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Abstract. We consider diffeomorphisms of surfaces leaving invariant an ergodic
Borel probability measure /i. Define HD (/it) to be the infimum of Hausdorff
dimension of sets having full /n-measure. We prove a formula relating HD (JU) to
the entropy and Lyapunov exponents of the map. Other classical notions of
fractional dimension such as capacity and Renyi dimension are discussed. They are
shown to be equal to Hausdorff dimension in the present context.

Hausdorff dimension was introduced in 1919. It is a notion of size, useful for
distinguishing between sets of Lebesgue measure zero. This is particularly relevant
in the study of non-conservative dynamical systems where many interesting invariant
sets are null in the sense of Lebesgue. Entropy was defined by Kolmogorov in the
1950's [11]. If / is a transformation preserving a probability measure n, then the
/x-entropy of /, denoted /tM(/), measures the asymptotic growth in information
through iterating /. In the context of smooth dynamical systems, h^{f) is related
to the rate at which points are being dispersed. The concept of Lyapunov exponents,
as we use the term here, is due to Oseledec and came later in the 60's [16]. If / is
a differentiable map of a manifold into itself, these numbers describe the asymptotic
behaviour of the derivative of /. When / is smooth enough, they dominate the local
behaviour of the system.

All three of these invariants have been studied a great deal. Connections between
entropy and dimension for specific examples have been observed long ago by many
people. (See, for instance, Billingsley's book [2].) The inequality of Margulis and
Ruelle [19] and the formula of Pesin [17] highlight the connection between entropy
and Lyapunov exponents. More recently, the work of Douady and Oesterle [6]
and the conjectures of Yorke [8], [9] led to a search for the relations between the
dimension of attractors and the exponents of the map.

In this paper we show that a natural relation exists between these three invariants
if entropy and Hausdorff. dimension are looked at from a certain perspective. This
relation holds very generally for all diffeomorphisms of surfaces and could perhaps
be extended to mappings of higher dimensional manifolds. If /t is a probability
measure on a metric space, let HD (/*) denote the Hausdorff dimension of the
'smallest' set of full measure. We state our main result here, leaving precise
definitions for later.
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110 Lai-Sang Young

MAIN THEOREM. Let f: M±* be a C2 diffeomorphism of a compact surface M and
let IJL be an ergodic Borel probability measure with exponents Ai 2: A2. Then

whenever the right side of this equation is not 0/0.
In § 1 we motivate this formula with some examples. § 2 is devoted to background
material and § 3 to the proof of the main result. In § 4 we discuss other notions of
dimension such as capacity and Renyi dimension and show their equivalence under
the same hypotheses. § 5 consists of corollaries and remarks.

This work was partially inspired by the papers of Manning [14] and Mane [13].
I am grateful to F. Ledrappier and J. Yorke for constantly sharing their insight
with me. Thanks are also due to A. Katok for helpful conversations.

1. Examples
Throughout the paper we use HD (X) to denote the Hausdorf! dimension of the
setX.

A. Dyadic expansions
For x e [0,1], let x = 0 • X1X2X3 • • • be the dyadic expansion of x. Fix 0<p < 1
and let

,l]: lim-Vx,=p].

Besicovitch [1] and Eggleston [7] proved several decades ago that

HD(X) = ^ ~ [ - p l o g p - ( l - p ) l o g ( l - p ) ] .

We rephrase this result slightly. Let / : [0, i]±> be given by fx=2x mod 1 and let
/x be the unique (/-invariant) Bernoulli probability measure on [0,1] satisfying

/x{xe[0,l]:x1 = l} = p.

Then the /t-Lyapunov exponent of /, which we denote by A, is log/'= log 2
and the result of Besicovitch and Eggleston says that there is a set X <=[0,1] with
\xX ~ 1 and

B. Linear horseshoes
Recall that if C = CX?-i Cn is the standard Cantor set with Cn consisting of p"
subintervals of length (l/q)M each, then

\ogq
Consider maps of the form shown in figure 1. That is, a square R is stretched

and contracted linearly, bent around finitely many times and then superimposed
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FIGURE 1

on itself as shown. Call this map / and let A = C\nezfnR. We have

A precise treatment of horseshoes is given in [15].
Let LH be a horizontal line through A. Then

