊆ S(R). An example of a left stable radical class is the generalized nil
radical Ng; this is the upper radical determined by the class of domains. For every
homomorphically closed class N , there exists the smallest left stable radical st(N)
containing N . Moreover,

st(N) =

{
R

∣∣∣∣∣ every nonzero homomorphic image of R
contains a nonzero left accessible subring inN

}
.

For example, Ng = st({R | R2 = 0}). Throughout the paper β denotes the prime radical.
For details of radical theory the readers are referred to [14].

Given a ring R, we denote by R0 the ring with zero-multiplication defined on the
additive group of R. A ring with zero-multiplication is called a zero ring. By Zp

we denote the field of p elements, where p is a prime. For a given element a of R,
we denote by [a] the subring of R generated by a. By {R} we denote the class of all
isomorphic images of R.

We call a ring without nontrivial zero divisors a domain. A commutative domain
with a unity is called an integral domain. Let R be an integral domain with the field of
fractions K. We say that R is a completely normal ring if for any x ∈ K and 0 , a ∈ R,
we have that [x]a ⊆ R implies x ∈ R. The following are particular examples: noetherian
integrally closed domains, unique factorization domains, Krull rings. For details of
completely normal ring the readers are referred to [11].

2. The historical outline

The problem with the stabilization of Kurosh’s chains appeared in 1966 in [22],
where it was shown that the Kurosh’s chain determined by a homomorphically closed
nonempty class of rings stabilizes on the first infinite ordinal numberω0. Moreover, the
examples of classes for which Kurosh’s chain stabilizes precisely at step 2 and 3 were
also given. It was pointed out that, ifM is a homomorphically closed class of rings,
which contains all zero rings and which is hereditary, then l(M) =M2 (Theorem 2).
Furthermore, l(M) =M2, ifM is the class of all nilpotent rings. However, ifM is the
class of all homomorphic images of Z0, the Kurosh’s chain determined byM stabilizes
precisely at step 3.

The question of a class where the Kurosh’s chain will stabilize at precisely the nth
step for n ≥ 4 was also presented. In the following this problem will be named the
ADS-problem.

The year 1968 was considerably fruitful in works concerning the Kurosh’s chain
stabilization. In [16] Hoffman and Leavitt showed that if M is a homomorphically
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closed and hereditary class of rings, then for every ordinal α, Mα is hereditary. In
particular, l(M) is a hereditary radical class.

In [7] Armendariz and Leavitt proved that if M is homomorphically closed and
hereditary, then l(M) =M3.

The first attempt to find the solution to the ADS-problem was presented by
Heinicke, who in [15] for any n ≥ 2 gave an example of a class for which the Kurosh’s
chain does not stabilize at step n − 1. In the polynomial ring of two variables Zp[x, t],
where p is a prime number, Heinicke takes into consideration subrings

An,p = [x] + Zp[x, t]xn, n = 1, 2, . . . . (2.1)

He shows that for the class M of all homomorphic images of An,p, where n ≥ 2,
we have l(M) ,Mn−1. Making use of the given result, he next forms the class
M consisting of all homomorphic images of

⊕∞

n=1 An,pn , where p1, p2, . . . is an
enumeration of the prime numbers and the An,pn are of the form (2.1). For the class
M the Kurosh’s chain stabilizes precisely at ω0. Although Heinicke’s deductions
concerning the Kurosh’s chains are very complicated and technical, the fact that they
were the first and general should be appreciated.

Q 2.1. Does Heinicke’s example give a positive solution of the ADS-problem
to natural numbers as well?

