
LMS J. Comput. Math. 17 (Special issue A) (2014) 257–273 C© 2014 Authors

doi:10.1112/S1461157014000187

Computing Hasse–Witt matrices of hyperelliptic curves in
average polynomial time

David Harvey and Andrew V. Sutherland

Abstract

We present an efficient algorithm to compute the Hasse–Witt matrix of a hyperelliptic curve C/Q
modulo all primes of good reduction up to a given bound N , based on the average polynomial-
time algorithm recently proposed by the first author. An implementation for hyperelliptic curves
of genus 2 and 3 is more than an order of magnitude faster than alternative methods for N = 226.

1. Introduction

Let C/Q be a smooth projective hyperelliptic curve of genus g defined by an affine equation

y2 = f(x) =

d∑
i=0

fix
i, fi ∈ Z,

where d = deg f is either 2g+ 1 or 2g+ 2 (generically, d = 2g+ 2). If C has good reduction at
an odd prime p, the associated Hasse–Witt matrix Wp = [wij ] is the g × g matrix over Z/pZ
with entries

wij = f
(p−1)/2
pi−j mod p (1 6 i, j 6 g),

where fnk denotes the coefficient of xk in f(x)n; see [7, 27]. We have the identity

χ(λ) ≡ (−1)gλg det(Wp − λI) mod p, (1.1)

where χ(λ) ∈ Z[λ] is the characteristic polynomial of the Frobenius endomorphism of the
Jacobian of the reduction of C at p; see [17]. In particular, the Weil bounds imply that for
p > 16g2 the trace of Wp uniquely determines the trace of Frobenius, hence the number of
points p+ 1− tr(Frobp) on the reduction of C at p.

We say that a prime p is admissible (for C) if p is odd, C has good reduction at p, and p
does not divide f0 or fd (the constant and leading coefficients of f). The goals of this paper
are to give a fast algorithm for computing Wp simultaneously for all admissible primes p up
to a given bound N , and to demonstrate the practicality of the algorithm for g = 2 and g = 3.
Applications include numerical investigations of the generalized Sato–Tate conjecture [3, 16]
and computing the L-series of C [15].

The algorithm presented here is inspired by [12], which gives an algorithm to compute χ(λ)
(not just χ(λ) mod p) for all primes p 6 N of good reduction, in the case that d is odd
(which implies that C has a rational Weierstrass point). The running time of that algorithm
is O(g8+εN log3+εN); when averaged over primes p 6 N , this is O(g8+ε log4+ε p), the first

Received 27 February 2014; revised 23 May 2014.

2010 Mathematics Subject Classification 11G20 (primary), 11Y16, 11M38, 14G10 (secondary).

Contributed to the Algorithmic Number Theory Symposium XI, GyeongJu, Korea, 6–11 August 2014.

The first author was supported by the Australian Research Council, DECRA Grant DE120101293. The
second author was supported by NSF grant DMS-1115455.

https://doi.org/10.1112/S1461157014000187 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000187


258 d. harvey and a. v. sutherland

such result that is polynomial in both g and log p. Critically, the exponent 4 of log p does
not depend on g, and it is already better than that of Schoof’s algorithm [20] in genus 1,
which has an exponent of 5 when suitably implemented†. Pila’s generalization of Schoof’s
algorithm [18] has an exponent of 8 in genus 2 (see [5, 6]), and Eric Schost has suggested
(personal communication) that the exponent is 12 in genus 3 (Pila’s bound in [18] gives a
much larger exponent).

For our implementation we focus on the cases g 6 3, where knowledge of χ(λ) mod p allows
one to efficiently determine χ(λ) using a generic group algorithm, as described in [15]. When
g = 3, the time required to deduce χ(λ) from χ(λ) mod p is O(p1/4+ε); while this is exponential
in log p, within the feasible range of p 6 N (say N 6 232), the time to derive χ(λ) from
χ(λ) mod p is actually negligible compared to the average time to compute χ(λ) mod p. We
handle all hyperelliptic curves, not just those with a rational Weierstrass point, which in general
will not be present. We also introduce optimizations that improve the space complexity by a
logarithmic factor, compared to [12], without increasing the running time; indeed, the running
time is significantly reduced, as may be seen in Table 3 in § 5.

Asymptotically, we obtain the following theorem bounding the complexity of the algorithm
ComputeHasseWittMatrices, which computes Wp for all admissible p 6 N (see § 4 for
the algorithm and a proof of the theorem). We denote by ‖f‖ the maximum of the absolute
value of the coefficients of f , and by M(n) the time to multiply two n-bit integers. We may
take M(n) = O(n log n log log n), via [19].

Theorem 1.1. Assume that g = O(logN). The running time of the algorithm Compute-
HasseWittMatrices is

O(g5M(N log(‖f‖N)) logN),

and it uses

O

(
g2N

(
1 +

log ‖f‖
logN

))
space.

Assuming log ‖f‖ = O(logN), the bounds in Theorem 1.1 simplify to O(g5N log3+εN) time
and O(g2N) space.

In practical terms, the new algorithm is substantially faster than previous methods. We
benchmarked our implementation against two of the fastest software packages available for
these computations, as analyzed in [15]: the hypellfrob [9] and smalljac [22] libraries. In
genus 2 the new algorithm outperforms both libraries for N > 219, and is more than 10 times
faster for N = 226. In genus 3 the new algorithm is faster across the board, and more than
20 times faster for N = 226. Key to achieving these performance improvements are a faster
and more space-efficient algorithm for computing the accumulating remainder trees that play
a crucial role in [12], and an optimized fast Fourier transform (FFT) implementation for
multiplying integer matrices with very large coefficients.

2. Overview

Each row of the Hasse–Witt matrix Wp of C consists of g consecutive coefficients of fn reduced
modulo p, where n = (p−1)/2. The total size of all the polynomials fn needed to compute Wp

†This assumes fast integer arithmetic is used, which we do throughout. Under heuristic assumptions, the
(probabilistic) SEA algorithm reduces the exponent to 4, but for g = 1 generic algorithms that run in O(p1/4+ε)
time are superior within the feasible range of p 6 N in any case.

https://doi.org/10.1112/S1461157014000187 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000187


computing hasse–witt matrices 259

for p 6 N is O(N3‖f‖) bits; this makes a näıve approach hopelessly inefficient. Two key
optimizations are required to achieve a running time that is quasilinear in N .

First, for a given row of Wp, we only require g coefficients of each fn. In § 3 we define
an r-dimensional row vector vn, where r ≈ 2g, consisting of r consecutive coefficients of fn,
including the g coefficients of interest. The coefficients of fn+1 corresponding to vn+1 are closely
related to the coefficients of fn corresponding to vn. We use this to derive a linear recurrence
vn+1 = vnTn, where Tn is an explicit r × r transition matrix. The entries of Tn lie in Q, but
not necessarily in Z; this requires us to handle the denominators explicitly. These recurrence
relations are analogous to the technique of ‘reduction towards zero’ introduced in [12]; the key
point is that the coefficients of the recurrence are independent of p. This is in contrast to the
recurrence relations used to derive the Hasse–Witt matrix in [1], whose coefficients do depend
on p, and which are analogous to the ‘horizontal reductions’ in [10] and [12].

Second, we only need to know the coefficients of each vector vn modulo p = 2n + 1. The
essential difficulty here is that the modulus is different for each n. Following [12], we use
an accumulating remainder tree to circumvent this problem. More precisely, in § 4 we give an
algorithm RemainderTree that takes as input a sequence of integer matrices A0, . . . , Ab−2, a
sequence of integer moduli m1, . . . ,mb−1, and an integer row vector V (the ‘initial condition’),
and computes the reduced partial products (row vectors)

Cn := V A0 . . . An−1 mod mn,

simultaneously for all 0 6 n < b. The remarkable feature of this algorithm is that its complexity
is quasilinear in b.

We may apply RemainderTree to our situation in the following way. During the course of
finding an explicit expression for Tn, we will write it as Tn = Mn/Dn where Mn is an integer
matrix and Dn is a nonzero integer. It turns out that for any sufficiently large admissible prime
p = 2n+ 1, the p-adic valuation of D0 . . . Dn−1 is at most d. Thus to obtain

vn = v0M0 . . .Mn−1/D0 . . . Dn−1

modulo p, it suffices to compute

v0M0 . . .Mn−1 mod pd+1 and D0 . . . Dn−1 mod pd+1.

