On a class of finite

soluble groups

G. Karpilovsky

Let the group T be the direct product of groups S_i (i = 1, ..., r) where for a given group A_i , S_i is the direct product of n_i factors $A_i \times A_i \times ... \times A_i$. Let B be a group that has a faithful permutation representation Γ_i of degree n_i (i = 1, ..., r). Consider G, the split extension of T by Bdefined by letting B act on T as follows.

Each S_i is normal in G. If $\begin{pmatrix} a_1, \dots, a_{n_i} \end{pmatrix} \in S_i$ and $b \in B$

then $\left(a_{1}, \ldots, a_{n_{i}}\right)^{b} = \left(a_{\alpha_{1}}, a_{\alpha_{2}}, \ldots, a_{\alpha_{n_{i}}}\right)$ where

 $\Gamma_{i}(b) = \begin{pmatrix} \alpha_{1}\alpha_{2} \cdots \alpha_{n} \\ 1 & 2 \cdots & n_{i} \end{pmatrix}$ It is proved that if *T* is an *M*-group and all subgroups of *B* are *M*-groups, then *G* is an *M*-group. This is a generalisation of a result of Gary M. Seitz, *Math. Z.* **110** (1969), 101-122, who proved the particular case where r = 1 and Γ_{1} is the regular representation of *B*.

A finite group G is an M-group if each irreducible complex character of G is induced from a linear character of a subgroup of G. Some of the difficulties involved in studying M-groups are indicated by a result of Dade which states that any finite soluble group can be embedded

Received 6 December 1974.

in an *M*-group [3]. Seitz sharpened Dade's result by proving that a finite soluble group can be embedded in an *M*-group with the same derived length. This statement is a corollary of the following result of Seitz [4]:

Let A be an M-group and suppose B is a group all of whose subgroups are M-groups. Then A wr B, the wreath product of A with Bis an M-group.

The aim of this paper is to generalise this result of Seitz. We shall use the following notation: aut G is the group of automorphisms of the group G; ker χ is the kernel of the character χ ; an \tilde{M} -group is a group all of whose subgroups are M-groups; if H is a subgroup of the group G and χ a character of H then χ^{G} is the character of G induced from χ ; $N_{G}(\chi)$ is the stabilizer of χ in G; $\psi * H$ is the restriction of a character ψ of a group G to

- $\psi + H$ is the restriction of a character ψ of a group G to its subgroup H;
- $a^b = b^{-1}ab .$

LEMMA 1 [2]. Let $H \triangleleft G$, χ an irreducible character of H which has an extension $\hat{\chi}$ to $T = N_G(\chi)$. Then $\chi^G = \sum_{\omega} \omega(1) (\omega \hat{\chi})^G$ where the sum runs over the irreducible characters of T/H. Each character $(\omega \hat{\chi})^G$ is irreducible and $(\omega_1 \hat{\chi})^G = (\omega_2 \hat{\chi})^G$ implies $\omega_1 = \omega_2$.

LEMMA 2 [1]. Suppose $H \triangleleft G$. If H is abelian and complemented in G, then each irreducible character of H extends to its stabilizer.

LEMMA 3. Let $G = A \cdot B$ $(A \triangleleft G, A \cap B = 1)$. Then each linear character of A extends to its stabilizer.

Proof. Let $T = N_G(\chi)$ be the stabilizer of the linear character χ of A. Then $T = A \cdot B_0$ $(B_0 = B \cap T)$. If ker $\chi = K$ $(K \triangleleft T)$ then $T/K = (A/K) \cdot (B_0 K/K)$ (semidirect product) and A/K is cyclic. Now use

278

Lemma 2.

It is clear that not every extension of an M-group by an \widetilde{M} -group is an M-group. We formulate one sufficient condition for such an extension to be an M-group.

THEOREM 1. Let $G = A \cdot B$ $(A \triangleleft G, A \cap B = 1)$ where A is an M-group and B is an \tilde{M} -group. If for each irreducible character $\chi = \phi^A$ of the group A where ϕ is a linear character of a group $H \subseteq A$, $N_C(\chi) \cap B \subseteq N_C(\phi)$, then G is an M-group.