It can be shown (see Theorem 5.10(ii)) that exchanging Zp[x, t] for Zp[x] and
taking into consideration the classes of homomorphic images of An = [x2] + Zp[x]x2n

for n ≥ 2 gives the stabilization of the ring at precisely the step n + 1, and therefore,
a full solution to the ADS-problem. It is, at the same time, the easiest notation of
a class for which the Kurosh’s chain stabilizes at exactly the step n + 1. The examples
described by Heinicke overcame a formidable task because in 1968 the attainable
subring mathematics was not developed, nor iterated maximal essential extensions
of rings (see Definition 4.1). The techniques, used by Heinicke have been further
developed, led to proofs of more facts. The idea of searching the solution of the ADS-
problem in polynomial rings was pursued later by many other authors (for example,
Beidar [9]).

Stewart obtained another quite interesting result in 1974. In [21] he showed that, if
M is a nonempty homomorphically closed class of zero rings, then l(M) =M3. In [4]
the first author and Puczyłowski generalized Stewart’s result and showed that ifM is
a class of M-nilpotent rings then l(M) =M3 and l(M) is left strong. In [13] Filipowicz
and Puczyłowski showed that for a ring A, l(A) is left strong if and only if l(A) = l(N)
for a class N of zero rings.

In [17] there is another example of a class for which the Kurosh’s chain stabilizes
at step 3. Namely, l(M) =M3, if every ring A in M satisfies one of the following
conditions: A is nilpotent or A = A2 orM contains all the non-nilpotent ideals of A.

For the final solution of the ADS-problem for the chains we had to wait until 1982.
Beidar in [8] took into consideration subrings of the ring of Gaussian integers Z[i]. Let
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p be a prime number of the form p = 4k + 3,

An = [p] + Z[i]pn (2.2)

and M be the class of rings, which consists of all nilpotent rings, all homomorphic
images of the ring An and all finite commutative rings. Beidar proved that the Kurosh’s
chain of M terminates precisely at the step n + 1. An adequate magnification of the
class of homomorphic images of An facilitated the presentation of the stabilization at
the step n + 1 without disturbing the conditionMn ,Mn+1 at the same time. Although
the article contains ingenious ideas, it is very technical. In [14] you can also find
the proof of Beidar’s theorem, but it is still complicated. The techniques used in [8]
were developed in order to be used for algebras. Beidar has also written many
works among which [9], completed in 1988, should be particularly valued. In this
paper he considered the subrings An, f = f · ([xr] + K[x]xrn) of the ring K[x], where
K is a field, r ≥ 2 and f ∈ K[x] is a polynomial with zero free term. Therefore, for
some complicated classM containing An, f , l(M) is hereditary and the Kurosh’s chain
stabilizes precisely at the nth step.

In [10] Beidar defines the term iterated maximal essential extension of a ring and
points out its relation with the solution of the ADS-problem. The study of rings which
have an iterated maximal extension was undertaken in 2002 by the first author in [2].
The findings were quite interesting (see Propositions 4.2–4.4) thanks to them, the
solution to the ADS-problem has been considerably shortened and the proofs have
become more clear (see Theorem 5.1).

Another solution to the ADS-problem was given by Guo Jinyun et al. in 1987
in [17]. He took into consideration subrings An = [xn] + Zp[x]xn2

of Zp[x]. Let
K = {An, Z

0} and P be a class of rings which can homomorphically map to a subring
of the ideal xZp[x] which contains An. Therefore, for the class M =K ∪ {l(K) \ P}
we have l(M) =Mn+1 ,Mn.

The first full solution to the ADS-problem for algebras was presented in 1984
in [18] by Lvov and Sidorov. They considered a completely normal F-algebra R
such that the transcendental degree is 1. For a ∈ R such that dimF(R/Ra) ≥ 2 let the
ring An = F[a] + Ran be given. If M is a class of rings consisting of homomorphic
images of the ring An, algebraic commutative F-algebras and nilpotent F-algebras,
then l(M) =Mn ,Mn−1. Lvov and Sidorov discovered the meaning of completely
normal rings (see Proposition 4.4).

