GENERATING REFLECTIONS FOR $U\left(2, p^{2 n}\right)$. II, $p=2$
D. W. Crowe
(received October 17, 1963)

1. Introduction. It is known [4] that the finite twodimensional unitary group $U\left(2, p^{2 n}\right)$ is generated by two reflections if $p \neq 2$. The present note completes that result by giving two generating reflections for $U\left(2,2^{2 n}\right), n>1$. As in [4] this implies that the points of the "unit circle" $\bar{x} \bar{x}+y \bar{y}=1$ in the unitary plane over $G F\left(2^{2 n}\right), n>1$, are the vertices of a "regular unitary polygon" whose group of automorphisms is $\mathrm{U}\left(2,2^{2 \mathrm{n}}\right)$.

The final section gives abstract definitions for the particular groups $U\left(2,2^{4}\right)$ and $U\left(2,5^{2}\right)$ in terms of their generating reflections.

The terminology is that of [4].
2. The generating reflections. As in [4] we write $\mathrm{q}=2^{\mathrm{n}}$ and put $\delta=\lambda^{\mathrm{q}-1}$, where λ is a generator of the multiplicative group $G F *\left(q^{2}\right)$ of $G F\left(q^{2}\right)$. For each $x \in G F\left(q^{2}\right), \bar{x}=x^{q}$ by definition, so that $\delta \bar{\delta}=1$. An element r of $G F\left(q^{2}\right)$ is called real if $r=\bar{r}$. The real elements constitute a subfield $G F(q)$ of $G F\left(q^{2}\right)$. Since there are q real elements in $G F\left(q^{2}\right)$ there are q^{2} distinct elements of the form $a+b \delta, a, b$ real. Thus each element $x \in G F\left(q^{2}\right)$ has a unique representation $x=a+b \delta$, where a and b are real. In fact, by considering $x+\bar{x}$ and $\bar{x} \bar{\delta}+\bar{x} \delta$ it is found that

Canad. Math. Bull. vol. 7, no. 2, April 1964

$$
\begin{aligned}
& a=(\bar{x} \bar{\delta}+\bar{x} \delta)\left(\delta+\bar{\delta}^{-1}\right. \\
& b=(x+\bar{x})\left(\delta+\bar{\delta}^{-1}\right.
\end{aligned}
$$

By analogy with [4] we hope to find two generating unitary reflections $R=\left(\begin{array}{ll}x & y \\ y \\ y & x\end{array}\right)$ and $S=\left(\begin{array}{ll}1 & 0 \\ 0 & \delta\end{array}\right)$ each having characteristic roots $1, \delta$. In particular $x+\bar{x} \delta=1+\delta$. If $x=a+b \delta$ this reduces to $(a+b)(1+\delta)=1+\delta$; hence $a+b=1$. That is, the solutions to $x+\bar{x} \delta=1+\delta$ are all of the form $a+(a+1) \delta$, where a is real. The only choice of y which satisfies $\bar{x} \bar{x}+y \bar{y}=1$ (so that R is unitary) and gives powers of R analogous to those of [4] is $y=c+c \delta$, where $c=a+\sqrt{a}$. (In fact, to prove this one needs only to consider R^{2}.) It is readily verified by induction that for such a choice of x and y,

$$
R^{k}=\left(\begin{array}{cc}
x_{k} & y_{k} \\
y_{k} & u_{k}
\end{array}\right)
$$

where $x_{k}=a+(a+1) \delta^{k}, \quad y_{k}=c+c \delta^{k}$, and $u_{k}=a+1+a \delta^{k}$. ($k=1, \ldots, q+1$).