H D ( L ^ A ) = i^r
where /i(/) = log(# of crossings) is the topological entropy of/. Similarly if L v is
a vertical line through A, then

In this linear case Hausdorfl dimension adds and we have

C. Anosov toral automorphisms
Let L: U2*=> be a linear map with integer coefficients and real eigenvalues T and
1/r, T > 1, and let L: T2±> be the induced automorphism of T2. Then L preserves
Haar measure fj. and /iM(L) = log T SO that

M p^-rr
logT logr
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2. Basic facts and known results
In this section we collect some facts that will be used in the proof of the main
theorem. Notations adopted here are used throughout.

A. Hausdorff dimension
Let AT be a metric space. For x eX and p >0, let -—-"

The diameter of a cover K of X = sup {diam A:A£K}. Then

inf I (diamA)a = o | .
ovcrotX Aex Je-*0 K—covcrotX Aex

diam KSe

Since our measures live on manifolds, we may assume via C1 charts that we are
working in R". For the rest of § 2A, let /x be a finite non-atomic Borel measure
onR".

We take a local or pointwise approach to Hausdorff dimension. The following
proposition is essentially borrowed from [2], modified slightly to suit our purposes.

PROPOSITION 2.1. Let A<=Rn be measurable and have / tA>0. Suppose that for
every x e A,

. . . . f log (iBpjx)^,. log fiBp(x)_-
<5:s hmmf—: ^ l imsup—•— -—<<5.

p̂ .o logp p-o logp
Then

Remark. All limits remain unchanged if the continuous variable p is replaced by
any sequence {pn} withpn 10 and logprt+i/logpn->l.

Proof. For U c Rn, let 0HUte)- {Bp{x)\ JC 6 C/, p < e} and define

a(C/,/x) = infla:lim inf I (fiA)a=o\.
I e -0 Kcg?(t/,e) AEK J

K—cover o f t /

If C/ is measurable and has positive /x-measure, then it is easy to verify that

Fix C/cR" with fiU>0. We first prove the proposition under the stronger
assumption that 3e o >0 s.t. V* e U and Vp

Let a > l . Let 0 < e i < e o and e 2 >0 be given. Since a(U, /A) = 1,3 a cover K
i)of C/ satisfying

AGK

Our hypothesis here is that for A e $ (U, e0),

https://doi.org/10.1017/S0143385700009615 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009615


Dimension, entropy and Lyapunov exponents 113

Therefore

I (diamA)a*<2a*e2
ASK

and hence HD(U)^aS. As for the other inequality note that the definition of
Hausdorf! dimension remains unchanged if we restrict ourselves to subcovers of

/, e). We have

Ae*e

for every cover K Cgt ([/, e0) of U, which proves HD (U) s= 5.
To complete the proof of the proposition we fix e > 0 and an acceptable sequence

pn 10. Let

Afc ={x e A: Vn £=fc, 5 - e =slog fiB Pn(x)/log pn :£S 4-e}.

Since x^->/iBp(x) is a measurable function, the sets Ak are measurable and
fi At 11*> A. The argument above applies to each Ak. Let k t °° and then e 1 0. D

B. Entropy
As in the case of Hausdorff dimension we take a local approach to entropy. Let
/ : M±> be a diffeomorphism of a compact Riemannian manifold, let \i. be an ergodic
Borel probability measure and let <f> :M->U+ be a function on M For xeM and
Hi, /i2€Z+, define

We write V(x, e> nu nz) for V(x, <f>, itu n2) when <f> = e.
Here are the two estimates that will be used:

THEOREM (Mane [13]). / / J-log <f> dfi <oo, r/ie/i /or pt-a.e. JC,

limsup
ni.n2-oo n

THEOREM (Brin-Katok [5]). For /t-a.e. JC,

lim liminf log(JLV(X, E,

+
The statements of both of these theorems as given above are actually slightly
different from those in the papers referenced, in that we iterate / backwards as
well as forwards. We leave these (minor) modifications to the industrious reader.
For a complete treatment of entropy see [2],

C. Lyapunov charts and some estimates
Let / : MJb be a diffeomorphism of a surface and let /i be an /-invariant ergodic
Borel probability measure. Then
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and