Watter’s preprint [23] should also be taken into consideration for the class that
he constructed is relatively simple. It consists of nilpotent F-algebras and algebras
isomorphic with An = xF[[x]] + K[[x]]xn, where K is a proper field extension of a field
F. The Kurosh’s chain of such class of algebras stabilizes precisely at the step n + 1.

The research of the ADS-problem for the one-sided Kurosh’s chains was initiated
by Divinsky et al. in [12]. They proved, among other things, that ifM is a nonempty
homomorphically closed hereditary class of rings and contains all zero rings then
ls(M) =Mω0 . It was also shown that for every limit ordinal α and for every class N ,
Nα is a radical class. Puczyłowski in [19] has concentrated on the left Kurosh’s chains
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and showed that for every α ≥ ω0 and every classM,Mα
l is a radical. Moreover, ifM

is a hereditary radical then lsl(M) =M2
l .

Recently, we addressed the subject of the stabilization of the one-sided Kurosh’s
chains in [6]. The level of our research can be compared to Heinicke’s results. We
have constructed a class for which the one-sided Kurosh’s chain does not stabilize at
any finite step [6, Theorem 3.6]. We have constructed a hereditary radical class for
which the one-sided Kurosh’s chain does not stabilize at step 2. In [6] we also raise
questions.

Q 2.2. Is it true that for every hereditary radical class S, ls(S) = S3?

Q 2.3. Let R be a simple domain with unity which is not a division ring.
Then there exists 0 , a ∈ R such that Ra , R. Let n be a positive integer and let
A = Ran + [a]. Let S = l({A} ∪ β). Does the Kurosh’s chain {Sα} stabilize at some
finite step?

The research on the one-sided Kurosh’s chains has been hindered by the fact that
there is no equivalent to an iterated maximal essential extension of a ring for one-sided
accessible subrings. There is a lack of methods and techniques which would facilitate
a classic research of the Kurosh’s chains.

In 1990 the first author and Puczyłowski in [4] took into consideration the one-sided
Kurosh’s chains and proved, among other things, the following theorem.

T 2.4 [4, 6]. If S is a stable radical class containing Ng then for N = S ∪ P,
where P is a homomorphically closed class of commutative rings, Nα =Nα

l =Nα

for every ordinal α, and l(N) is stable. Moreover, if N is hereditary then l(N) is
hereditary.

The ADS-problem was solved by means of Theorem 2.4 and Beidar’s example.

T 2.5 [4, Theorem 2]. If N =Ng ∪ T ∪ {An}, where T is the class of rings
with torsion additive groups and {An} is the class of all isomorphic images of An for any
n ≥ 1, where An is of the form (2.2), then N1 =N1

l (N2 =N2
l ( · · · (Nn+1 =Nn+1

l =

Nn+2 =Nn+2
l .

It is, at the same time, an answer to Question 6 from [19].
In 1997 in [5] the first author and Puczyłowski constructed new general examples

showing that the Kurosh’s construction of the lower radical can terminate at any finite
or the first infinite ordinal.

T 2.6 [5, Theorem 4.1]. Suppose that P is a commutative noetherian integrally
closed domain with unity, S is a radical class such that β ⊆ S ⊆ Ng and M = S ∪

P ∪ {A}, where P is the class of all proper homomorphic images of all accessible
subrings of P and A is a nonempty set of precisely n-accessible subrings of P. Then
Mn ,Mn+1 = l(M).

The generality facilitates clearer and more visible arguments which avoid particular
calculations, as well as the construction of radicals which satisfy some extra properties.
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3. The construction of precisely n-accessible subrings

The following proposition collects some well-known properties of the classes Nα.

P 3.1.

(i) The classes Nα are homomorphically closed for all α.
(ii) R ∈ l(N) if and only if every nonzero homomorphic image of R contains

a nonzero accessible subring in N .
(iii) R ∈ Nn+1, where n is an integer greater than 1, if and only if every nonzero

homomorphic image of R contains a nonzero n-accessible subring in N .