We run RemainderTree twice, first with V = v0 and Aj = Mj , and then with V = 1 and
Aj = Dj (regarding the Dj as 1 × 1 matrices). In both cases we take the moduli mn = pd+1

if p = 2n+ 1 is an admissible prime, and let mn = 1 otherwise.
For g 6 3, we will show how to tweak this strategy to use the smaller moduli mn = pg. This

has a significant impact on the overall performance and memory consumption. We conjecture
that one can always use mn = pg (for p sufficiently large compared to g), but we will not
attempt to prove this here.

3. Recurrence relations

For technical reasons it will be convenient to distinguish between the cases f0 6= 0 and f0 = 0
(the same distinction arises in [12]). Let

r =

{
d if f0 6= 0,

d− 1 if f0 = 0.

For each 1 6 i 6 g, consider the sequence of vectors

v(i)n = [fn2in+i−r, . . . , f
n
2in+i−1] ∈ Zr (n > 0).

https://doi.org/10.1112/S1461157014000187 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000187


260 d. harvey and a. v. sutherland

For each admissible prime p = 2n + 1, the last g entries of v
(i)
n are, modulo p, precisely the

entries of the ith row of the Hasse–Witt matrix Wp (in reversed order).

The aim of this section is to develop a recurrence for the v
(i)
n . For each n > 0, we will

construct an r × r integer matrix M
(i)
n , and a nonzero integer D

(i)
n , such that

v
(i)
n+1 = v(i)n M (i)

n /D(i)
n .

The entries of M
(i)
n , and D

(i)
n , turn out to be polynomials in n and the coefficients of f , which

allows us to analyze the p-adic valuation of the partial products of the D
(i)
n .

The construction proceeds as follows. For any n > 0, the identities

fn+1 = ffn and (fn+1)′ = (n+ 1)f ′fn

imply the relations

fn+1
k =

d∑
j=0

fjf
n
k−j , (3.1)

kfn+1
k = (n+ 1)

d∑
j=1

jfjf
n
k−j . (3.2)

Multiplying (3.1) by k and subtracting (3.2) yields the relation

d∑
j=0

(nj − k + j)fjf
n
k−j = 0 (3.3)

among the coefficients of fn.
Suppose we are in the case f0 6= 0, r = d. Solving (3.3) for fnk yields

kf0f
n
k =

d∑
j=1

(nj − k + j)fjf
n
k−j . (3.4)

For k 6= 0, this expresses fnk as a linear combination of d consecutive coefficients of fn to the
‘left’ of fnk . On the other hand, replacing k by k + d and j by d− j in (3.3) gives

(nd− k)fdf
n
k = −

d∑
j=1

(n(d− j)− k − j)fd−jfnk+j . (3.5)

For k 6= nd, this expresses fnk as a linear combination of d consecutive coefficients to the ‘right’
of fnk . Now, suppose we are given as input

v(i)n = [fn2in+i−d, . . . , f
n
2in+i−1].

After 2i applications of (3.4), that is, for k = 2in + i, . . . , 2in + 3i − 1 (in that order), and
d− 2i applications of (3.5), that is, for k = 2in+ i− d− 1, . . . , 2in+ 3i− 2d (in that order),
we have extended our knowledge of the coefficients of fn to the vector

[fn2in+3i−2d, . . . , f
n
2in+3i−1].

of length 2d. From (3.1) we then obtain

v
(i)
n+1 = [fn+1

2in+3i−d, . . . , f
n+1
2in+3i−1].

https://doi.org/10.1112/S1461157014000187 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000187


computing hasse–witt matrices 261

The above procedure defines a d × d transition matrix T
(i)
n mapping v

(i)
n to v

(i)
n+1, whose

entries are rational functions in Q(n, f0, . . . , fd). Denominators arise from the divisions by kf0
and (nd − k)fd in the various applications of (3.4) and (3.5). Each such divisor is a linear

polynomial in Z[n] multiplied by either f0 or fd; thus the denominators of the entries of T
(i)
n

are polynomials in Z[n, f0, fd]. We will take D
(i)
n to be the least common denominator of the

entries of T
(i)
n . Since there are d applications of (3.4) and (3.5) altogether, the degree of D

(i)
n

with respect to n is at most d (it may be smaller due to cancellation).
The case f0 = 0 with r = d − 1 is similar. We have f1 6= 0, because f is assumed to be

squarefree, and the analogues of (3.4) and (3.5) are

(n− k)f1f
n
k = −

d−1∑
j=1

(n(j + 1)− k + j)fj+1f
n
k−j , (3.6)

(nd− k)fdf
n
k = −

d−1∑
j=1

(n(d− j)− k − j)fd−jfnk+j , (3.7)

which express fnk in terms of d− 1 consecutive coefficients to the left, or right, of fnk . Given

v(i)n = [fn2in+i−d+1, . . . , f
n
2in+i−1],

we use these relations to extend v
(i)
n to the vector [fn2in+3i−2d+1, . . . , f

n
2in+3i−1] of length 2d−1,

from which we obtain v
(i)
n+1 from (3.1) as above.

In the subsections that follow we carry out the above procedure explicitly for the specific
cases that arise when g 6 3.

3.1. Genus 1, quartic model

Suppose that C/Q has genus 1. If C has a rational point, then C is an elliptic curve and can
be put in Weierstrass form y2 = f(x) with f cubic, but we first consider the generic case where
this need not hold. So let f(x) = f4x

4 + f3x
3 + f2x

2 + f1x+ f0 with f0f4 6= 0; then r = d = 4.

Since the only relevant value of i is 1, we omit the superscripts on v
(1)
n , M

(1)
n , D

(1)
n .

We wish to construct a linear recurrence that expresses the vector

vn+1 = [fn+1
2n−1, f

n+1
2n , fn+1

2n+1, f
n+1
2n+2] ∈ Z4

in terms of the vector

vn = [fn2n−3, f
n
2n−2, f

n
2n−1, f

n
2n] ∈ Z4;

that is, we want a 4× 4 integer matrix Mn and a nonzero integer Dn such that

vn+1 = vnMn/Dn.

For each odd prime p = 2n + 1, the Hasse–Witt matrix Wp consists of just the single entry
fn2n mod p, which is the last entry of vn mod p.

We start by extending vn ‘rightwards’, using (3.4) with k = 2n+ 1. This yields

(2n+ 1)f0f
n
2n+1 = (2n+ 3)f4f

n
2n−3 + (n+ 2)f3f

n
2n−2 + f2f

n
2n−1 − nf1fn2n.

Using (3.4) again with k = 2n+ 2, we get

(2n+ 2)f0f
n
2n+2 = (2n+ 2)f4f

n
2n−2 + (n+ 1)f3f

n
2n−1 − (n+ 1)f1f

n
2n+1.

https://doi.org/10.1112/S1461157014000187 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000187


262 d. harvey and a. v. sutherland

Combining these equations yields

2(2n+ 1)f20 f
n
2n+2 = −(2n+ 3)f1f4f

n
2n−3

+ (2(2n+ 1)f0f4 − (n+ 2)f1f3)fn2n−2

+ ((2n+ 1)f0f3 − f1f2)fn2n−1

+ nf21 f
n
2n.

Next we extend vn ‘leftwards’ by applying (3.5) with k = 2n− 4, obtaining

(2n+ 4)f4f
n
2n−4 = −(n+ 3)f3f

n
2n−3 − 2f2f

n
2n−2 + (n− 1)f1f

n
2n−1 + 2nf0f

n
2n.

With k = 2n− 5 we get

(2n+ 5)f4f
n
2n−5 = −(n+ 4)f3f

n
2n−4 − 3f2f

n
2n−3 + (n− 2)f1f

n
2n−2 + (2n− 1)f0f

n
2n−1,

and therefore

(2n+ 5)(2n+ 4)f24 f
n
2n−5 = ((n+ 3)(n+ 4)f23 − 3(2n+ 4)f2f4)fn2n−3

+ (2(n+ 4)f2f3 + (n− 2)(2n+ 4)f1f4)fn2n−2

+ (−(n− 1)(n+ 4)f1f3 + (2n− 1)(2n+ 4)f0f4)fn2n−1

− 2n(n+ 4)f0f3f
n
2n.

We have expressions for fn2n−5, . . . , f
n
2n+2 in terms of fn2n−3, . . . , f

n
2n, and we obtain vn+1 via

fn+1
2n−1 = f4f

n
2n−5 + . . .+ f0f

n
2n−1,

...

fn+1
2n+2 = f4f

n
2n−2 + . . .+ f0f

n
2n+2.