The symmetry of R suggests that a suitable choice of m may make the diagonal entries x_{1} and $u_{1} \delta^{2 m}$ of $S^{m} R S^{m}$ equal, and hence make $\left(S^{m} R S^{m}\right)^{2}$ scalar. Equating the se, and solving for a, yields

$$
a=\left(\delta+\delta^{2 m}\right)\left(1+\delta+\delta^{2 m}+\delta^{2 m+1}\right)^{-1}
$$

which is always real. Then $\left(S^{\mathrm{m}} \mathrm{R} \mathrm{S} \mathrm{S}^{\mathrm{m}}\right)^{2}=\delta^{2 \mathrm{~m}+1} \mathrm{I}$. We also take $2 \mathrm{~m}+1$ relatively prime to $\mathrm{q}+1$ (e.g., $2 \mathrm{~m} \equiv 3(\bmod q+1)$ if $n>1)$. This guarantees that $\left(S^{m} R S^{m}\right)^{2}$ generates the centre (i.e., the cyclic group of scalar matrices $\left.\delta^{i} I, i=1, \ldots, q+1\right)$ of $U\left(2, q^{2}\right)$. We write $P=S^{-(2 m+1)}\left(S^{m} R S^{m}\right)^{2}$.

We proceed to verify that with this choice of m (and hence a) the group $G=\{R, S\}$ generated by R and S has order
$|G|>q\left(q^{2}-1\right)(q+1) / 2$. That is, the order of the subgroup G of $U\left(2, q^{2}\right)$ is greater than half the known order of $U\left(2, q^{2}\right)$, so that $G \cong U\left(2, q^{2}\right)$. It is sufficient to verify that the matrices in G have more than $q\left(q^{2}-1\right) / 2$ distinct first rows, since left multiplication by powers of S yields $q+1$ different matrices for each first row.

In fact, there are $q(q+1)^{2} / 2$ distinct first rows in the matrices $R^{k} P^{i} S^{j}(k=1, \ldots, q / 2 ; i, j=1, \ldots, q+1)$. For if two first entries of $R^{k} P^{i}$ are equal, say $x_{k} \delta^{i}=x_{r} \delta^{s}$, we have, on multiplying each side by its conjugate and simplifying, $\delta^{k}+\bar{\delta}^{k}=\delta^{r}+\bar{\delta}^{r}$. This can be written $\left(\delta^{k+r}+1\right)\left(\delta^{k}+\delta^{r}\right)=0$. But $\delta^{k+r} \neq 1$ in the range considered, hence $k=r$. Thus there are $q(q+1) / 2$ different first entries in rows of $R^{k} P^{i}$. Since in $R^{k} P^{i} S^{j}$ each first row has its second (non-zero) entry multiplied by the $q+1$ powers of δ we have the required result. It is summarized in the

THEOREM. The group $\mathrm{U}\left(2, \mathrm{q}^{2}\right)\left(\mathrm{q}=2^{\mathrm{n}}, \mathrm{n}>1\right)$ is generated by the two (unitary) reflections

$$
R=\left(\begin{array}{ll}
a+(a+1) \delta & c+c \delta \\
c+c \delta & a+1+a \delta
\end{array}\right), \quad S=\left(\begin{array}{ll}
1 & 0 \\
0 & \delta
\end{array}\right) .
$$

Here $\delta=\lambda^{q-1}, \quad a=\left(\delta+\delta^{2 m}\right)\left(1+\delta+\delta^{2 m}+\delta^{2 m+1}\right)^{-1}$ (where $2 \mathrm{~m} \equiv 3 \bmod \mathrm{q}+1$), and $\mathrm{c}=\mathrm{a}+\sqrt{\mathrm{a}}$.