Let n be a positive integer and let M be a homomorphically closed class of rings
such thatMn+1 ,Mn. Then by Proposition 3.1(iii), there is a nonzero ring R ∈Mn+1

which does not contain any nonzero (n − 1)-accessible subring inM. But R contains
any nonzero n-accessible subring A ∈M. Therefore, A is a precisely n-accessible
subring of R. We can see then the first technical difficulties which arise in connection
with solving the ADS-problem.

D1. How should n-accessible subrings in a ring R be constructed?
D2. When does a precisely n-accessible subring for fixed n ∈ N exist in a ring R?
D3. Which rings does contain R for every natural number n a nonzero precisely n-

accessible subring?

In order to answer the above questions, it is relevant to obtain the most general
classes of rings and subrings.

Heinicke should be given recognition for the first relevant ideas concerning the
questions above for he had proved that subrings of the form (2.1) are precisely n-
accessible in the ring Zp[x, t]. Similar ideas then have been continued and developed
in other works. Beidar in [8] considered precisely n-accessible subrings of the ring of
Gaussian integers Z[i] of the form (2.2). It should be emphasized that the search for the
solution of the problems D1–D3 has been conducted mainly in a class of commutative
rings. It is not difficult to notice that the following proposition holds.

P 3.2. Let A be a subring of a commutative ring R. Then:

(i) A is n-accessible in R if and only if RAn ⊆ A;
(ii) A + RAn is the smallest n-accessible subring in R containing A;
(iii) A is precisely n-accessible in R if and only if RAn ⊆ A and RAn−1 * A.

Proposition 3.2 gives an answer to the question D1 in a class of commutative rings.
In addition, for A = [a] and n ∈ N we have A + RAn = [a] + Ran.

Let us recall that a ring R is filial if every accessible subring of R is an ideal of R.
Therefore, if in a ring R for each positive integer n there is a precisely n-accessible
subring, then R is not filial. The next proposition shows that in the class of integral
domains the reverse implication holds. This unexpected result has been proven by
the first author and Puczyłowski in [5]; it provides satisfactory answers to questions
D2–D3.
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P 3.3 [5]. Suppose that R is an integral domain, 0 , a ∈ R and R , [1] + Ra.
Then:

(i) if Ra ∩ [1] = 0, then [a] + Ran is a precisely n-accessible subring of R for every
n ∈ N;

(ii) if Ra ∩ [1] , 0, then Ra ∩ [1] = b[1] for some b ∈ [1] and [b] + Rbn is a precisely
n-accessible subring of R for every n ∈ N.

By [3, Proposition 2.2] and Proposition 3.3 we can easily obtain the following
proposition.

P 3.4. Suppose that R is an integral domain. The following conditions are
equivalent:

(i) R is not filial;
(ii) there is a nonzero element a ∈ R such that R , [1] + Ra;
(iii) for every n ∈ N there is a precisely n-accessible subring of R;
(iv) in every nonzero ideal of R there is a b ∈ R such that [b] + Rbn is a precisely

n-accessible subring of R for every n ∈ N.

Filial integral domains were completely classified in [3]. According to this
classification, filial integral domains are Euclidean domains, so they are principal ideal
domains. Moreover, if they are of positive characteristic, they are fields. Furthermore,
if R is a filial integral domain of characteristic zero which is not a field, then there
exists an embedding of R into the ring of p-adic integers. Applying Proposition 3.3,
one can easily find an integral domain R and a ∈ R such that [a] + Ran is a precisely
n-accessible subring of R for every n ∈ N.