After some algebraic manipulation we obtain the matrix

Mn =


(−(n+ 3)f23 + 4(n+ 2)f2f4)J1 f3J2 4f4J3 (2n+ 3)f1f4J4

(−2f2f3 + 6(n+ 2)f1f4)J1 2f2J2 3f3J3 (4(2n+ 1)f0f4 + (n+ 2)f1f3)J4

((n− 1)f1f3 + 8(n+ 2)f0f4)J1 3f1J2 2f2J3 (3(2n+ 1)f0f3 + f1f2)J4

2nf0f3J1 4f0J2 f1J3 (2(2n+ 1)f0f2 − nf21 )J4

 ,
where

J1 = (n+ 1)(2n+ 1)f0,

J2 = (n+ 1)(2n+ 1)(2n+ 5)f0f4,

J3 = 2(n+ 1)(n+ 2)(2n+ 5)f0f4,

J4 = (n+ 2)(2n+ 5)f4,

and the denominator
Dn = 2(n+ 2)(2n+ 1)(2n+ 5)f0f4.

Recall that vn = v0M0 . . .Mn−1/(D0 . . . Dn−1). For each admissible prime p = 2n + 1 > 5,
the p-adic valuation of D0 . . . Dn−1 is exactly 1, since p divides Dn−2 = 2n(2n−3)(2n+1)f0f4
exactly once, and p does not divide Dj for j = n − 1 or any 0 6 j 6 n − 3. We may thus
compute vn mod p as (

v0M0 . . .Mn−1 mod p2

D0 . . . Dn−1 mod p2

)
mod p.

https://doi.org/10.1112/S1461157014000187 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000187


computing hasse–witt matrices 263

With additional care it is possible to perform the bulk of the computation working modulo p
rather than p2. As noted above, D0 . . . Dn−3 is a p-adic unit, and a direct calculation shows
that the entries of the last column of Mn−2Mn−1 are divisible by 2n + 1. Let Un be the last
column of Mn−2Mn−1/Dn−2Dn−1. Then Un is p-integral for p = 2n+ 1, and we may compute
the last entry of vn mod p, that is, the lone entry of the Hasse–Witt matrix Wp, as((

v0M0 . . .Mn−3 mod p

D0 . . . Dn−3 mod p

)
Un

)
mod p.

Remark 1. Returning briefly to the general case, we can now see why it always suffices to
work with moduli mn = pd+1, for sufficiently large admissible p. The denominator Dn always
has the form Dn = Cfα0 f

β
d

∏e
i=1(ain+ bi), where C, ai, bi ∈ Z and α, β and e are non-negative

integers with α+β 6 d and e 6 d. We may assume that (ai, bi) = 1 for all i. If p is larger than
every prime divisor of ai, we see that ain+ bi is divisible by p if and only if n = −bi/ai mod p,
and this occurs for at most one value of n in the interval 0 6 n < (p−1)/2. Moreover for large
enough p we see that ain + bi cannot be divisible by p2 for such n. Thus for all sufficiently
large admissible primes p = 2n+ 1, we find that D0 . . . Dn−1 has p-adic valuation at most d.

Remark 2. One can make f3 = 0 by replacing x with x−f3/(4f4) and y with y/(16f24 ) and
then clearing denominators. This has the advantage that a factor of f4 cancels in the above
formulae for Mn and Dn, but it will also tend to increase the size of the other coefficients. In
general, one can always make fd−1 = 0 with a similar substitution, and when d is even this
allows us to remove a power of fd from Dn and the entries of Mn.

When f0 = 0 one can follow the procedure above, using (3.6) and (3.7) in place of (3.4) and
(3.5); alternatively, one may switch to a cubic model via the substitution x = 1/u, y = v/u2,
which is discussed in the next section. Both methods lead to essentially the same formulae.

3.2. Genus 1, cubic model

We now consider the case g = 1 with f(x) = f3x
3 + f2x

2 + f1x + f0 and d = 3. Assuming
f0 6= 0, we obtain the 3× 3 transition matrix

Mn =


2(n+ 1)(2n+ 1)f0f2 6(n+ 1)(n+ 3)f0f3 (n+ 3)(n+ 2)f1f3

4(n+ 1)(2n+ 1)f0f1 4(n+ 1)(n+ 3)f0f2 (n+ 3)(3(2n+ 1)f0f3 + f1f2)

6(n+ 1)(2n+ 1)f20 2(n+ 1)(n+ 3)f0f1 (n+ 3)(2(2n+ 1)f0f2 − nf21 )


with denominator

Dn = 2(n+ 3)(2n+ 1)f0.

For all admissible primes p = 2n+ 1 > 5, the partial product D0 . . . Dn−1 is prime to p.

Remark 3. In the cubic case one can make f3 = 1 and f2 = 0 with a suitable substitution;
this simplifies the formulae but may increase the size of f0 and f1. If the cubic f(x) has a
rational root, one can make f0 = 0 by translating the root to zero (in which case f2 will
typically be nonzero). This is usually well worth doing, since it reduces the dimension of Mn

from 3 to 2 (see below). Similar remarks apply whenever d is odd.

When f0 = 0 we have y2 = f3x
3 + f2x

2 + f1x and the 2× 2 transition matrix

Mn =

[
(n+ 1)f2 2(n+ 2)f3

2(n+ 1)f1 (n+ 2)f2

]

https://doi.org/10.1112/S1461157014000187 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000187


264 d. harvey and a. v. sutherland

with denominator

Dn = n+ 2.

For all admissible primes p = 2n+ 1 the partial product D0 . . . Dn−1 is prime to p.

3.3. Genus 2

The computations in genus 2 are similar, except now each Hasse–Witt matrix has two rows,

which we obtain by computing v
(i)
n for i = 1, 2. For the sake of brevity, we omit the details

and list only the denominators D
(i)
n ; a Sage [21] script for generating the transition matrices

M
(i)
n is available at [14].
For i = 1 we get the denominators

D(1)
n =


8(n+ 2)(2n+ 1)(2n+ 3)(4n+ 7)(4n+ 9)f0f

3
6 if d = 6, f0 6= 0,

6(n+ 2)(2n+ 1)(3n+ 5)(3n+ 7)f0f
2
5 if d = 5, f0 6= 0,

3(n+ 2)(3n+ 4)(3n+ 5)f25 if d = 5, f0 = 0.

In the case d = 6, one verifies that the last two columns of M
(1)
n−1/D

(1)
n−1 are p-integral for

p = 2n + 1, and that D
(1)
0 . . . D

(1)
n−2 is a p-adic unit except possibly for a single factor of p

contributed by 4m+ 7 when m = (n− 3)/2 or by 4m+ 9 when m = (n− 4)/2 (at most one of
these occurs for each p). Thus the desired row of the Hasse–Witt matrix Wp may be computed
as the last two entries of((

v0M
(1)
0 . . .M

(1)
n−2 mod p2

D
(1)
0 . . . D

(1)
n−2 mod p2

)
M

(1)
n−1

D
(1)
n−1

)
mod p.

Similar observations apply to both of the d = 5 cases, and again one finds that it suffices to
work with the moduli mn = p2 (we omit the details).

The denominators for i = 2 are

D(2)
n =


8(n+ 3)(2n+ 1)(2n+ 5)(4n+ 3)(4n+ 5)f30 f6 if d = 6, f0 6= 0,

8(n+ 4)(2n+ 1)(4n+ 3)(4n+ 5)f30 if d = 5, f0 6= 0,

3(n+ 3)(3n+ 2)(3n+ 4)f21 if d = 5, f0 = 0.

As above, in all three cases one can arrange to use the moduli mn = p2.

3.4. Genus 3

For i = 1 we get the denominators

D(1)
n =


72(n+ 2)(2n+ 1)(2n+ 3)(3n+ 4)(3n+ 5)(6n+ 11)(6n+ 13)f0f

5
8 if d = 8, f0 6= 0,

10(n+ 2)(2n+ 1)(5n+ 7)(5n+ 8)(5n+ 9)(5n+ 11)f0f
4
7 if d = 7, f0 6= 0,

5(n+ 2)(5n+ 6)(5n+ 7)(5n+ 8)(5n+ 9)f47 if d = 7, f0 = 0.