--log| |D/-n | | ->A2n

^-almost everywhere as n->+oo. These numbers are called the /x-Lyapunov
exponents of/. For more information see [16], [17] or [20]. ^. . ,

Let R(p) be the square [-p, p]x[-p, p] in R2. If/ is C 1 + a (a>0) and e > 0 is
fixed, then at a.e. x one can construct a Lyapunov chart (referred to as the '*-chart'
here). These charts are given by

<t>x:R(A(x))->M

and satisfy

(1) *x0 = *,
(2) A(f±lx)>(l-e)A(x)

and
(3) if /crjc-chart-^/x-chart is the map induced by / and xi —e\ i —1» 2, then

Euclidean distance in the jc-chart is denoted by || • ||x while d always stands for
the Riemannian metric on M. These metrics are related by the following inequalities:

d( •, • )^^T|| * — * ||x for some universal constant K
and

|| • - • ||x ^K(x)d( •, •) for some function K(x).

For simplicity of notation we will refer to the point <£Jly in the jc-chart as
simply 'y'-

The following estimates are used for the connecting maps between charts.

LEMMA 2.2. Suppose 2 e < x i - l , 1-^2 and for k = 1,2,.. .,gk:R2-*R2 satisfy

Tlien
(1) for any p>0 ,

gk°' • •

and
(2) ifyi and y2 denote the first and second coordinates ofyeR respectively and

xeU2 iss.t. \x\\^\x2\ then

\(gk

and

\(gk

https://doi.org/10.1017/S0143385700009615 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009615


Dimension, entropy and Lyapunov exponents 115

3. Proof of the main result
Let /x be a Borel probability measure on a compact metric space X. Define

= inf HD(r).
YcX

n.Y-1

If X is a manifold, / is a C1 difleomorphism of X into itself and ix is an /-invariant
ergodic measure, then for every measurable set Y<^X with fxY>0, we have

= land hence

HD

Thus in this case it is also true that

= inf HD(r).
Y<=X

THEOREM 3.1. Let f:M±=> be a C1+a (a>0) diffeomorphism of a compact two-
dimensional Riemannian manifold M and let fx be an f-invariant ergodic Borel
probability measure with exponents Ai2:A2. TJien

whenever the right side of this equation ^ 0/0.
(F. Ledrappier has inequalities along similar lines [12].)

Proof. If Ai or A2 = 0, then /iM(/) = 0 and there is nothing to prove. If Ai and A2 are
both positive or both negative, then /x is supported on a finite set [10] and the
equality holds trivially. Thus we may assume that Ai>0andA2<0. We will produce
a set A c M such that /xA = 1 and for every measurable set Y with ixY>0,

This follows from proposition 2.1 and the volume lemma below. •

LEMMA 3.2 (volume lemma). Same setting as in theorem 3.1. Assume also that
Ai>0>A2. Tlien

for /x-a.e. x.

We give the proof of this lemma in two parts.

Part I of proof. Let A = {x eM:x is regular in the sense of Oseledec-Pesin and
lime^0 Hm infni,M2^o - 1 / ( M I + /»2) log fx V{x, e, «i, n2) = M / ) } . (V(x, e, nu n2) is
defined in § 2B.) As before write ̂ , = eX|, / = 1,2. For every x&A and e > 0, we show

. log fxBp(x)
hm mf — ; — - — s (/î  (/) - e)

P-O logp

1

l-e .
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Consider Lyapunov charts along the orbit of * as in § 2C. All notations are as
in that section. Choose po = Po(x) s.t.

lim inf —•—log/xV(x, p0, nu

and let pi = min{A(x),po/AT}. For p « p i define «i(p) and n2(p) to be the largest
integers satisfying

We claim that for small p,

V(x,p0, «I(P) , n2(p)).