E 3.5. Let R be an integral domain of positive characteristic p and let a ∈ R be
a reducible element. Then there are nonzero nonirrevertible elements x, y ∈ R such
that a = xy. By assumption on the characteristic of R, Rx ∩ [1] = 0, and hence, in
particular, Ra ∩ [1] = 0. If x ∈ [1] + Ra, then there are k ∈ [1] and r ∈ R such that
x = k + rxy. Hence k ∈ Rx ∩ [1], so k = 0. Then 1 = ry, which is a contradiction.
Therefore, R , [1] + Ra. By Proposition 3.3, [a] + Ran is a precisely n-accessible
subring of R for every n ∈ N. In particular, [x2] + Zp[x]x2n is a precisely n-accessible
subring of Zp[x] for every n ∈ N.

In [1] the first author proved the following surprising result.

T 3.6 [1, Theorem 2]. If A is a ring such that the group (A/A2)+ is not divisible
or is not torsion, then for every natural number n there is a ring R, in which A is
a precisely n-accessible subring.

4. Iterated maximal essential extensions of rings

We will discuss now another technical difficulty connected with the verification of
the stabilization of the Kurosh’s chains ofM at precisely the step n + 1. Let us notice
that then there is a ring R ∈Mn+1 with a nonzero precisely n-accessible subring A such
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that R has no nonzero (n − 1)-accessible subring in M. In particular, if B is a nonzero
subring accessible in R, and B is a homomorphic image of A, then B is not (n − 1)-
accessible in R. The first who managed to succeed in this laborious task was Heinicke
in [15]. Later, Beidar succeeded in the same task, which helped him to find a final
solution to the ADS-problem. During his deductions Beidar discovered a useful tool:
the iterated maximal essential extension of a ring.

We say that a subring A of a ring R is essential in R if, for every nonzero ideal I of
R, we have A ∩ I , 0.

D 4.1 [10, Beidar]. We say that a ring R is an iterated maximal essential
extension of a ring A and we write R = IME(A) if A is an essential accessible subring
of R and, for every ring S in which A is accessible, there exists a homomorphism of S
into R which is the identity map on A.

The next propositions give some properties of IME.

P 4.2 [2, Corollary 2.6]. Assume A is a semiprime ring for which there
exists R = IME(A). If A is n-accessible in R, then for every semiprime ring S in which
A is accessible, A is n-accessible in S .

P 4.3 [2, Proposition 3.4]. Let R be a ring such that R = IME(I) for every
nonzero ideal I of R. Let A and B be nonzero accessible isomorphic subrings of R. If
A is precisely n-accessible in R, then so is B.

P 4.4 [2, Theorem 3.2, Proposition 3.3]. If R is a nonzero commutative ring
then the following conditions are equivalent:

(i) R = IME(I) for every nonzero ideal I of R;
(ii) R = IME(A) for every nonzero accessible subring A of R;
(iii) R is a completely normal ring.

Now we prove the following proposition.

P 4.5. Let R be a ring such that R = IME(I) for every nonzero ideal I of R.
Then the following conditions are equivalent:

(i) if f : A→ B is a surjective homomorphism of nonzero accessible subrings of R,
then f is an isomorphism;

(ii) if f : A→ B is a surjective homomorphism of nonzero ideals of R, then f is an
isomorphism;

(iii) if 0 , I C R and g : R→ R is a homomorphism such that Ker g , 0, then I * g(R).

P. By assumption, R = IME(I) for every nonzero ideal I of R. By [2, Theorem
3.1], R is prime and every nonzero accessible subring of R is an essential subring of R.
Moreover R = IME(A) for every nonzero accessible subring A of R.

(i)⇒ (ii). Obvious.
(ii)⇒ (iii). Let g : R→ R be a homomorphism of rings such that Ker g , 0. Assume

that there exists a nonzero ideal I of R such that I ⊆ g(R). Then I C g(R), and thus there

https://doi.org/10.1017/S1446788713000268 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000268


[9] Accessible subrings and Kurosh’s chains of associative rings 153

exists J C R such that g(J) = I. But I , 0, so J * Ker(g). Moreover, J ∩ Ker(g) , 0,
then taking A = J, B = I and f = g|J , we obtain a contradiction.