For i = 2 the denominators are

D(2)
n =


8(n+ 2)(2n+ 1)(2n+ 5)(4n+ 3)(4n+ 5)(4n+ 7)(4n+ 9)f30 f

3
8 if d = 8, f0 6= 0,

24(n+ 2)(2n+ 1)(3n+ 7)(3n+ 8)(4n+ 3)(4n+ 5)f30 f
2
7 if d = 7, f0 6= 0,

3(n+ 2)(3n+ 2)(3n+ 4)(3n+ 5)(3n+ 7)f21 f
2
7 if d = 7, f0 = 0,

https://doi.org/10.1112/S1461157014000187 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000187


computing hasse–witt matrices 265

and for i = 3 they are

D(3)
n =


72(n+ 3)(2n+ 1)(2n+ 7)(3n+ 2)(3n+ 4)(6n+ 5)(6n+ 7)f50 f8 if d = 8, f0 6= 0,

72(n+ 5)(2n+ 1)(3n+ 2)(3n+ 4)(6n+ 5)(6n+ 7)f50 if d = 7, f0 6= 0,

5(n+ 4)(5n+ 3)(5n+ 4)(5n+ 6)(5n+ 7)f41 if d = 7, f0 = 0.

In all three cases it is not difficult to show that by pulling out at most the last three factors from
D0 . . . Dn−1, it suffices to compute the partial products modulo mn = p3, where p = 2n+ 1.

4. Accumulating remainder trees

Given a sequence of r×r integer matrices A0, . . . , Ab−2, an r-dimensional integer row vector V ,
and a sequence of positive integer moduli m1, . . . ,mb−1, we wish to compute the sequence of
reduced row vectors C1, . . . , Cb−1, where

Cn := V A0 . . . An−1 mod mn.

For convenience, we define m0 = 1, so C0 is the zero vector, and we let Ab−1 be the identity
matrix. We also make the simplifying assumption that the bound b = 2` is a power of two,
although this is not necessary. In terms of the prime bound N of the previous sections, we use
b = N/2, which can be viewed as a bound on n = (p− 1)/2.

As in [12, § 3], we work with complete binary trees of depth ` with nodes indexed by pairs
(i, j) with 0 6 i 6 ` and 0 6 j < 2i. For each node we define

mi,j := mj2`−imj2`−i+1 . . .m(j+1)2`−i−1,

Ai,j := Aj2`−iAj2`−i+1 . . . A(j+1)2`−i−1, (4.1)

Ci,j := V Ai,0 . . . Ai,j−1 mod mi,j .

The values mi,j and Ai,j may be viewed as nodes in a product tree, in which each node is the
product of its children, with leaves mj = m`,j and Aj = A`,j , for 0 6 j < b. Each vector Ci,j is
the product of V and all the matrices Ai,k that are nodes on the same level and to the left of
Ai,j , reduced modulo mi,j . To compute the vectors Cj = C`,j , we use the following algorithm.

Algorithm RemainderTree

Given V,A0, . . . , Ab−1 and m0, . . . ,mb−1, with b = 2`, compute mi,j , Ai,j , and Ci,j as follows.
1. Set m`,j = mj and A`,j = Aj , for 0 6 j < b.
2. For i from `− 1 down to 1:

For 0 6 j < 2i, set mi,j = mi+1,2jmi+1,2j+1 and Ai,j = Ai+1,2jAi+1,2j+1.
3. Set C0,0 = V mod m0,0 and then for i from 1 to `:

For 0 6 j < 2i set Ci,j =

{
Ci−1,bj/2c mod mi,j if j is even,

Ci−1,bj/2cAi,j−1 mod mi,j if j is odd.

To illustrate the algorithm, let us compute (p − 1)! mod p for the odd primes p < 15; this
does not correspond to the computation of a Hasse–Witt matrix, but this makes no difference
as far as the RemainderTree algorithm is concerned. We use odd moduli mn = 2n + 1 for
0 6 n < 8, except that we set the composite moduli m4 and m7 to 1, and we use 1×1 matrices
An = [(2n+ 1)(2n+ 2)] for 0 6 n < 7, and let A7 = [1] and V = [1]. The trees mi,j , Ai,j , and
Ci,j computed by the RemainderTree algorithm are depicted below.

https://doi.org/10.1112/S1461157014000187 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000187


266 d. harvey and a. v. sutherland

1

105 143 40320 2162160 1 137

3 35 11 13 24 1680 11880 182 1 24 5 12

1 3 5 7 1 11 13 1 2 12 30 56 90 132 182 1 0 2 4 6 0 10 12 0

mi,j Ai,j Ci,j

Theorem 4.1. Let B be an upper bound on the bit-size of
∏b−1
j=0mj , let B′ be an upper

bound on the bit-size of any entry of V , let h be an upper bound on the bit-size of any
m0, . . . ,mb−1 and any entry in A0, . . . , Ab−1, and assume that log r = O(h). The running time
of the RemainderTree algorithm is

O(r3M(B + bh) log b+ rM(B′)),

and its space complexity is

O(r2(B + bh) log b+ rB′).

Proof. There are O(B) bits at each level of the mi,j tree. For the Ai,j tree, observe that the
entries of any product Aj1 . . . Aj2−1 have bit-size O((j2−j1)h+log r); thus there are O(bh) bits
at each level of the Ai,j tree. These estimates account for the main terms in the time and space
bounds; for more details see the proofs of [2, Theorem 1.1] or [12, Proposition 4]. We assume
classical matrix multiplication throughout, with complexity O(r3). The terms involving B′

cover any additional cost due to the initial reduction of V modulo m0,0.

4.1. A fast space-efficient remainder tree algorithm

The algorithm given in the previous section uses more space than is necessary. We now describe
a more space-efficient approach that is also faster by a significant constant factor. As above,
we assume b = 2` is a power of two. Our strategy is to pick a parameter k, and rather than
computing a single remainder tree, separately compute the 2k subtrees corresponding to the
bottom `− k layers of the original tree, each of which has height `− k and t = 2`−k leaves.

For 0 6 s < 2k, we define the sth tree as follows. Let

ms
j := mst+j (0 6 j < t),

Asj := Ast+j (0 6 j < t),

V s := V A0 . . . Ast−1 mod mst . . .mb−1.

For 0 6 i 6 `− k and 0 6 j < 2i we define ms
i,j , A

s
i,j and Csi,j in terms of the above data, in

direct analogy with (4.1).
We then have ms

i,j = mi+k,j+2is and Asi,j = Ai+k,j+2is; in other words, the ms
i,j and Asi,j

trees are identical to the corresponding subtrees of the original mi,j and Ai,j trees rooted at
the node (k, s). The same is true for the Csi,j tree, namely, we have Csi,j = Ci+k,j+2is. To see
this, observe that

V s = V Ak,0 . . . Ak,s−1 mod mk,s . . .mk,2k−1,

and ms
0,0 = mk,s. Therefore

Cs0,0 = V s mod ms
0,0 = V Ak,0 . . . Ak,s−1 mod mk,s = Ck,s.

https://doi.org/10.1112/S1461157014000187 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000187


computing hasse–witt matrices 267

For the remaining nodes, the claim Csi,j = Ci+k,j+2is follows by working downwards from the
root of the Cs tree.

The idea of the RemainderForest algorithm below is to compute each subtree separately,
allowing us to reuse space, and to keep track of the vector V s and the moduli product

Y s := mst . . .mb−1

as we proceed from one subtree to the next. The RemainderTree algorithm may be viewed
as a special case of the RemainderForest algorithm, using k = 0.

Algorithm RemainderForest

Given V,A0, . . . , Ab−1 and m0, . . . ,mb−1, with b = 2`, and an integer k ∈ [0, `], compute
C0, . . . , Cb−1 as follows.

1. Set Y 0 ← m0 . . .mb−1 and V 0 ← V mod Y 0, and let t = 2`−k.
2. For s from 0 to 2k − 1:

a. Call RemainderTree with inputs V s, Ast, . . . , A(s+1)t−1, and mst, . . . ,m(s+1)t−1
to compute trees ms, As, Cs.

b. Set Y s+1 ← Y s/ms
0,0 and V s+1 ← V sAs0,0 mod Y s+1.

c. Output the values Cst+j = Cse,j for 0 6 j < t.
d. Discard Y s, V s, and the trees ms, As, Cs.

We now bound the complexity of the RemainderForest algorithm. We do not include the
size of the input in our space bound; in the context of computing Hasse–Witt matrices the
input matrices Aj are dynamically computed as they are needed, in blocks of size 2`−k.

Theorem 4.2. Let B be an upper bound on the bit-size of
∏b−1
j=0mj such that B/2k is an

upper bound on the bit-size of
∏st+t−1
j=st mj for all s. Let B′ be an upper bound on the bit-size

of any entry of V , let h be an upper bound on the bit-size of any m0, . . . ,mb−1 and any entry
in A0, . . . , Ab−1, and assume that log r = O(h). The running time of the RemainderForest
algorithm is

O(r3M(B + bh)(`− k) + 2kr2M(B) + rM(B′)),

and its space complexity is

O(2−kr2(B + bh)(`− k) + r(B +B′)).