Let d(x,y)^K(x)~lp. Then yeRip) in the x-chart. The connecting maps
between charts satisfy the hypotheses of lemma 2.2. Therefore

fkyeR((xi+2s)k
P)

in the /fcx-chart for Orsfc <mip). This makes sense since

Back on the manifold, this implies that

for O^k^niip). A symmetric argument backwards proves the claim.
Now with

loglpr-logp

and

we have

\ogiiV(x,pQ, tii(p), M2(P))

\ogK(xTlp \ogp-\ogK(x)

\ogfiV(x,p0,

1 -+—±,

The desired result follows by taking lim inf.
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Part II of proof. It suffices to show that for every e, 5>0 , 3Ai = A(e, 8) with
fx Ai > 1—S s.t. for a.e. x e Ai,

l o g f i B p ( x ) , . _ f 1 1 1
limsup , p ^ M / ) -—; —-+-—. _! _ J .

p-o logp MV'llog(An-2e) log(*2 -2e)J
logp M Llog^i— 2e) log(x2 ~2e).

Many of the ideas in this proof are in [13].
Let Ai be a Pesin set (i.e. a uniformly hyperbolic set) with p Ai > 1 -S. Then

Ki = supK(x)«x>

and

Ai= inf A(x)>0.

We may assume that AiK^l. By Poincare recurrence we may assume also that
every xeAi returns to Ai in both forward and backward times. For x e Ai, let

r\(x) = the smallest integer k > 0 s.t. fkx e Ai

and

ri(x) = the smallest integer k > 0 s.t. f~kx e Ai.
Define a function <f>:M-*U by

Since

f
JA

we have j-log<f><oo and Mane's estimate

lim sup — - — log fi V(x, <j>,n\,n2)< h^ (/)
«i.n2-*oo ni + nz

applies to a.e. x.
Note that for x e A.lt there are charts at x,fx,... ,flMx of size at least

respectively and that the connecting maps ff*x satisfy ff*xO = 0 and

whenever they are defined. Thus if JC e Ai and d(x, y) ̂ <^(x), then

\\x-y\\x^Al(x
and by lemma 2.2,

\\fkx-fky\\f*x^A(fkx)

https://doi.org/10.1017/S0143385700009615 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009615


118 Lai-Sang Young

For small p >0 , define n\(p) and n2{p) to be the smallest integers satisfying

and

We claim that V(x, $, rii(p), n2(p))<= B2Kp(x) for all jceAi. The desired limsup
estimate then works at those points in Ai for which Mane's entropy estimate is
valid with respect to the function <f>.

It remains to prove the claim. Fix x e Ai and small p >0. Let

ye V(x,tf>,ni(p),n2(p)).

In the jt-chart, write y = (y 1, y2). Suppose |y i| ̂  |y2|. We prove by looking at forward
iterates of / that \y i| ̂  p. If |y2| ̂  |y i|, a symmetric argument backwards gives \y2\ ̂  p.

Let {s0, su...} = {k. > 0: /kx e Ai}. Assume that

Since d{f%fSiy)^<i){fhx) for 0=s/2£n, we have, by an earlier argument, fkye
/kx-chart for O^k^tiiip). The derivatives of the connecting maps between these
charts satisfy the hypotheses of lemma 2.2. Thus

« p

ly,
p

P

By hypothesis we have d{f*Hxtf
iny)^^{f*Hx)t which implies that

in the/lnjc-chart. This proves |yi|/p ^ 1.

A/b^. It should be pointed out that part I of this proof could be done without
Lyapunov charts. The estimates there are in fact valid for C l diffeomorphisms.

4. Other notions of fractional dimension
Closely related to HausdorfT dimension is capacity^ introduced by Kolmogorov. If
a probability measure is present, Renyi, using the information function, defined yet
another notion of dimension. For arbitrary sets and arbitrary measures the differen-
ces between these definitions arc real: examples can easily be constructed where
they differ sharply. In the context of our main theorem, however, these notions all
turn out to be the same.
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A. Capacity
Let X be a compact metric space. For e > 0 let N{e) be the minimum number of
E-balls needed to cover X. Define the lower capacity of X,

and the upper capacity or simply capacity of Xt

-._.. ,. logAT(e)
C(X) = hm sup h ) '

«-o log(l/e)

If the dimension of a set is to be related to the /x-entropy and /i-exponents of
a map, that notion of dimension must be sensitive to the 'good points' of p. Capacity,
however, does not distinguish between a set and its closure. Ledrappier has made
the following modification to correct this insensitivity [12]: Let /x be a Borel
probability measure on X. For e, S>0, let N(e,S) be the minimum number of
e-balls needed to cover a set of /x-measure ^ 1 - 5 . Then

dcf \ORN(E S)
CL(p.) = sup Hm inf - —

5-0 E-O log(l/e)

and

=, . vdcf .. logJV(e,5)
CiXp-) = sup hm s u p - — .