(iii) ⇒ (i). Suppose there are nonzero accessible subrings A and B of R and
there is a surjective homomorphism of rings f : A→ B, which is not an isomorphism.
Then Ker( f ) , 0. Moreover, each nonzero accessible subring of R is a prime ring.
There exists m ∈ N such that Am

R ⊆ A and Am
R * Ker( f ). Otherwise, (A/ Ker( f ))m = 0,

which contradicts the primeness of A/ Ker( f ) � B. Next, Am
R C R, so Am

R C A, whence
f (Am

R ) C B. Therefore, f (Am
R ) is a nonzero accessible subring of R and Am

R ∩ Ker( f ) ,
0. We can therefore assume A C R. Then Ker( f ) C A C R and A/ Ker( f ) is semiprime,
so Ker( f ) C R. Hence B � A/ Ker( f ) C R/ Ker( f ). Thus there exists an isomorphism
of rings h : A/ Ker( f )→ B. But R = IME(B), so there exists a homomorphism
ϕ : R/ Ker( f )→ R such that ϕ(a + Ker( f )) = h(a + Ker( f )) for a ∈ A. Let π : R→
R/ Ker( f ) be the natural surjective homomorphism of rings and let g = ϕ ◦ π. Then g
is an endomorphism of R and Ker( f ) ⊆ Ker(g), and therefore Ker(g) , 0 and B ⊆ g(R).
But Bn

R ⊆ B for some n ∈ N, so g(R) contains a nonzero ideal of R, which is a
contradiction. �

Q 4.6. If the ring R from Proposition 4.4 is a completely normal ring, can the
condition (iii) be simplified ?

Q 4.7. If the ring R from Proposition 4.4 is completely normal, is (ii) equivalent
to the condition

(iv) Every surjective endomorphism f : R→ R is an automorphism of R?

Examples of rings R that satisfy the condition (i) of Proposition 4.5:

(i) integral domains R such that R+ is torsion-free and (R/I)+ is torsion for every
0 , I C R (see [8]);

(ii) commutative domains R such that R/I is nilpotent for every 0 , I C R (see [23]);
(iii) noetherian integrally closed domains (see [5]);
(iv) integral domains R with K , R the field of fractions of positive characteristic p

such that the transcendence degree is 1 (F = Z/(p)) (see [18]).

5. Main results

T 5.1. Suppose that P is a nonfilial completely normal ring such that if f : A→
B is a surjective homomorphism of nonzero accessible subrings of P, then f is an
isomorphism; P is the class of all proper homomorphic images of all accessible
subrings of P and S = st(P ∪ {R|R2 = 0}). Then, for every n ∈ N the set P(n) of all
precisely n-accessible subrings of P is nonempty. Moreover, if ∅ ,A(n) ⊆ P(n) and
N(n) = S ∪ {A(n)}, thenN(n)n =N(n)n ,N(n)n+1 =N(n)n+1 = l(N(n)) = ls(N(n)) =

st(N(n)). IfA(n) = P(n), then the radical class l(N(n)) is hereditary.

P. Applying Proposition 3.3, we get that P(n) , ∅ for every n ∈ N. By
Proposition 4.4, P = IME(A) for every nonzero accessible subring A of P. Moreover,
by Theorem 2.4, N(n)α =N(n)α for every ordinal α, and l(N(n)) is left stable.
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Clearly, every nonzero homomorphic image of P contains a nonzero accessible
subring in N(n). Hence, P ∈ l(N(n)). By the assumptions and Proposition 4.5,
S(P) = 0 and by Proposition 4.3, no nonzero (n − 1)-accessible subrings of P is in
{A(n)}. Consequently, P ∈ l(N(n)) \ N(n)n.