Proof. The time complexity of step 1 is O(M(B) log b+ rM(B +B′)). There are 2k calls to
RemainderTree in step 2, each of which takes time

O(r3M(2−kB + 2−kbh)(`− k) + rM(B)),

by Theorem 4.1, since the bit-size of any entry of any V s is bounded by O(B). The cost of
step 2b is bounded by O(M(B) + r2M(B + 2−kbh)), thus each invocation of step 2 costs

O(r3M(2−kB + 2−kbh)(`− k) + r2M(B)).

Multiplying by 2k yields the desired time bound. The first term in the space bound matches
the corresponding term in Theorem 4.1; the second term bounds the space needed for step 1
(and the output), and dominates the second term in the space bound of Theorem 4.1.

With k = 0 we have ` − k = ` = log2 b, and the bounds in Theorem 4.2 reduce to
those of Theorem 4.1. With k = ` the RemainderForest algorithm has essentially optimal

https://doi.org/10.1112/S1461157014000187 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000187


268 d. harvey and a. v. sutherland

space complexity O(rbh) (matching the size of its output), but its time complexity is then
quasiquadratic in b, rather than quasilinear. The intermediate choice k = log2 `+O(1) yields
a time complexity that is at least as good as that of the RemainderTree algorithm (and
may be smaller by a significant constant factor), but with the space complexity improved by
a factor of log b. We will see below that for computing Hasse–Witt matrices, bh is somewhat
larger than B, and this implies that an even better choice is k = 2 log2 `+O(1), reducing the
space complexity by a further factor of log b. See Table 3 in § 5 for an explicit example.

Remark 4. The space complexity can be further reduced using a time-space trade-off as
described in [2, Theorem 1.2]. In practice we find that when computing Hasse–Witt matrices
using the RemainderForest approach, for g 6 3 and the range of N of interest to us, space
is not a limiting factor and no time-space trade-off is necessary. See § 5 for further details.

4.2. Computing the Hasse–Witt matrix

We now give a complete algorithm for computing the Hasse–Witt matrix Wp of a hyperelliptic
curve at all admissible primes p 6 N ; as noted above, the bound N on p corresponds to a bound
of b = N/2 on n. While the basic approach has been explained in the previous sections, to
achieve the best space complexity we must interleave the RemainderForest computations
involving the matrices Mn and denominators Dn, so we use RemainderTree to directly
handle each subtree, rather than using RemainderForest as a black box. This also allows
us to more carefully control the size of the moduli that we use, as discussed further below.

Algorithm ComputeHasseWittMatrices

Given a hyperelliptic curve C : y2 = f(x) =
∑d
i=0 fix

i of genus g, compute the Hasse–Witt
matrices Wp for admissible primes p 6 N as follows.

1. Construct a list P of the admissible primes p = 2n+ 1 6 N .
2. For i from 1 to g:

a. Compute M (i) ∈ Z[n]r×r and D(i) ∈ Z[n] satisfying v
(i)
n+1 = v

(i)
n M (i)(n)/D(i)(n), as

in § 3.
b. Use ComputeHasseWittRows below to compute the ith row of Wp for all p ∈ P.

3. Output the matrices Wp.

As discussed in § 3, in order to minimize the power of p = 2n+ 1 that we use as our moduli,
let e and w be integers such that pe does not divide D0 . . . Dn−1−w for all sufficiently large
admissible p. For g 6 3 using e = g and w 6 3 suffices; in general e and w are both O(g). Our
strategy is to compute the partial productsM0 . . .Mn−1−w andD0 . . . Dn−1−w modulo pe using
remainder trees, and to handle the last w values of Mj and Dj separately; this allows us to use
a smaller value of e than would otherwise be possible. In the context of the RemainderTree
algorithm, this means shifting the moduli mj by w places to the left, relative to the Aj .

Algorithm ComputeHasseWittRows

Given i ∈ [1, g], positive integers e, w, a list P of admissible primes p 6 N = 2`+1, a matrix
M (i) ∈ Z[n]r×r, and D(i) ∈ Z[n], compute the ith row of Wp for all p ∈ P as follows.

1. Compute Y =
∏
p∈P p

g, let v = 1, and let V ∈ Zr be the (r − i + 1)th standard basis
vector.

2. Fix k = 2 log2(`
√
g) +O(1), let t = 2`−k, and for s from 0 to 2k − 1:

a. For st 6 j < (s+ 1)t, set mj = pe = (2j + 1 + 2w)e if p ∈ P and 1 otherwise.
b. Compute Mj = M(j) and Dj = D(j) for st 6 j < (s+ 1)t+ w − 1.

c. Call RemainderTree with inputs V,Mj ,mj to compute Cj = V
∏j−1
u=0Mu mod

mj , m
s =

∏
mj , and Ms =

∏
Mj , where j ranges over integers from st to st+t−1.

https://doi.org/10.1112/S1461157014000187 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000187


computing hasse–witt matrices 269

d. Call RemainderTree with inputs v,Dj ,mj to compute cj = v
∏j−1
u=0Du mod mj

and Ds =
∏
Dj , where j ranges over integers from st to st+ t− 1.

e. Set Y ← Y/ms, V ← VMs mod Y , and v ← vDs mod Y .
f. Compute vj = CjMj . . .Mj+w−1/(cjDj . . . Dj+w−1) mod p for st 6 j < (s + 1)t

such that p = 2j + 1 + 2w ∈ P, and extract the ith row of Wp as the last g entries
of vj .

3. Output the ith row of each of the matrices Wp for p ∈ P.

We now prove the main result announced in the introduction, which bounds the time and
space complexity of ComputeHasseWittMatrices by O(g5M(N log(‖f‖N)) logN) and
O(g2N(1 + log ‖f‖/logN)), respectively, assuming g = O(logN).

Proof of Theorem 1.1. The time and space needed to enumerate the primes in [1, N ] may
be bounded by O(N log2+εN) and O(N), respectively, via [2, Proposition 2.3], by dividing
the interval [1, N ] into O(log3N) subintervals. It follows from Chebyshev’s bound that P uses
O(N) space. The complexity of ComputeHasseWittRows may be bounded as in the proof
of Theorem 4.2; the only new elements are steps 2a and 2b, which have a total time complexity
of O(g4NM(log(‖f‖N))), and step 2f, whose complexity is lower. This is within our desired
time bound, and the space complexity of these steps is dominated by the size of the output.

We now proceed as in the proof of Theorem 4.2. We have B = O(gN), since
∑
p6N log p ∼ N ,

and we note that the requirement thatB/2k bound the bit-size of the productmst . . .mst+t−1 is
satisfied for any k = O(log logN); these facts follow from the prime number theorem. Further,
b = N/2, B′ = O(1), ` = log2N−1, k = 2 log2(`

√
g)+O(1), and h = O(g log(‖f‖N)), since the

polynomials in M(n) and D(n) all have degree O(g) and coefficients of bit-size O(g log ‖f‖),
and the moduli have bit-size O(g logN). This yields the time bound

O(g3M(gN + hN) logN + g3M(gN) log2N + g),

and the space bound
O(g2(gN + hN) logN/(g log2N) + g2N).

This yields O(g4M(N log(‖f‖N)) logN) time and O(g2N(1 + log ‖f‖/ logN)) space bounds
for ComputeHasseWittRows, which is called g times.

5. Implementation details and performance results

We implemented the ComputeHasseWittMatrices algorithm in C, using the gcc

compiler [4] and the GNU multiple-precision arithmetic library (GMP) [8]. For the crucial
operation of multiplying matrices with very large integer entries, we used a customized FFT
implementation as described below.

5.1. Customized FFT

The customized FFT uses the standard ‘small primes’ approach, as outlined in [26, Chapter 8].
To compute a product uv, where u, v ∈ Z, we choose a parameter c > 1 and write u = F (2c) and
v = G(2c), where F,G ∈ Z[x] have coefficients bounded by 2c. We then compute the polynomial
product FG ∈ Z[x] and obtain uv as (FG)(2c). To compute FG, we choose four suitable 62-bit
primes p1, . . . , p4 and compute FG mod pi in (Z/piZ)[x] for each i, and then reconstruct FG
via the Chinese remainder theorem. The parameter c is chosen as large as possible so that the
coefficients of FG remain bounded by p1 . . . p4. Multiplication in (Z/piZ)[x] is achieved by using
Fourier transforms (number-theoretic transforms) over Z/piZ. This requires pi = 1 mod 2a,
where 2a is the transform length. Our implementation uses optimized modular arithmetic as

https://doi.org/10.1112/S1461157014000187 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000187


270 d. harvey and a. v. sutherland

in [13], truncated Fourier transforms to avoid power-of-two jumps in running times [24, 25],
and ideas from [11] to improve locality.