Proof. Let $N_G(\chi) = T$ and $B_0 = T \cap B$; then $T = A \cdot B_0$. In view of $B_0 \subseteq N_G(\phi)$ the stabilizer of the character ϕ in the group $S = HB_0$ $(H \triangleleft S, H \cap B_0 = 1)$ is S. Thus the linear character ϕ of the group H can be extended to a linear character $\hat{\phi}$ of the group S (see Lemma 3). Now $\hat{\phi}^T + A = (\hat{\phi} + HB_0 \cap A)^A = (\hat{\phi} + H)^A = \phi^A = \chi$. (We have used the subgroup theorem [1] and the fact that $(HB_0)A = T$.) Thus the character χ has an extension to the irreducible monomial character $\hat{\phi}^T$ of the group $T = N_G(\chi)$. Now using Lemma 1 we have $\chi^G = \sum_{\omega} \omega(1) (\omega \hat{\phi}^T)^G$. Since B is an \tilde{M} -group, the group $T/A \cong B_0 \subseteq B$ is an M-group, and therefore if ω is any irreducible character of T/A then $\omega = \psi^T$ where ψ is a linear character of the group R $(A \subseteq R \subseteq T)$. Further

$$(\omega \hat{\phi}^T)^G = (\psi^T \cdot \hat{\phi}^T)^G = [(\psi(\hat{\phi}^T \star R))^T]^G = [\psi(\hat{\phi}^T \star R)]^G .$$

But $\hat{\phi}^T \neq R = (\hat{\phi} \neq HB_0 \cap R)^R$ and hence

$$\left(\omega\hat{\phi}^{T}\right)^{G} = \left[\psi\left(\hat{\phi} + HB_{0} \cap R\right)^{R}\right]^{G} = \left[\left[(\psi\hat{\phi}) + HB_{0} \cap R\right]^{R}\right]^{G} = \left[(\psi\hat{\phi}) + HB_{0} \cap R\right]^{G},$$

which proves the theorem.

Now let $T = A \times A \times \ldots \times A$ (*n* factors) and assume that a group *B* admits a faithful representation Γ by permutations of degree *n*. Let $a = (a_1, a_2, \ldots, a_n)$ $(a_i \in A)$ be any element of *T* and *b* any element

of B with $\Gamma(b) = \begin{pmatrix} \alpha_1 \alpha_2 \cdots \alpha_n \\ 1 2 \cdots n \\ 1 2 \cdots n \end{pmatrix}$. Then

(1)
$$\phi_b(a) = \left(a_{\alpha_1}, a_{\alpha_2}, \dots, a_{\alpha_n}\right)$$

is an automorphism of the group T and the mapping $\psi : B \rightarrow \text{aut } T$ where, for each $b \in B$, $\psi(b) = \phi_b \in \text{aut } T$, is a homomorphism of the group Binto the group aut T. We shall call the automorphism ϕ_b , defined by (1), the automorphism corresponding to Γ .

Consider the group $G = T \cdot B$ $(T \triangleleft G, T \cap B = 1)$ where $a^b = \phi_b(a)$ $(a \in T, b \in B)$. Then this group is isomorphic to the wreath product of the group T with the permutation group $\Gamma(B)$. When Γ is the regular representation of the group B we have the standard wreath product T wr B. The following theorem considers a more general type of group.

THEOREM 2. Let $T = S_1 \times S_2 \times \ldots \times S_r$ where $S_i = A_i \times A_i \times \ldots \times A_i$ $(n_i \text{ factors; } i = 1, 2, \ldots, r)$ and let B be a group which admits a faithful representation Γ_i by permutations of degree n_i $(i = 1, 2, \ldots, r)$. Let G be the split extension of T by B, where each S_i is invariant under B, and the action of $b \in B$ on S_i is given by the automorphism determined by $\Gamma_i(b)$ according to the rule given in (1). Then if T is an M-group and B is an \tilde{M} -group then G is an M-group.

Proof. First of all consider the case when r = 1. Then G = TB $(T \triangleleft G, T \cap B = 1)$, $T = A \times A \times \ldots \times A$ (*n* factors). If $b \in B$ is any element of *B* and $\Gamma(b) = \begin{pmatrix} \alpha_1 \alpha_2 \cdots \alpha_n \\ 1 & 2 \cdots & n \end{pmatrix}$ then

(2)
$$a^b = \left(a_{\alpha_1}, a_{\alpha_2}, \dots, a_{\alpha_n}\right)$$

where $a = (a_1, a_2, \ldots, a_n)$ is any element of T $(a_i \in A)$. Let $\chi = \chi_1 \chi_2 \cdots \chi_n$ be any irreducible character of T. Thus $\chi(a) = \chi_1(a_1)\chi_2(a_2) \cdots \chi_n(a_n)$ and χ_i is an irreducible character of A

https://doi.org/10.1017/S000497270002387X Published online by Cambridge University Press

