GENERATING REFLECTIONS FOR $U(2, p^{2n})$. II, p=2

D. W. Crowe

(received October 17, 1963)

1. Introduction. It is known [4] that the finite twodimensional unitary group $U(2, p^{2n})$ is generated by two reflections if $p \neq 2$. The present note completes that result by giving two generating reflections for $U(2, 2^{2n})$, n > 1. As in [4] this implies that the points of the "unit circle" xx + yy = 1 in the unitary plane over $GF(2^{2n})$, n > 1, are the vertices of a "regular unitary polygon" whose group of automorphisms is $U(2, 2^{2n})$.

The final section gives abstract definitions for the particular groups $U(2,2^4)$ and $U(2,5^2)$ in terms of their generating reflections.

The terminology is that of [4].

2. The generating reflections. As in [4] we write $q = 2^{n}$ and put $\delta = \lambda^{q-1}$, where λ is a generator of the multiplicative group $GF*(q^{2})$ of $GF(q^{2})$. For each $x \in GF(q^{2})$, $\overline{x} = x^{q}$ by definition, so that $\delta \overline{\delta} = 1$. An element r of $GF(q^{2})$ is called real if $r = \overline{r}$. The real elements constitute a subfield GF(q) of $GF(q^{2})$. Since there are q real elements in $GF(q^{2})$ there are q^{2} distinct elements of the form $a + b\delta$, a, b real. Thus each element $x \in GF(q^{2})$ has a unique representation $x = a + b\delta$, where a and b are real. In fact, by considering $x + \overline{x}$ and $x\overline{\delta} + x\delta$ it is found that

Canad. Math. Bull. vol. 7, no. 2, April 1964

a =
$$(x\overline{\delta} + \overline{x}\delta) (\delta + \overline{\delta})^{-1}$$

b = $(x + \overline{x}) (\delta + \overline{\delta})^{-1}$.

By analogy with [4] we hope to find two generating unitary reflections $R = \begin{pmatrix} x & y \\ \overline{y}\delta & \overline{x}\delta \end{pmatrix}$ and $S = \begin{pmatrix} 1 & 0 \\ 0 & \delta \end{pmatrix}$ each having characteristic roots $1, \delta$. In particular $x + \overline{x}\delta = 1 + \delta$. If $x = a + b\delta$ this reduces to $(a + b)(1 + \delta) = 1 + \delta$; hence a + b = 1. That is, the solutions to $x + \overline{x}\delta = 1 + \delta$ are all of the form $a + (a+1)\delta$, where a is real. The only choice of y which satisfies $x\overline{x} + y\overline{y} = 1$ (so that R is unitary) and gives powers of R analogous to those of [4] is $y = c + c\delta$, where $c = a + \sqrt{a}$.

(In fact, to prove this one needs only to consider R^2 .) It is readily verified by induction that for such a choice of x and y,

$$\mathbf{R}^{\mathbf{k}} = \begin{pmatrix} \mathbf{x}_{\mathbf{k}} & \mathbf{y}_{\mathbf{k}} \\ \mathbf{y}_{\mathbf{k}} & \mathbf{u}_{\mathbf{k}} \end{pmatrix},$$

where $x_k = a + (a+1)\delta^k$, $y_k = c + c\delta^k$, and $u_k = a + 1 + a\delta^k$. (k = 1,...,q+1).

The symmetry of R suggests that a suitable choice of m may make the diagonal entries x_1 and $u_1 \delta^{2m}$ of $S^m R S^m$ equal, and hence make $(S^m R S^m)^2$ scalar. Equating these, and solving for a, yields

a =
$$(\delta + \delta^{2m}) (1 + \delta + \delta^{2m} + \delta^{2m+1})^{-1}$$
,

which is always real. Then $(S^{m} R S^{m})^{2} = \delta^{2m+1} I$. We also take 2m+1 relatively prime to q + 1 (e.g., $2m \equiv 3 \pmod{q+1}$) if n > 1). This guarantees that $(S^{m} R S^{m})^{2}$ generates the centre (i.e., the cyclic group of scalar matrices $\delta^{i}I$, $i = 1, \ldots, q+1$) of $U(2, q^{2})$. We write $P = S^{-(2m+1)}(S^{m} R S^{m})^{2}$.

We proceed to verify that with this choice of m (and hence a) the group $G = \{R, S\}$ generated by R and S has order $|G| > q(q^2 - 1)(q + 1)/2$. That is, the order of the subgroup G of $U(2,q^2)$ is greater than half the known order of $U(2,q^2)$, so that $G \cong U(2,q^2)$. It is sufficient to verify that the matrices in G have more than $q(q^2 - 1)/2$ distinct first rows, since left multiplication by powers of S yields q + 1 different matrices for each first row.