To multiply matrices we use the same strategy. If u and v are r × r integer matrices (recall
that r = d or d−1, where d is the degree of the polynomial f in the curve equation y2 = f(x)),
we write u = F (2c) and v = G(2c) where now F and G are matrices of polynomials with small
coefficients, or equivalently polynomials with matrix coefficients. We then perform 2r2 forward
transforms, multiply the resulting Fourier coefficients (each coefficient is an r × r matrix over
Z/piZ), and perform r2 inverse transforms, with a final linear-time substitution generating
the desired product uv. Our implementation allows the polynomial entries to have signed
coefficients, so that we can directly handle matrices u and v containing a mixture of positive
and negative entries. Matrix-vector products are handled similarly.

The main advantage of this approach over a straightforward GMP implementation is that we
require only O(r2) transforms rather than O(r3). In our computations the Fourier transforms
make up the bulk of the time spent on matrix multiplication.

5.2. Timings

The timings listed in this section were obtained using an 8-core Intel Xeon E5-2670 CPU
running at 2.60 GHz, with 20 MB of cache and 32 GB of RAM; in each case we list the total
CPU time, in seconds, for a single-threaded implementation. Table 1 lists timings for increasing
values of N with g = 1, 2, 3 and each of the three possible values of r; as in § 3 we have

r =


2g when d = 2g + 1 and f0 = 0,

2g + 1 when d = 2g + 1 and f0 6= 0,

2g + 2 when d = 2g + 2 and f0 6= 0.

Table 2 gives the corresponding memory consumption for each case.
The impact of varying the parameter k, which determines the number 2k of subtrees used

in the RemainderForest algorithm, is illustrated for a particular example with g = 3 and
N = 20 in Table 3. In all of our other tests the parameter k was chosen to optimize time; the

Table 1. Time (CPU seconds) for Hasse–Witt matrix computations for the curve
y2 = 2xd + 3xd−1 + . . . + pd+1, where pn is the nth prime (f0 = 0 for r = 2g).

g = 1 g = 2 g = 3

N r = 2 r = 3 r = 4 r = 4 r = 5 r = 6 r = 6 r = 7 r = 8

214 < 1 < 1 < 1 < 1 < 1 1 1 2 3
215 < 1 < 1 < 1 1 1 2 3 6 9
216 < 1 < 1 1 2 3 5 8 14 21
217 < 1 1 1 4 7 12 20 34 52
218 1 2 4 9 17 29 49 81 123
219 1 4 8 22 40 69 116 192 294
220 3 9 20 50 94 166 282 459 694
221 7 21 47 123 227 398 667 1085 1633
222 17 49 114 287 534 946 1560 2540 3810
223 38 115 268 645 1240 2230 3660 5940 9100
224 89 271 641 1510 2920 5260 8490 13 800 20 600
225 202 628 1470 3430 6740 11 800 19 600 31 800 47 200
226 470 1475 3390 7930 15 800 27 400 44 700 72 900 107 000

https://doi.org/10.1112/S1461157014000187 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000187


computing hasse–witt matrices 271

optimal choice of k varies with both N and r and in our tests ranged from 4 to 8. As can be
seen in Table 3, the value of k that optimizes time also yields a space utilization that is much
better than would be achieved by the original RemainderTree algorithm (the case k = 0).
Even in our largest tests, the time-optimal value of k yielded a space utilization under 20 GB,
well within the 32 GB available on our test system. By contrast, the original RemainderTree
algorithm would have required more than 1 TB of memory in our larger tests.

Tables 4 compares the performance of the new algorithm (in the column labelled hassewitt)
to the smalljac implementation described in [15]. In genus 2 the smalljac implementation
relies primarily on group computations in the Jacobian of the curve, as described in [15],
and the current version [22] includes additional improvements from [23]. As can be seen in
the table, the new algorithm surpasses the performance of smalljac when N is between 218

and 219 and is more than 12 times faster for N = 226.
As noted in [15], for genus 3 curves, using an optimized version of Kedlaya’s algorithm [10]

is faster than using group computations in the Jacobian for N > 216. Table 5 compares the
performance of the new algorithm to that of the hypellfrob library [9], which implements
the algorithm of [10], using one digit of p-adic precision (sufficient to compute the Hasse–Witt
matrix). In genus 3 the new algorithm is substantially faster than hypellfrob for all the values
of N that we tested, and more than 20 times faster for N = 226. We do not include a column
for the case r = 8 in Table 5 because the hypellfrob library requires d to be odd.

Table 2. Space (MB) for Hasse–Witt matrix computations for the curve
y2 = 2xd + 3xd−1 + . . . + pd+1, where pn is the nth prime (f0 = 0 for r = 2g).

g = 1 g = 2 g = 3

N r = 2 r = 3 r = 4 r = 4 r = 5 r = 6 r = 6 r = 7 r = 8

214 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 1
215 < 1 < 1 1 1 1 1 4 6 8
216 1 1 1 3 5 7 9 12 16
217 2 2 4 6 10 14 18 25 33
218 5 5 8 13 20 29 38 51 69
219 11 11 17 27 41 59 79 106 144
220 16 21 35 53 83 121 162 220 295
221 32 42 71 108 169 249 332 450 610
222 63 84 145 218 346 517 682 942 1258
223 124 170 307 444 716 1064 1396 1940 2614
224 247 634 634 920 1467 2195 2869 3980 5385
225 498 708 1300 1890 3014 3398 5865 8231 11 162
226 1002 1440 2679 3843 6478 6950 12 134 12 925 17 137

Table 3. Time (CPU seconds) and space (MB) for Hasse–Witt matrix computations for the curve
y2 = 2x7 + 3x6 + 5x5 + 7x4 + 11x3 + 13x2 + 17x + 19 with N = 20 and varying k.

k

0 1 2 3 4 5 6 7 8 9 10 11

Time (s) 750 718 661 602 535 483 459 466 540 736 1145 2055
Space (MB) 8529 4416 2215 1089 533 311 220 178 162 153 149 147

https://doi.org/10.1112/S1461157014000187 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000187


272 d. harvey and a. v. sutherland

Table 4. Performance comparison with smalljac in genus 2. Times in CPU seconds.

r = 4 r = 5 r = 6

N hassewitt smalljac hassewitt smalljac hassewitt smalljac

214 0.2 0.2 0.4 0.2 0.7 0.3
215 0.6 0.5 1.1 0.6 1.9 0.7
216 1.4 1.7 2.8 1.7 4.9 2.0
217 3.5 5.6 6.8 5.6 11.9 6.4
218 8.6 19.9 16.8 20.2 29.0 22.1
219 20.6 76.0 39.7 76.4 69.1 83.4
220 48.9 257 94.4 257 166 284
221 123 828 227 828 398 914
222 287 2630 534 2630 946 2900
223 645 8560 1240 8570 2230 9520
224 1510 28000 2920 28 000 5260 31 100
225 3430 92200 6740 92 300 11 800 102 000
226 7930 314 000 15 800 316 000 27 400 349 000

Table 5. Performance comparison with hypellfrob in genus 3. Times in CPU seconds.

r = 6 r = 7

N hassewitt hypellfrob hassewitt hypellfrob

214 1.3 6.7 2.0 6.8
215 3.4 15.5 5.5 15.6
216 8.3 37.4 13.6 37.6
217 20.2 95.1 33.3 95.0
218 48.6 249 80.4 250
219 116 680 192 681
220 282 1910 459 1920
221 667 5450 1090 5460
222 1560 16 200 2540 16 300
223 3660 49 400 5940 49 400
224 8490 152 000 13 800 152 000
225 19600 467 000 31 800 467 000
226 44 700 1490 000 72 900 1490 000

References

1. A. Bostan, P. Gaudry and É. Schost, ‘Linear recurrences with polynomial coefficients and application
to integer factorization and Cartier–Manin operator’, SIAM J. Comput. 36 (2007) no. 6, 1777–1806;
MR 2299425 (2008a:11156).

