On a class of finite

soluble groups

G. Karpilovsky

Let the group T be the direct product of groups S_{i} $(i=1, \ldots, r)$ where for a given group A_{i}, S_{i} is the direct product of n_{i} factors $A_{i} \times A_{i} \times \ldots \times A_{i}$. Let B be a group that has a faithful permutation representation Γ_{i} of degree n_{i} $(i=1, \ldots, r)$. Consider G, the split extension of T by B defined by letting B act on T as follows.

Each S_{i} is normal in $G . \operatorname{If}\left(a_{1}, \ldots, a_{n_{i}}\right) \in S_{i}$ and $b \in B$ then $\left(a_{1}, \ldots, a_{n_{i}}\right)^{b}=\left(a_{\alpha_{1}}, a_{\alpha_{2}}, \ldots, a_{\alpha_{n_{i}}}\right)_{\text {where }}$ $\Gamma_{i}(b)=\left(\begin{array}{ccc}\alpha_{1} \alpha_{2} \ldots & \ldots & n_{i} \\ 1 & 2 \ldots & \ldots \\ i\end{array}\right)$. It is proved that if T is an M-group and all subgroups of B are M-groups, then G is an M-group. This is a generalisation of a result of Gary M. Seitz, Math. Z. 110 (1969), 101-122, who proved the particular case where $r=1$ and Γ_{1} is the regular representation of B.

A finite group G is an M-group if each irreducible complex character of G is induced from a linear character of a subgroup of G. Some of the difficulties involved in studying M-groups are indicated by a result of Dade which states that any finite soluble group can be embedded

Received 6 December 1974.
in an M-group [3]. Seitz sharpened Dade's result by proving that a finite soluble group can be embedded in an M-group with the same derived length. This statement is a corollary of the following result of seitz [4]:

Let A be an M-group and suppose B is a group all of whose subgroups are M-groups. Then A wr B, the wreath product of A with B is an M-group.

The aim of this paper is to generalise this result of Seitz.
We shall use the following notation:
aut G is the group of automorphisms of the group G;
ker χ is the kernel of the character X;
an \tilde{M}-group is a group all of whose subgroups are M-groups;
if H is a subgroup of the group G and X a character of H then χ^{G} is the character of G induced from X;
$N_{G}(X)$ is the stabilizer of X in G;
$\psi \psi H$ is the restriction of a character ψ of a group G to its subgroup H;
$a^{b}=b^{-1} a b$.
LEMMA 1 [2]. Let $H \triangleleft G, X$ an irreducible character of H which has an extension \hat{X} to $T=N_{G}(\chi)$. Then $\chi^{G}=\sum_{\omega} \omega(1)(\omega \hat{X})^{G}$ where the sum mus over the irreducible characters of T / H. Each character $(\omega \hat{X})^{G}$ is irreducible and $\left(\omega_{1} \hat{x}\right)^{G}=\left(\omega_{2} \hat{x}\right)^{G}$ implies $\omega_{1}=\omega_{2}$.

LEMMA 2 [1]. Suppose $H \triangleleft G$. If H is abelian and complemented in G, then each irreducible character of H extends to its stabilizer.

LEMMA 3. Let $G=A \cdot B \quad(A \triangleleft G, A \cap B=1)$. Then each linear character of A extends to its stabilizer.

Proof. Let $T=N_{G}(X)$ be the stabilizer of the linear character X of A. Then $T=A \cdot B_{0} \quad\left(B_{0}=B \cap T\right)$. If ker $X=K \quad(K \triangleleft T)$ then $T / K=(A / K) \cdot\left(B_{0} K / K\right)$ (semidirect product) and A / K is cyclic. Now use

Lemma 2.
It is clear that not every extension of an M-group by an \tilde{M}-group is an M-group. We formulate one sufficient condition for such an extension to be an M-group.

THEOREM 1. Let $G=A \cdot B \quad(A \triangleleft G, A \cap B=1)$ where A is an M-group and B is an \tilde{M}-group. If for each irreducible character $\quad x=\phi^{A}$ of the group A where ϕ is a linear character of a group $H \subseteq A$, $N_{G}(\chi) \cap B \subseteq N_{G}(\phi)$, then G is an M-group.

Proof. Let $N_{G}(X)=T$ and $B_{0}=T \cap B$; then $T=A \cdot B_{0}$. In view of $B_{0} \subseteq N_{G}(\phi)$ the stabilizer of the character ϕ in the group $S=H B_{0}$ $\left(H \triangleleft S, H \cap B_{0}=1\right)$ is S. Thus the linear character ϕ of the group H can be extended to a linear character $\hat{\phi}$ of the group S (see Lemma 3). Now $\hat{\phi}^{T} \downarrow A=\left(\hat{\phi} \downarrow H B_{0} \cap A\right)^{A}=(\hat{\phi} \downarrow H)^{A}=\phi^{A}=\chi$. (We have used the subgroup theorem [1] and the fact that $\left.\left(H B_{0}\right) A=T.\right)$ Thus the character X has an extension to the irreducible monomial character $\hat{\phi}^{T}$ of the group $T=N_{G}(\chi)$. Now using Lemma I we have $\chi^{G}=\sum_{\omega} \omega(1)\left(\omega \hat{\phi}^{T}\right)^{G}$. Since B is an \tilde{M}-group, the group $T / A \cong B_{0} \subseteq B$ is an M-group, and therefore if ω is any irreducible character of T / A then $\omega=\psi^{T}$ where ψ is a linear character of the group $R \quad(A \subseteq R \subseteq T)$. Further