5-0 e-o log(l/e)
Another (technically different) modification of capacity that is perhaps more in line
with our definition of HD (pi) is:

rfef

= sup inf C(Y),
5-0 VcX

_ def -
C(/t) = sup inf C{Y).

5-0 VcX'

It is clear that
CL(/x)^C0x) and

PROPOSITION 4.1. Let y. be a Borel probability measure on a compact metric space
X.Vien HD (n)^CL(i*).

Proof. Fix any C >CL(fi) and a >0 . For n = 1,2,... let Sn = a/2n. Choose en I 0
and sets An with fiAn ^ 1 -5« s.t. /!„ is covered by NM balls of radius sn and

log l/en

Let A = f \ s i ^r... Then /M & 1 -a and for each e

inf I (diamB)c^ATBe?sl.
n,

K-cover of A

Tlius HD ( / \ )^C and hence 3 V c X with fiY = 1 s.t. HD (V)=sC. Q

The next proposition is the capacity analogue of proposition 2.1.
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PROPOSITION 4.2. Let /x be a continuous Borel probability measure on Un and let
A c Un be measurable and bounded. Suppose that /z A > 0. Suppose also that for every
xeA,

Then

Proof. It follows from propositions 2.1 and 4.1 that

C (n ) >: CL(/x ) S* HD (/x ) S= 5.

To show C(/x)=s<5, it suffices to prove that for 17 > 5 and <5>0, 3L/cA with
ILU>ILK-8 s.t. C (C/ )^TJ . For any set t/, let

and define

inf
e-»O K—cover o f t /

The rest of the proof goes as in proposition 2.1. Q

These results are summarized in theorem 4.4 at the end of this section.

B. Renyi dimension
Let pibea Borel probability measure on a compact metric space X. If K is a finite
partition of AT, let

HM = - I fiA log iiA

and let

HM= inf J/M(/c).
K

diam

We can think of //^(e) as the minimum amount of information any £-partition
gives. The Renyi dimension of the pair (X, /x) measures the growth of this informa-
tion relative to e. We write

minfp^f
r-.o logl/e

and

= hmsup;—77-'
.-0 log 1/e

Rcnyi's original definition is in [18].

PROPOSITION 4.3. Let \L be a Borel probability measure on a compact metric space
XwithC{X)<oo.Tlicn

(1)
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. log^BpU)
lim inf — ; — - — 2: ao»p-o logp

and
(2) if for pt-a.e. x,

then

Proof. (1) Fix small S > 0 . Let Bi , . . . ,Bsie .s) be e-balls that together cover a set
of measure ^ 1 - 5 . L e t B i = B i and

B n = B M - U B / f o r n = 2 , 3 , . . . , N ( e , S ) .

Let Uu • • • > Ĉ N(e) be e-balls that cover all of X and let

Un = Un-X] Ui-UBi.

Then K = { B I , . . . , BN(e,S), {/i,..., L/iv(e)} is a partition of AT with diam K
Using the fact that if E j . j p, = r, 0 ̂ p , <s 1 and 0 < t =s 1 then

s

- I Pi log p< < - r logr + r log s,

we have

<logiV(e,5) + [-51og5+51ogiV(e)].

Thus

R(ix) = lim sup
e-o logl/2e

logiVCe.g),,. [
hm sup ——r——+hm s u p T r

e^o logl/2e e^o logl/2e

Let5->0.
(2) Let a<a0 and 5 > 0 be given. There exists L/cAf with / i t / > 1-6 and

Po>0 s.t. Vp =sp0 and VA: e U,

Let K = { A I , . . . , Ar} be any finite partition with diam K ̂  e s p 0 . It suffices to show
that

( 1 - 25 )a.
log 1/e

https://doi.org/10.1017/S0143385700009615 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009615


122 Lai-Sang Young

Let pi = {AieK:AinUy*0} and /3 2 = K - 0 I . Then /x(u/32)<5. Each A,e/3i is
contained in Be(xt) for some xt e £/ and therefore has /x-measure ^ e a . Thus