2. E. Costa, R. Gerbicz and D. Harvey, ‘A search for Wilson primes’, Math. Comp. (2014) to appear.
3. F. Fité, K. S. Kedlaya, V. Rotger and A. V. Sutherland, ‘Sato–Tate distributions and Galois

endomorphism modules in genus 2’, Compos. Math. 148 (2012) no. 5, 1390–1442; MR 2982436.
4. Free Software Foundation, GNU compiler collection, version 4.8, 2013, http://gcc.gnu.org/.
5. P. Gaudry, D. Kohel and B. Smith, ‘Counting points on genus 2 curves with real multiplication’,

Advances in cryptology—ASIACRYPT 2011, Lecture Notes in Computer Science 7073 (Springer,
Heidelberg, 2011) 504–519; MR 2935020.

6. P. Gaudry and É. Schost, ‘Genus 2 point counting over prime fields’, J. Symbolic Comput. 47 (2012)
no. 4, 368–400; MR 2890878.

7. Josep González, ‘Hasse–Witt matrices for the Fermat curves of prime degree’, Tohoku Math. J. (2) 49
(1997) no. 2, 149–163; MR 1447179 (98b:11064).

https://doi.org/10.1112/S1461157014000187 Published online by Cambridge University Press

http://www.ams.org/mathscinet-getitem?mr=2299425
http://www.ams.org/mathscinet-getitem?mr=2299425
http://www.ams.org/mathscinet-getitem?mr=2299425
http://www.ams.org/mathscinet-getitem?mr=2299425
http://www.ams.org/mathscinet-getitem?mr=2299425
http://www.ams.org/mathscinet-getitem?mr=2299425
http://www.ams.org/mathscinet-getitem?mr=2299425
http://www.ams.org/mathscinet-getitem?mr=2299425
http://www.ams.org/mathscinet-getitem?mr=2299425
http://www.ams.org/mathscinet-getitem?mr=2299425
http://www.ams.org/mathscinet-getitem?mr=2982436
http://www.ams.org/mathscinet-getitem?mr=2982436
http://www.ams.org/mathscinet-getitem?mr=2982436
http://www.ams.org/mathscinet-getitem?mr=2982436
http://www.ams.org/mathscinet-getitem?mr=2982436
http://www.ams.org/mathscinet-getitem?mr=2982436
http://www.ams.org/mathscinet-getitem?mr=2982436
http://www.ams.org/mathscinet-getitem?mr=2982436
http://www.ams.org/mathscinet-getitem?mr=2982436
http://www.ams.org/mathscinet-getitem?mr=2982436
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://www.ams.org/mathscinet-getitem?mr=2935020
http://www.ams.org/mathscinet-getitem?mr=2935020
http://www.ams.org/mathscinet-getitem?mr=2935020
http://www.ams.org/mathscinet-getitem?mr=2935020
http://www.ams.org/mathscinet-getitem?mr=2935020
http://www.ams.org/mathscinet-getitem?mr=2935020
http://www.ams.org/mathscinet-getitem?mr=2935020
http://www.ams.org/mathscinet-getitem?mr=2935020
http://www.ams.org/mathscinet-getitem?mr=2935020
http://www.ams.org/mathscinet-getitem?mr=2935020
http://www.ams.org/mathscinet-getitem?mr=2890878
http://www.ams.org/mathscinet-getitem?mr=2890878
http://www.ams.org/mathscinet-getitem?mr=2890878
http://www.ams.org/mathscinet-getitem?mr=2890878
http://www.ams.org/mathscinet-getitem?mr=2890878
http://www.ams.org/mathscinet-getitem?mr=2890878
http://www.ams.org/mathscinet-getitem?mr=2890878
http://www.ams.org/mathscinet-getitem?mr=2890878
http://www.ams.org/mathscinet-getitem?mr=2890878
http://www.ams.org/mathscinet-getitem?mr=2890878
http://www.ams.org/mathscinet-getitem?mr=1447179
http://www.ams.org/mathscinet-getitem?mr=1447179
http://www.ams.org/mathscinet-getitem?mr=1447179
http://www.ams.org/mathscinet-getitem?mr=1447179
http://www.ams.org/mathscinet-getitem?mr=1447179
http://www.ams.org/mathscinet-getitem?mr=1447179
http://www.ams.org/mathscinet-getitem?mr=1447179
http://www.ams.org/mathscinet-getitem?mr=1447179
http://www.ams.org/mathscinet-getitem?mr=1447179
http://www.ams.org/mathscinet-getitem?mr=1447179
https://doi.org/10.1112/S1461157014000187


computing hasse–witt matrices 273

8. T. Granlund and the GMP development team, GNU multiple precision arithmetic library, version 5.1,
2013, http://gmplib.org/.

9. D. Harvey, hypellfrob software library, version 2.1.1, 2008, http://web.maths.unsw.edu.au/∼davidharv
ey/code/hypellfrob/hypellfrob-2.1.1.tar.gz.

10. D. Harvey, ‘Kedlaya’s algorithm in larger characteristic’, Int. Math. Res. Not. IMRN (2007) no. 22,
doi:10.1093/imrn/rnm095.

11. D. Harvey, ‘A cache-friendly truncated FFT’, Theoret. Comput. Sci. 410 (2009) no. 27–29, 2649–2658;
MR 2531107 (2010g:68327).

12. D. Harvey, ‘Counting points on hyperelliptic curves in average polynomial time’, Ann. of Math. (2) 179
(2014) no. 2, 783–803.

13. D. Harvey, ‘Faster arithmetic for number-theoretic transforms’, J. Symbolic Comput. 60 (2014) 113–119;
MR 3131382.

14. D. Harvey and A. V. Sutherland, Sage worksheet for computing transition matrices, 2014,
http://math.mit.edu/∼drew/Hasse-Witt-transition-matrices.sws.

15. K. S. Kedlaya and A. V. Sutherland, ‘Computing L-series of hyperelliptic curves’, Algorithmic Number
Theory Eighth International Symposium (ANTS VIII), Lecture Notes in Computer Science 5011 (Springer,
Berlin, 2008) 312–326; MR 2467855 (2010d:11070).

16. K. S. Kedlaya and A. V. Sutherland, ‘Hyperelliptic curves, L-polynomials, and random matrices’,
Arithmetic, geometry, cryptography and coding theory, Contemporary Mathematics 487 (American
Mathematical Society, Providence, RI, 2009) 119–162; MR 2555991 (2011d:11154).

17. J. I. Manin, ‘The Hasse–Witt matrix of an algebraic curve’, AMS Trans. Series 2 45 (1965) 245–264;
(originally published in Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961) 153–172); MR 0124324 (23 #A1638).

18. J. Pila, ‘Frobenius maps of abelian varieties and finding roots of unity in finite fields’, Math. Comp. 55
(1990) no. 192, 745–763; MR 1035941 (91a:11071).

19. A. Schönhage and V. Strassen, ‘Schnelle multiplikation grosser zahlen’, Computing (Arch. Elektron.
Rechnen) 7 (1971) 281–292; MR 0292344 (45 #1431).

20. R. Schoof, ‘Elliptic curves over finite fields and the computation of square roots mod p’, Math. Comp.
44 no. 170, 483–494; MR 777280 (86e:11122).

21. W. A. Stein et al., Sage mathematics software (version 6.0), The Sage Development Team, 2013,
http://www.sagemath.org.

22. A. V. Sutherland, smalljac software library, version 4.0.23, 2013, http://math.mit.edu/∼drew/smallja
c v4.0.23.tar.

23. A. V. Sutherland, ‘Structure computation and discrete logarithms in finite abelian p-groups’, Math.
Comp. 80 (2011) no. 273, 477–500; MR 2728991 (2012d:20112).

24. J. van der Hoeven, ‘The truncated Fourier transform and applications’, ISSAC 2004 (ACM, New York,
2004) 290–296; MR 2126956.

25. J. van der Hoeven, ‘Notes on the truncated Fourier transform’, Technical Report 2005-5, Université
Paris-Sud, Orsay, France, 2005, available at http://www.texmacs.org/joris/tft/tft-abs.html.

26. J. von zur Gathen and J. Gerhard, Modern computer algebra, 3rd edn (Cambridge University Press,
Cambridge, 2013) MR 3087522.

27. N. Yui, ‘On the Jacobian varieties of hyperelliptic curves over fields of characteristic p > 2’, J. Algebra
52 (1978) no. 2, 378–410; MR 0491717 (58 #10920).