$$
\left(\omega \hat{\phi}^{T}\right)^{G}=\left(\psi^{T} \cdot \hat{\phi}^{T}\right)^{G}=\left[\left(\psi\left(\hat{\phi}^{T} \downarrow R\right)\right)^{T}\right]^{G}=\left[\psi\left(\hat{\phi}^{T} \downarrow R\right)\right]^{G}
$$

But $\hat{\phi}^{T} \downarrow R=\left(\hat{\phi} \downarrow H B_{0} \cap R\right)^{R}$ and hence

$$
\left(\omega \hat{\phi}^{T}\right)^{G}=\left[\psi\left(\hat{\phi} \downarrow H B_{0} \cap R\right)^{R}\right]^{G}=\left[\left[(\psi \hat{\phi}) \downarrow H B_{0} \cap R\right]^{R}\right]^{G}=\left[(\psi \hat{\phi}) \downarrow H B_{0} \cap R\right]^{G}
$$

which proves the theorem.
Now let $T=A \times A \times \ldots \times A \quad(n$ factors $)$ and assume that a group B admits a faithful representation Γ by permutations of degree n. Let $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \quad\left(a_{i} \in A\right)$ be any element of T and b any element
of B with $\Gamma(b)=\left(\begin{array}{ccc}\alpha_{1} \alpha_{2} & \ldots & \alpha_{n} \\ 1 & 2 \ldots & \ldots\end{array}\right)$. Then

$$
\begin{equation*}
\phi_{b}(a)=\left(\alpha_{\alpha_{1}}, a_{\alpha_{2}}, \ldots, \alpha_{\alpha_{n}}\right) \tag{1}
\end{equation*}
$$

is an automorphism of the group T and the mapping $\psi: B \rightarrow$ aut T where, for each $b \in B, \psi(b)=\phi_{b} \in$ aut T, is a homomorphism of the group B into the group aut T. We shall call the automorphism ϕ_{b}, defined by (1), the automorphism corresponding to Γ.

Consider the group $G=T \cdot B \quad(T \triangleleft G, T \cap B=1)$ where $a^{b}=\phi_{b}(a)$ $(a \in T, b \in B)$. Then this group is isomorphic to the wreath product of the group T with the permutation group $\Gamma(B)$. When Γ is the regular representation of the group B we have the standard wreath product T wr B. The following theorem considers a more general type of group.

THEOREM 2. Let $T=S_{1} \times S_{2} \times \ldots \times S_{r}$ where $S_{i}=A_{i} \times A_{i} \times \ldots \times A_{i} \quad\left(n_{i}\right.$ factors; $\left.i=1,2, \ldots, r\right)$ and let B be a group which admits a farthful representation Γ_{i} by permutations of degree $n_{i}(i=1,2, \ldots, r)$. Let G be the split extension of T by B, where each S_{i} is invariant under B, and the action of $b \in B$ on S_{i} is given by the automorphism determined by $\Gamma_{i}(b)$ according to the mule given in (1). Then if T is an M-group and B is an M-group then G is an M-group.

Proof. First of all consider the case when $r=1$. Then $G=T B$ $(T \triangleleft G, T \cap B=1), T=A \times A \times \ldots \times A \quad(n$ factors $)$. If $b \in B$ is any element of B and $\Gamma(b)=\left(\begin{array}{ccc}\alpha_{1} & \alpha_{2} & \ldots\end{array} \alpha_{n}, \quad\right.$ then

$$
\begin{equation*}
a^{b}=\left(a_{\alpha_{1}}, a_{\alpha_{2}}, \ldots, a_{\alpha_{n}}\right) \tag{2}
\end{equation*}
$$