= (l-25)alogi. -
e

This proves the claim. •

Propositions 2.1,4.1,4.2 and 4.3 together prove the following result:

THEOREM 4.4. Let fi be a Borel probability measure on a compact Riemannian
manifold and suppose for /x-a.e. JC,

log^B
lim —:
P-O log p

Then

It is probably fair to call this number dim (n) if it exists. In particular we have *

COROLLARY 4.5. Let f'.M±> be a Cl+a dijfeomorphism of a compact Riemannian
2-manifold and let fi be an f-invariant ergodic Borel probability measure with non-zero
exponents\i^.\2' Tlien

5. Corollaries and remarks

A. Higher dimensions
If dim M 5:3, there can be no simple formula that works in all cases. (See [22: § 5].)

COROLLARY 5.1. Let f:M±z be a C1+a diffeomorphism of a compact Riemannian
manifold M and let ft be an ergodic Borel probability measure with non-zero f-
exponents A i ̂  • • • >: A,. Let

Au = min {A j : A< > 0}.

Tlien

The proof is the same as that of Theorem 3.1. We do not know whether better
estimates of this type can be made or whether generically some equality might hold.

B. Bifurcations of horseshoes
We first remark that if / : M2±J is Axiom A [21], then our estimates work in the
C1 category. Consider a continuous one-parameter family {/f}l6/ of Axiom A
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diffeomorphisms on a surface. Let A, be a basic set or horseshoe of /, and assume
that the topological structure of /,|Af remains unchanged as t varies through /. We
state some results on the 'size' of A, with respect to some of the interesting measures.

COROLLARY 5.2. Let {/,} and {A,} be as described above. If
(1) fi, is the measure maximizing entropy forft\At

or
(2) /, is C1+Ot, A, is an attractor and /x, is the Bowen-Ruelle measure [4],

then dim (/x,) varies continuously with t.

Proof. For (1), h^ift) remains constant while

, and A2(r) = J \og\Dfs
t\dfxt

vary continuously with t. The claim follows from theorem 3.1. For (2), first observe
that if (A,/) is one fixed basic set and <£,:A-»R is a continuous one-parameter
family of Holder continuous functions, then the equilibrium state of (/, $,) varies
continuously. (See [3] and [4].) Here /iM((/,) = Ai(r) and Ai(f) and A2(0 vary con-
tinuously as before. •

C. Tlxe case dim (//,) = 2
In the setting of theorem 3.1, dim(/x) = 2 if and only if Ai = —A2 = /iAt(/). This
happens only in very special circumstances for Axiom A diffeomorphisms. (See [4].)

COROLLARY 5.3. / / / : M2±=> is aCl+a Axiom A diffeomorphism and /x is an ergodic
Borel probability measure, then dim Ox) = 2 iff M2 is a torus, f is Anosov and /x is
equivalent to Riemannian measure.

We do not know whether HD (fi) = topological dimension of the ambient manifold
implies that fi is smooth for C2 difleomorphisms in general.

D. Lyapunov dimension and Yorke's conjectures
If/: Ala is an attractor and Ai £= • • • £= Ar are Lyapunov exponents of / with respect
to a certain measure, Yorke defines the Lyapunov dimension of this attractor (with
respect to this measure) to be

k+—Vx—i—
|Afc+l|

where k =max{/: Ai+ • • • +A,->0}. He conjectures ([8],[9]) that for 'most' maps,
Lyapunov dimension ^ capacity and that under some additional hypotheses it is
equal to Renyi dimension.

We verify at least this much:

COROLLARY 5.4. For diffeomorphisms of surfaces, ifhti(f) = \ l , then fx-Lyapunov
dimension = dim (/x).
The hypothesis that h^(f)~ Av is satisfied in the case of Axiom A attractors with
/x being the Bowen-Ruelle measure. Conceivably many other attractors may admit
such an invariant measure.
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Ledrappier has suggested reformulating Yorke's conjecture in variational form.
He has proved [12: prop. 3] that if/: M ±> is a diffeomorphism and fi is an ergodic
Borel probability measure, then »

CL(/x) - /x-Lyap dim ̂  0.

Corollary 5.4 then gives 'equilibrium states' for this variational equation in,the
case of surfaces.
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