David Harvey
School of Mathematics and Statistics
University of New South Wales
Sydney, NSW 2052
Australia

d.harvey@unsw.edu.au

Andrew V. Sutherland
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139
USA

drew@math.mit.edu

https://doi.org/10.1112/S1461157014000187 Published online by Cambridge University Press

http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob/hypellfrob-2.1.1.tar.gz
http://www.ams.org/mathscinet-getitem?mr=2531107
http://www.ams.org/mathscinet-getitem?mr=2531107
http://www.ams.org/mathscinet-getitem?mr=2531107
http://www.ams.org/mathscinet-getitem?mr=2531107
http://www.ams.org/mathscinet-getitem?mr=2531107
http://www.ams.org/mathscinet-getitem?mr=2531107
http://www.ams.org/mathscinet-getitem?mr=2531107
http://www.ams.org/mathscinet-getitem?mr=2531107
http://www.ams.org/mathscinet-getitem?mr=2531107
http://www.ams.org/mathscinet-getitem?mr=2531107
http://www.ams.org/mathscinet-getitem?mr=3131382
http://www.ams.org/mathscinet-getitem?mr=3131382
http://www.ams.org/mathscinet-getitem?mr=3131382
http://www.ams.org/mathscinet-getitem?mr=3131382
http://www.ams.org/mathscinet-getitem?mr=3131382
http://www.ams.org/mathscinet-getitem?mr=3131382
http://www.ams.org/mathscinet-getitem?mr=3131382
http://www.ams.org/mathscinet-getitem?mr=3131382
http://www.ams.org/mathscinet-getitem?mr=3131382
http://www.ams.org/mathscinet-getitem?mr=3131382
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://math.mit.edu/~drew/Hasse-Witt-transition-matrices.sws
http://www.ams.org/mathscinet-getitem?mr=2467855
http://www.ams.org/mathscinet-getitem?mr=2467855
http://www.ams.org/mathscinet-getitem?mr=2467855
http://www.ams.org/mathscinet-getitem?mr=2467855
http://www.ams.org/mathscinet-getitem?mr=2467855
http://www.ams.org/mathscinet-getitem?mr=2467855
http://www.ams.org/mathscinet-getitem?mr=2467855
http://www.ams.org/mathscinet-getitem?mr=2467855
http://www.ams.org/mathscinet-getitem?mr=2467855
http://www.ams.org/mathscinet-getitem?mr=2467855
http://www.ams.org/mathscinet-getitem?mr=2555991
http://www.ams.org/mathscinet-getitem?mr=2555991
http://www.ams.org/mathscinet-getitem?mr=2555991
http://www.ams.org/mathscinet-getitem?mr=2555991
http://www.ams.org/mathscinet-getitem?mr=2555991
http://www.ams.org/mathscinet-getitem?mr=2555991
http://www.ams.org/mathscinet-getitem?mr=2555991
http://www.ams.org/mathscinet-getitem?mr=2555991
http://www.ams.org/mathscinet-getitem?mr=2555991
http://www.ams.org/mathscinet-getitem?mr=2555991
http://www.ams.org/mathscinet-getitem?mr=0124324
http://www.ams.org/mathscinet-getitem?mr=0124324
http://www.ams.org/mathscinet-getitem?mr=0124324
http://www.ams.org/mathscinet-getitem?mr=0124324
http://www.ams.org/mathscinet-getitem?mr=0124324
http://www.ams.org/mathscinet-getitem?mr=0124324
http://www.ams.org/mathscinet-getitem?mr=0124324
http://www.ams.org/mathscinet-getitem?mr=0124324
http://www.ams.org/mathscinet-getitem?mr=0124324
http://www.ams.org/mathscinet-getitem?mr=0124324
http://www.ams.org/mathscinet-getitem?mr=1035941
http://www.ams.org/mathscinet-getitem?mr=1035941
http://www.ams.org/mathscinet-getitem?mr=1035941
http://www.ams.org/mathscinet-getitem?mr=1035941
http://www.ams.org/mathscinet-getitem?mr=1035941
http://www.ams.org/mathscinet-getitem?mr=1035941
http://www.ams.org/mathscinet-getitem?mr=1035941
http://www.ams.org/mathscinet-getitem?mr=1035941
http://www.ams.org/mathscinet-getitem?mr=1035941
http://www.ams.org/mathscinet-getitem?mr=1035941
http://www.ams.org/mathscinet-getitem?mr=0292344
http://www.ams.org/mathscinet-getitem?mr=0292344
http://www.ams.org/mathscinet-getitem?mr=0292344
http://www.ams.org/mathscinet-getitem?mr=0292344
http://www.ams.org/mathscinet-getitem?mr=0292344
http://www.ams.org/mathscinet-getitem?mr=0292344
http://www.ams.org/mathscinet-getitem?mr=0292344
http://www.ams.org/mathscinet-getitem?mr=0292344
http://www.ams.org/mathscinet-getitem?mr=0292344
http://www.ams.org/mathscinet-getitem?mr=0292344
http://www.ams.org/mathscinet-getitem?mr=777280
http://www.ams.org/mathscinet-getitem?mr=777280
http://www.ams.org/mathscinet-getitem?mr=777280
http://www.ams.org/mathscinet-getitem?mr=777280
http://www.ams.org/mathscinet-getitem?mr=777280
http://www.ams.org/mathscinet-getitem?mr=777280
http://www.ams.org/mathscinet-getitem?mr=777280
http://www.ams.org/mathscinet-getitem?mr=777280
http://www.ams.org/mathscinet-getitem?mr=777280
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://math.mit.edu/~drew/smalljac_v4.0.23.tar
http://www.ams.org/mathscinet-getitem?mr=2728991
http://www.ams.org/mathscinet-getitem?mr=2728991
http://www.ams.org/mathscinet-getitem?mr=2728991
http://www.ams.org/mathscinet-getitem?mr=2728991
http://www.ams.org/mathscinet-getitem?mr=2728991
http://www.ams.org/mathscinet-getitem?mr=2728991
http://www.ams.org/mathscinet-getitem?mr=2728991
http://www.ams.org/mathscinet-getitem?mr=2728991
http://www.ams.org/mathscinet-getitem?mr=2728991
http://www.ams.org/mathscinet-getitem?mr=2728991
http://www.ams.org/mathscinet-getitem?mr=2126956
http://www.ams.org/mathscinet-getitem?mr=2126956
http://www.ams.org/mathscinet-getitem?mr=2126956
http://www.ams.org/mathscinet-getitem?mr=2126956
http://www.ams.org/mathscinet-getitem?mr=2126956
http://www.ams.org/mathscinet-getitem?mr=2126956
http://www.ams.org/mathscinet-getitem?mr=2126956
http://www.ams.org/mathscinet-getitem?mr=2126956
http://www.ams.org/mathscinet-getitem?mr=2126956
http://www.ams.org/mathscinet-getitem?mr=2126956
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.texmacs.org/joris/tft/tft-abs.html
http://www.ams.org/mathscinet-getitem?mr=3087522
http://www.ams.org/mathscinet-getitem?mr=3087522
http://www.ams.org/mathscinet-getitem?mr=3087522
http://www.ams.org/mathscinet-getitem?mr=3087522
http://www.ams.org/mathscinet-getitem?mr=3087522
http://www.ams.org/mathscinet-getitem?mr=3087522
http://www.ams.org/mathscinet-getitem?mr=3087522
http://www.ams.org/mathscinet-getitem?mr=3087522
http://www.ams.org/mathscinet-getitem?mr=3087522
http://www.ams.org/mathscinet-getitem?mr=3087522
http://www.ams.org/mathscinet-getitem?mr=0491717
http://www.ams.org/mathscinet-getitem?mr=0491717
http://www.ams.org/mathscinet-getitem?mr=0491717
http://www.ams.org/mathscinet-getitem?mr=0491717
http://www.ams.org/mathscinet-getitem?mr=0491717
http://www.ams.org/mathscinet-getitem?mr=0491717
http://www.ams.org/mathscinet-getitem?mr=0491717
http://www.ams.org/mathscinet-getitem?mr=0491717
http://www.ams.org/mathscinet-getitem?mr=0491717
http://www.ams.org/mathscinet-getitem?mr=0491717
https://doi.org/10.1112/S1461157014000187

	1 Introduction
	2 Overview
	3 Recurrence relations
	3.1 Genus 1, quartic model
	3.2 Genus 1, cubic model
	3.3 Genus 2
	3.4 Genus 3

	4 Accumulating remainder trees
	4.1 A fast space-efficient remainder tree algorithm
	4.2 Computing the Hasse–Witt matrix

	5 Implementation details and performance results
	5.1 Customized FFT
	5.2 Timings

	References