$$(i = 1, 2, ..., n) . \text{ Now since } A \text{ is an } M\text{-group, } \chi_i = \psi_i^A, \text{ where } \psi_i \text{ is a linear character of some } H_i \subseteq A \quad (i = 1, 2, ..., n) . \text{ Now } \\ \psi = \psi_1 \psi_2 \dots \psi_n \text{ is a linear character of the group } \\ H = H_1 \times H_2 \times \dots \times H_n \subseteq T \text{ and } \chi = \psi^T . \text{ In view of } (2), \\ \chi(a^b) = \chi_1 \Big[a_{\alpha_1} \Big] \chi_2 \Big[a_{\alpha_2} \Big] \dots \chi_n \Big[a_{\alpha_n} \Big], \text{ and } \chi(a^b) = \chi(a) \text{ implies } \chi_i = \chi_{\alpha_i} \\ (i = 1, 2, ..., n) . \text{ Thus we can assume that } H_i = H_{\alpha_i} \text{ and } \psi_i = \psi_{\alpha_i} \\ (i = 1, 2, ..., n) . \text{ Now } N_G(\chi) = TB_0 \quad (B_0 = N_G(\chi) \cap T) \text{ , and for each } \\ h = (h_1, h_2, \dots, h_n) \in H \quad (h_i \in H_i; i = 1, 2, \dots, n) \text{ , } b \in B_0 \text{ , we have } \\ h^b = \Big[h_{\alpha_1}, \dots, h_{\alpha_n} \Big], \text{ where } b \Rightarrow \Big[\begin{pmatrix} \alpha_1 \alpha_2 \dots \alpha_n \\ 1 & 2 \dots & n \end{pmatrix} \Big] \text{ and so } b^{-1}Hb \subseteq H \text{ .} \\ \text{Moreover, if } \psi(h) = \psi_1(h_1)\psi_2(h_2) \dots \psi_n(h_n) \text{ then } \\ \psi(h^b) = \psi_1\Big[h_{\alpha_1} \Big] \dots \psi_n\Big[h_{\alpha_n} \Big] = \psi_{\alpha_1}\Big[h_{\alpha_1} \Big] \dots \psi_{\alpha_n}\Big[h_{\alpha_n} \Big] = \psi \text{ . Hence } \\ (3) \qquad \qquad N_G(\chi) \cap B \subseteq N(\psi) \cap B \text{ .} \\ \end{cases}$$

This proves Theorem 2 for the case r = 1 (by applying Theorem 1). Now consider the general case. Let $\chi = \chi_1 \chi_2 \dots \chi_r$ be any irreducible character of T, where χ_i is an irreducible character of S_i $(i = 1, 2, \dots, r)$. Further, for some linear character ψ_i of the

group $H_i \subseteq S_i$, $\chi_i = \psi_i^{S_i}$ (i = 1, 2, ..., r). As above $\psi = \psi_1 \psi_2 \dots \psi_r$ is a linear character of $H = H_1 \times H_2 \times \dots \times H_r$ and $\chi = \psi^T$. For each group $G_i = S_i^B$ $(S_i \triangleleft G_i; S_i \cap B = 1, i = 1, ..., r)$, we use the formula (3) to obtain $N_{G_i}(\chi_i) \cap B \subseteq N_{G_i}(\psi_i) \cap B$. Hence

(4)
$$\bigcap_{i=1}^{r} \left[N_{G_{i}}(\chi_{i}) \cap B \right] \subseteq \bigcap_{i=1}^{r} \left[N_{G_{i}}(\psi_{i}) \cap B \right]$$

Since $B_i \triangleleft G$ (i = 1, 2, ..., r),

G. Karpilovsky

$$N_{G}(\chi) \cap B = \bigcap_{i=1}^{s} [N_{G}(\chi_{i}) \cap B] = \bigcap_{i=1}^{s} [N_{G_{i}}(\chi_{i}) \cap B] .$$

Now using the formula (4) we have

$$N_{G}(\chi) \cap B \subseteq \bigcap_{i=1}^{r} \left[N_{G_{i}}(\psi_{i}) \cap B \right] \subseteq N_{G}(\psi) \cap B$$
.

In view of Theorem 1 this completes the proof.

REMARK. The result of Seitz [4] is a particular case of Theorem 2 for r = 1, and Γ_1 the regular representation of the group B.

References

- Charles W. Curtis, Irving Reiner, Representation theory of finite groups and associative algebras (Pure and Applied Mathematics, 11. Interscience [John Wiley & Sons], New York, London, 1962).
- [2] P.X. Gallagher, "Group characters and normal Hall subgroups", Nagoya Math. J. 21 (1962), 223-230.
- [3] B. Huppert, Endliche Gruppen I (Die Grundlehren der mathematischen Wissenschaften, 134. Springer-Verlag, Berlin, Heidelberg, New York, 1967).
- [4] Gary M. Seitz, "M-groups and the supersolvable residual", Math. Z. 110 (1969), 101-122.
- [5] David L. Winter and Paul F. Murphy, "Groups all of whose subgroups are M-groups", Math. Z. 124 (1972), 73-78.

School of Mathematics, University of New South Wales, Kensington, New South Wales.

282