where $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is any element of $T\left(a_{i} \in A\right)$. Let $x=x_{1} x_{2} \ldots x_{n}$ be any irreducible character of T. Thus $x(a)=x_{1}\left(a_{1}\right) x_{2}\left(a_{2}\right) \cdots x_{n}\left(a_{n}\right)$ and x_{i} is an irreducible character of A
$(i=1,2, \ldots, n)$. Now since A is an M-group, $\chi_{i}=\psi_{i}^{A}$, where ψ_{i} is a linear character of some $H_{i} \subseteq A \quad(i=1,2, \ldots, n)$. Now $\psi=\psi_{1} \psi_{2} \ldots \psi_{n}$ is a linear character of the group
$H=H_{1} \times H_{2} \times \ldots \times H_{n} \subseteq T$ and $X=\psi^{T}$. In view of (2),
$x\left(a^{b}\right)=x_{1}\left(a_{\alpha_{1}}\right) x_{2}\left(a_{\alpha_{2}}\right) \ldots x_{n}\left(a_{\alpha_{n}}\right)$, and $x\left(a^{b}\right)=x(a)$ implies $x_{i}=x_{\alpha_{i}}$
$(i=1,2, \ldots, n)$. Thus we can assume that $H_{i}=H_{\alpha_{i}}$ and $\psi_{i}=\psi_{\alpha_{i}}$
$(i=1,2, \ldots, n)$. Now $N_{G}(X)=T B_{0} \quad\left(B_{0}=N_{G}(X) \cap T\right)$, and for each
$h=\left(h_{1}, h_{2}, \ldots, h_{n}\right) \in H \quad\left(h_{i} \in H_{i} ; i=1,2, \ldots, n\right), b \in B_{0}$, we have
$h^{b}=\left(h_{\alpha_{1}}, \ldots, h_{\alpha_{n}}\right)$, where $b \rightarrow\left(\begin{array}{cc}\alpha_{1} \alpha_{2} \ldots \alpha_{n} \\ 1 & 2 \ldots\end{array}\right)$ and so $b^{-1} H b \subseteq H$.
Moreover, if $\psi(h)=\psi_{1}\left(h_{1}\right) \psi_{2}\left(h_{2}\right) \ldots \psi_{n}\left(h_{n}\right)$ then
$\psi\left(h^{b}\right)=\psi_{1}\left(h_{\alpha_{1}}\right) \ldots \psi_{n}\left(h_{\alpha_{n}}\right)=\psi_{\alpha_{1}}\left(h_{\alpha_{1}}\right) \ldots \psi_{\alpha_{n}}\left(h_{\alpha_{n}}\right)=\psi$. Hence

$$
\begin{equation*}
N_{G}(\chi) \cap B \subseteq N(\psi) \cap B \tag{3}
\end{equation*}
$$

This proves Theorem 2 for the case $r=1$ (by applying Theorem I). Now consider the general case. Let $\chi=\chi_{1} \chi_{2} \ldots \chi_{r}$ be any irreducible character of T, where X_{i} is an irreducible character of S_{i} $(i=1,2, \ldots, r)$. Further, for some linear character ψ_{i} of the group $H_{i} \subseteq S_{i}, \quad x_{i}=\psi_{i}^{S}{ }_{i} \quad(i=1,2, \ldots, r)$. As above $\psi=\psi_{1} \psi_{2} \ldots \psi_{r}$ is a linear character of $H=H_{1} \times H_{2} \times \ldots \times H_{r}$ and $\chi=\psi^{T}$. For each group $G_{i}=S_{i} B \quad\left(S_{i} \triangleleft G_{i} ; S_{i} \cap B=1, i=1, \ldots, r\right)$, we use the formula (3) to obtain $N_{G_{i}}\left(x_{i}\right) \cap B \subseteq N_{G_{i}}\left(\psi_{i}\right) \cap B$. Hence

$$
\begin{equation*}
\bigcap_{i=1}^{r}\left[N_{G_{i}}\left(\chi_{i}\right) \cap B\right] \subseteq \bigcap_{i=1}^{r}\left[N_{G_{i}}\left(\psi_{i}\right) n B\right] \tag{4}
\end{equation*}
$$

Since $B_{i} \triangleleft G(i=1,2, \ldots, r)$,

$$
N_{G}(\chi) \cap B=\bigcap_{i=1}^{s}\left[N_{G}\left(\chi_{i}\right) \cap B\right]=\bigcap_{i=1}^{s}\left[N_{G_{i}}\left(\chi_{i}\right) \cap B\right]
$$

Now using the formula (4) we have

$$
N_{G}(\chi) \cap B \subseteq \bigcap_{i=1}^{r}\left[N_{G_{i}}\left(\psi_{i}\right) \cap B\right] \subseteq N_{G}(\psi) \cap B
$$

In view of Theorem 1 this completes the proof.
REMARK. The result of Seitz [4] is a particular case of Theorem 2 for $r=1$, and Γ_{1} the regular representation of the group B.

References

[1] Charles W. Curtis, Irving Reiner, Representation theory of finite groups and associative algebras (Pure and Applied Mathematics, 11. Interscience [John Wiley \& Sons], New York, London, 1962).
[2] P.X. Gallagher, "Group characters and normal Hall subgroups", Nagoya Math. J. 21 (1962), 223-230.
[3] B. Huppert, Endliche Gmuppen I (Die Grundlehren der mathematischen Wissenschaften, 134. Springer-Verlag, Berlin, Heidelberg, New York, 1967).
[4] Gary M. Seitz, "M-groups and the supersolvable residual", Math. Z. 110 (1969), 101-122.
[5] David L. Winter and Paul F. Murphy, "Groups all of whose subgroups are M-groups", Math. Z. 124 (1972), 73-78.

School of Mathematics,
University of New South Wales,
Kensington,
New South Wales.