We show that l(N(n)) =N(n)n+1 or, equivalently, that every nonzero ring R ∈
l(N(n)) contains a nonzero n-accessible subring in N(n). This is obvious if S(R) , 0.
Assume that S(R) = 0. Then R is semiprime. Since R ∈ l(N(n)), R contains a nonzero
accessible subring D ∈ N(n). Obviously, D < S. Therefore, D ∈ {A(n)}, and by
Proposition 4.2, D is a n-accessible subring of R.

Finally, supposeA(n) = P(n). LetA be the class of all homomorphic images of all
accessible subrings of P. Then, by Theorem 2.4 the radical class T = st(A∪ {R|R2 =

0}) is hereditary. We show that l(N(n)) = T for every n ∈ N. It suffices to show that
every nonzero accessible subring D of P is in l(N(n)). By Proposition 3.2, there is
a positive integer m such that PDm ⊆ D. Since P is nonfilial, there is 0 , a ∈ P such
that P , [1] + Pa. Let 0 , s ∈ D. Then 0 , b = asm ∈ D ∩ Pa. Since P , [1] + Pa,
P , [1] + Pb. Hence, by Proposition 3.3, there is c ∈ Pb, such that C = [c] + Pcn ∈

A(n). Obviously, Pc ⊆ D, so C ⊆ D. Hence, 0 ,C ⊆ (l(N(n)))(D). Every proper
homomorphic image of D is in P, so D/(l(N(n)))(D) ∈ P. Consequently, D ∈ l(N(n)).
The result follows. �

T 5.2. Let R be a ring such that R = IME(J) for every nonzero J C R.
Moreover, let for all nonzero ideals B and C of R, every surjective homomorphism
f : B→C be an isomorphism. LetS be the lower radical determined by the class of all
zero-rings and the class of all proper homomorphic images of all nonzero accessible
subrings of R. LetA be a nonempty family of precisely n-accessible subrings of R for
some n ∈ N andM = {A} ∪ S. Then l(M) =Mn+1 and R ∈ l(M) \Mn.

P. By assumption, every proper homomorphic image of R is in M and by [2,
Theorem 3.1], R is prime. Moreover, the family A is nonempty, so in R there is
a nonzero n-accessible subring, which is inM. Thus R ∈Mn+1, and hence R ∈ l(M).

Suppose R ∈Mn. By assumption, S(R) = 0. Therefore, there is a nonzero subring
D, which is (n − 1)-accessible in R and D ' A for some A ∈ A. But by Proposition 4.4,
R = IME(T ) for every nonzero accessible subring T of R, so by Proposition 4.3, A is
an (n − 1)-accessible subring of R, which is a contradiction. Therefore, R <Mn.

It remains to show that every nonzero ring P ∈ l(M) has a nonzero n-accessible
subring inM. This is clear if S(P) , 0. Therefore, let S(P) = 0. Then β(P) = 0. Since
P ∈ l(M), there is a nonzero accessible subring D ∈M of P. But S(P) = 0, so D ' A
for some A ∈ A. Then by Proposition 4.2, D is n-accessible in P. �

Q 5.3. Does a noncommutative ring satisfying the assumptions of Theorem 5.2
exist?

T 5.4. Let A be a semiprime ring such that pA = 0 for some prime number p
and let A be a precisely n-accessible subring of a ring R for some positive integer
n ≥ 2, and R = IME(A). If A has no semiprime proper homomorphic image, or every
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proper semiprime homomorphic image of A is idempotent, and ifM is the class of all
homomorphic images of A, then l(M) =Mn+1.