In fact, there are $q(q+1)^2/2$ distinct first rows in the matrices $R^k P^i S^j$ (k = 1,...,q/2; i, j=1,...,q+1). For if two first entries of $R^k P^i$ are equal, say $x_k \delta^i = x_r \delta^s$, we have, on multiplying each side by its conjugate and simplifying, $\delta^k + \overline{\delta}^k = \delta^r + \overline{\delta}^r$. This can be written $(\delta^{k+r} + 1)(\delta^k + \delta^r) = 0$. But $\delta^{k+r} \neq 1$ in the range considered, hence k = r. Thus there are q(q+1)/2 different first entries in rows of $R^k P^i$. Since in $R^k P^i S^j$ each first row has its second (non-zero) entry multiplied by the q + 1 powers of δ we have the required result. It is summarized in the

THEOREM. The group $U(2,q^2)(q=2^n,n>1)$ is generated by the two (unitary) reflections

$$R = \begin{pmatrix} a + (a+1)\delta & c + c\delta \\ & & \\ c + c\delta & a + 1 + a\delta \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 0 \\ & \\ 0 & \delta \end{pmatrix}.$$

Here $\delta = \lambda^{q-1}$, $a = (\delta + \delta^{2m})(1 + \delta + \delta^{2m} + \delta^{2m+1})^{-1}$ (where $2m \equiv 3 \mod q+1$), and $c = a + \sqrt{a}$.

We note that $U(2,2^2)$ is <u>not</u> generated by unitary reflections, for the only reflections are diagonal matrices, which generate a group of order 9, while $U(2,2^2)$ has order 18.

3. Defining relations for $U(2,2^4)$ and $U(2,5^2)$. i) $U(2,2^4)$. Taking m = 1, so that $2m + 1 \equiv 3 \pmod{2^2 + 1}$, we have $a = \lambda^5$, where λ generates $GF*(2^4)$ and satisfies

215

 $\lambda^4 \equiv \lambda + 1 \pmod{2}$. (It is convenient to use the table on p. 160 of [1].) Then

$$R = \begin{pmatrix} \lambda^7 & \lambda^{14} \\ \lambda^{14} & \lambda \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 0 \\ 0 & \lambda^3 \end{pmatrix}$$

generate U(2,2⁴), of order 300. They satisfy

(1)
$$R^2 = I$$
, $RSR = SRS$.

This is an abstract definition [2, p.96] of the group 5[3]5, of order 600, in which $(RS)^{30} = I$ and $(RS)^{15} \neq I$. However, in our group $(RS)^3 = (RSR)(SRS) = (SRS)^2$ is scalar, of period $5 = 2^2 + 1$, so that $(RS)^{15} = I$. Since

(2)
$$R^5 = (RS)^{15} = I$$
, $RSR = SRS$

defines a group of order less than 600 it must define $U(2,2^4)$.

ii) $U(2,5^2)$. The group $U(2,5^2)$ of order 720 is generated by [4, p.501]

$$\mathbf{R} = \frac{1}{2} \begin{pmatrix} \mathbf{1} + \delta & \mathbf{1} - \delta \\ \mathbf{1} - \delta & \mathbf{1} + \delta \end{pmatrix}, \quad \mathbf{S} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \delta \end{pmatrix}.$$

If we take $\delta = \lambda^4$, where λ satisfies $\lambda^2 \equiv 2\lambda + 2 \pmod{5}$ [1, p. 159] then

$$R = \begin{pmatrix} \lambda^{23} & \lambda^{2} \\ \lambda^{2} & \lambda^{23} \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 0 \\ 0 & \lambda^{4} \end{pmatrix}.$$

These satisfy

(3)
$$R^{6} = I, \quad R^{2}S^{2}R^{2}S^{2}R^{2} = S^{2}R^{2}S^{2}R^{2}S^{2}$$

and

(4) RS =
$$S^2 R^{-2} S^{-2} R^2 (S^2 R^2)^{-10}$$

216

To show that (3) and (4) together constitute an abstract definition of $U(2,5^2)$ we note that the subgroup $\{T,U\}$ generated by $T = R^2$, $U = S^2$ is of order < 360, since $T^3 = I$, TUTUT = UTUTU is an abstract definition of the group 3[5]3 of order 360 of automorphisms of a regular complex polygon (see [2], [4]). Enumeration of the (two) cosets [3, p. 12] of $\{T,U\}$ in the group defined by (3) and (4) shows that the latter group has order < 720. Hence it is exactly $U(2,5^2)$.

REFERENCES

- A.A. Albert, Fundamental concepts of higher algebra, Chicago, 1956.
- 2. H.S.M. Coxeter, The symmetry groups of the regular complex polygons, Arch. der Math. 13 (1962), 86-97.
- H.S.M. Coxeter and W.O.J. Moser, Generators and relations for discrete groups, Berlin-Gottingen-Heidelberg, 1957.
- 4. D. W. Crowe, Generating reflections for U(2, p²ⁿ), Proc. Amer. Math. Soc. 13 (1962), 500-502.
- G.C. Shephard, Regular complex polytopes, Proc. Lond. Math. Soc. (3) 2 (1952), 82-97.

This paper was prepared while the author was supported, in part, by N.S.F. Contract 86-5036.