We note that $U\left(2,2^{2}\right)$ is not generated by unitary reflections, for the only reflections are diagonal matrices, which generate a group of order 9 , while $U\left(2,2^{2}\right)$ has order 18 .
3. Defining relations for $U\left(2,2^{4}\right)$ and $U\left(2,5^{2}\right)$.
i) $\mathrm{U}\left(2,2^{4}\right)$. Taking $\mathrm{m}=1$, so that $2 \mathrm{~m}+1 \equiv 3\left(\bmod 2^{2}+1\right)$, we have $a=\lambda^{5}$, where λ generates $G F *\left(2^{4}\right)$ and satisfies
$\lambda^{4} \equiv \lambda+1(\bmod 2) . \quad$ (It is convenient to use the table on p .160 of [1].) Then

$$
R=\left(\begin{array}{ll}
\lambda^{7} & \lambda^{14} \\
\lambda^{14} & \lambda
\end{array}\right), \quad S=\left(\begin{array}{ll}
1 & 0 \\
0 & \lambda^{3}
\end{array}\right)
$$

generate $U\left(2,2^{4}\right)$, of order 300. They satisfy

$$
\begin{equation*}
R^{5}=I, \quad R S R=S R S \tag{1}
\end{equation*}
$$

This is an abstract definition [2, p. 96] of the group 5[3]5, of order 600 , in which $(R S)^{30}=I$ and $(R S)^{15} \neq I$. However, in our group $(R S)^{3}=(R S R)(S R S)=(S R S)^{2}$ is scalar, of period $5=2^{2}+1$, so that $(R S)^{15}=I$. Since

$$
\begin{equation*}
R^{5}=(R S)^{15}=I, \quad R S R=S R S \tag{2}
\end{equation*}
$$

defines a group of order less than 600 it must define $U\left(2,2^{4}\right)$.
ii) $U\left(2,5^{2}\right)$. The group $U\left(2,5^{2}\right)$ of order 720 is generated by [4, p. 501]

$$
R=\frac{1}{2}\left(\begin{array}{ll}
1+\delta & 1-\delta \\
1-\delta & 1+\delta
\end{array}\right), \quad S=\left(\begin{array}{ll}
1 & 0 \\
0 & \delta
\end{array}\right) .
$$

If we take $\delta=\lambda^{4}$, where λ satisfies $\lambda^{2} \equiv 2 \lambda+2(\bmod 5)$ [1, p. 159] then

$$
R=\left(\begin{array}{ll}
\lambda^{23} & \lambda^{2} \\
\lambda^{2} & \lambda^{23}
\end{array}\right), \quad S=\left(\begin{array}{ll}
1 & 0 \\
0 & \lambda^{4}
\end{array}\right)
$$

These satisfy

$$
\begin{equation*}
R^{6}=I, \quad R^{2} S^{2} R^{2} S^{2} R^{2}=S^{2} R^{2} S^{2} R^{2} S^{2} \tag{3}
\end{equation*}
$$

and
(4)

$$
R S=S^{2} R^{-2} S^{-2} R^{2}\left(S^{2} R^{2}\right)^{-10}
$$

To show that (3) and (4) together constitute an abstract definition of $U\left(2,5^{2}\right)$ we note that the subgroup $\{T, U\}$ generated by $T=R^{2}, U=S^{2}$ is of order ≤ 360, since $T^{3}=I$, TUTUT = UTUTU is an abstract definition of the group 3[5]3 of order 360 of automorphisms of a regular complex polygon (see [2], [4]). Enumeration of the (two) cosets [3, p. 12] of $\{T, U\}$ in the group defined by (3) and (4) shows that the latter group has order ≤ 720. Hence it is exactly $U\left(2,5^{2}\right)$.

REFERENCES

1. A.A. Albert, Fundamental concepts of higher algebra, Chicago, 1956.
2. H.S. M. Coxeter, The symmetry groups of the regular complex polygons, Arch. der Math. 13 (1962), 86-97.
3. H.S.M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, Berlin-GottingenHeidelberg, 1957.
4. D. W. Crowe, Generating reflections for $\mathrm{U}\left(2, \mathrm{p}^{2 \mathrm{n}}\right)$, Proc. Amer. Math. Soc. 13 (1962), 500-502.
5. G. C. Shephard, Regular complex polytopes, Proc. Lond. Math. Soc. (3) 2 (1952), 82-97.

This paper was prepared while the author was supported, in part, by N. S. F. Contract 86-5036.