P. Let A = A2. The subring A is accessible in R, whence A C R, which contradicts
n ≥ 2. Therefore, A , A2 and A/A2 , 0. But pA = 0, and thus A/A2 is a nonzero Zp-
algebra with zero-multiplication. So A/A2 can be homomorphically mapped on Z0

p.
Hence Z0

p ∈M. Let Tp be the class of all rings such that their additive group is a p-
group. Then Tp is a radical class and A ∈ Tp, so l(M) ⊆ Tp. It remains to show that
every nonzero ring S ∈ l(M) has a nonzero n-accessible subring in M. If β(S ) , 0,
then there is a nonzero ideal I of S such that I2 = 0. But I+ is a p-group, because
S ∈ Tp, therefore, there is a nonzero c ∈ I such that pc = 0. Then [c] ' Z0

p, whence
[c] ∈M and [c] C I C S . But n ≥ 2, so [c] is an n-accessible subring of S . Now
let β(S ) = 0. Since S ∈ l(M), there is a nonzero subring D ∈M accessible in S . If
D ' A, then by Proposition 4.2, D is n-accessible in S . Suppose that D is a proper
homomorphic image of A. Since D is an accessible subring of the semiprime ring S ,
it follows that D is a semiprime ring. Thus, by assumptions D = D2, and hence D C S ,
so D is an n-accessible subring of S . �

Q 5.5. Does a noncommutative ring satisfying the assumptions of Theorem 5.4
exist?

In [6, 19] some questions, which were recalled during the workshop Radicals of
Rings and Related Topics [24], are still open for discussion. They can be formulated
as the following questions.

Q 5.6. Is for every class N , lsN =Nω0 ?

Q 5.7. Does, for every natural number n, a radical class N exist such that
lsN =Nn+1 ,Nn?

Q 5.8. Does a radical classN exist such that lsN =Nω0 ,Nn for every natural
number n?

Q 5.9. Does a radical class N exist such that lsN ,Nα for every ordinal α?

T 5.10. For every positive integer n there is a ring A such that the classM of
all homomorphic images of A satisfies the condition l(M) =Mn+1 ,Mn. Namely:
(i) for n = 1, A is a nonzero idempotent ring;
(ii) for n ≥ 2, A = [x2] + Zp[x]x2n, where p is a prime number.

P. (i) By assumption, every ring in M is idempotent. Let us take any R ∈ l(M)
and let R′ be a nonzero homomorphic image of R. Then by Proposition 3.1(ii), there
is a nonzero B ∈M such that B is an accessible subring of R′. But B = B2, so B C R′.
Hence R ∈M2. Moreover, for any cardinal number α > |A|, a ring P, which is a direct
sum of α copies of A, has cardinality greater than that of A, so P is not in M but
P ∈ l(M).
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(ii) Let n ≥ 2 and let p be a prime number. Since Zp[x] is a completely normal
ring, by [2, Proposition 2.18], Zp[x] = IME(T ) for every nonzero accessible subring
T of Zp[x]. By Example 3.5, the subring A = [x2] + Zp[x]x2n is precisely n-accessible
in Zp[x]. Let φ : Zp[x]→ Zp be given by the formula φ(w) = w(1). Obviously, φ is
a surjective homomorphism of rings. But φ(x2) = 1, so φ(A) = Zp. Hence Zp ∈M.
Moreover, J = x2[x2] + Zp[x]x2n C A and A/J ' Z0

p, so consequently Z0
p ∈M. Further,

x2Zp[x] is an ideal of Zp[x] generated by A, so by [22, Lemma 2], x2Zp[x] ∈ l(M). But
xZp[x]/x2Zp[x] ' Z0

p, and therefore, xZp[x] ∈ l(M). Moreover, Zp[x]/xZp[x] ' Zp,
from where Zp[x] ∈ l(M). But Zp[x] is a noetherian ring, so by [5, Corollary 3.7] for
all nonzero accessible subrings B and C of Zp[x] every homomorphism of B onto C is
an isomorphism. Therefore, by Theorem 5.2, Zp[x] <Mn. It is easy to see that every
proper homomorphic image of A is a finite ring, because it is a homomorphic image of
a ring of the form A/I for some nonzero ideal I of Zp[x]. But every finite semiprime
ring is idempotent, so by Theorem 5.4, l(M) =Mn+1. �
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