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Capillary ripples in thin viscous films are important features of coating and lubrication
flows. Here, we present experiments based on digital holographic microscopy,
measuring with nanoscale resolution the morphology of capillary ripples ahead
of a viscous drop spreading on a prewetted surface. Our experiments reveal that
upon increasing the spreading velocity, the amplitude of the ripples first increases
and subsequently decreases. Above a critical spreading velocity, the ripples even
disappear completely and this transition is accompanied by a divergence of the ripple
wavelength. These observations are explained quantitatively using linear wave analysis,
beyond the usual lubrication approximation, illustrating that new phenomena arise
when the capillary number becomes of the order of unity.
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1. Introduction
Visco-capillary ripples are common features of free-surface flows involving thin

viscous films. A prime example of such ripples is given by long bubbles moving in
a narrow tube that are separated from the wall by a thin lubrication layer, known
as Bretherton bubbles (Bretherton 1961). While the interface shape is monotonic at
the bubble’s advancing side, the thin film at the rear exhibits steady capillary waves,
that are co-moving with the bubble. Such ripples are found in many other flow
phenomena, for example in dip-coating processes, for both plunging and withdrawing
plates (Wilson 1982; Snoeijer et al. 2008; Maleki et al. 2011), spreading droplets
on a prewetted film (Tanner 1979; Tuck & Schwartz 1990; Cormier et al. 2012;
Bergemann, Juel & Heil 2018; Teisala et al. 2018), dewetting fronts (Fetzer et al.
2006; Snoeijer & Eggers 2010) and levelling of capillary films (McGraw et al. 2012;
Salez et al. 2012; Ilton et al. 2016). Understanding capillary ripples is important in
various fields of applications such as spray coating and ink-jet and 3D printing, where
droplets are deposited on either a dry or a wet surface. In coating problems (Ruschak
1985; Weinstein & Ruschak 2004), the ripples dictate the boundary conditions when
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FIGURE 1. (Colour online) (a) Sketch of the problem: a viscous drop is placed on a
thin film of the same fluid and spreads (dimensions not to scale). The magnified view
corresponds to the (numerical) solution of the one-dimensional lubrication equation, as
presented by Tuck & Schwartz (1990). (b,c) Examples of experimentally obtained profiles,
for Ca = 0.0125, where a distinct capillary ripple is observed (b), and for Ca = 0.3562,
where no ripple occurs (c). The red lines indicate the interface profile that can be resolved
by DHM (see § 2.1), whereas the grey dashed lines indicate noisy data. In all panels, the
arrow shows the direction of the motion and the blue dashed-dotted line indicates the
prewetted film thickness.

small-scale flow properties determine far-field flow conditions (Bretherton 1961;
Giavedoni & Saita 1999; Taroni et al. 2012). For forced wetting transitions, they
give rise to intricate oscillatory bifurcation scenarios (Ziegler, Snoeijer & Eggers
2009; Köpf & Thiele 2014; Lin et al. 2016). In the context of dewetting polymer
films, the shape of a ‘dimple’ was even used to quantify the presence of slip (Jacobs,
Herminghaus & Mecke 1998; Fetzer et al. 2007; Bäumchen & Jacobs 2010), and
thus served as a tool to infer material properties. Visco-capillary ripples can provide
information about a flow or a fluid that is otherwise not readily accessed, such as
the (nano-)rheological fingerprint of a material (Bäumchen et al. 2012).

The emergence of capillary ripples can be understood from the lubrication equation
for thin films. The gradient of capillary pressure, driving the flow, involves the
derivative of the curvature, and hence third-order spatial derivatives of the free-surface
profile. These high-order derivatives are responsible for the ripples, as they lead to
modes of complex wavenumbers and hence (exponentially damped) oscillatory shapes.
Indeed, ripples do not appear in gravity-driven flows, for which the pressure gradient
involves only the first spatial derivative of the film profile (Huppert 1982). As an
illustrative example, we quote here the levelling of a sharp step in film thickness. The
gravitational levelling is described by a diffusion-like equation that broadens the step
along monotonic profiles, whereas capillary levelling gives rise to undulated profiles
(McGraw et al. 2012).

The theoretical coverage of capillary ripples in these studies is extensive, but
several of the presented scenarios have yet to be confirmed experimentally. In this
paper we experimentally study the prototypical example of a viscous drop spreading
over a film of the same liquid (see figure 1a). Using digital holographic microscopy
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(DHM), we quantify the visco-capillary ripples close to the ‘contact line’, where the
front of the droplet connects to the prewetted film. Typical experimental results are
shown in figure 1(b,c). The analysis of this problem using lubrication theory goes
back to pioneering works of Tanner (1979) and Tuck & Schwartz (1990). In the limit
where the drops are asymptotically large compared to the film thickness, the dimple
is predicted to exhibit a universal profile (inset of figure 1a) which also plays a key
role in the description of dewetting fronts (Snoeijer & Eggers 2010). An interesting
characteristic of this solution is that the minimal film thickness hmin, compared to the
film thickness h∞, exhibits a significant depression hmin/h∞ ≈ 0.82, as reported by
Tanner (1979) and Tuck & Schwartz (1990).

Here, we show that the dimples can be less pronounced than the asymptotic value
of hmin/h∞ ≈ 0.82 (e.g. see figure 1b), and exhibit a non-trivial dependence on
spreading velocity. Remarkably, the oscillations even disappear at both low and high
spreading velocities: the ripples give way to a monotonic approach of the prewetted
film (figure 1c). The experiments are interpreted using a linear wave analysis, closely
following theoretical work on generic coating flows by Taroni et al. (2012). At
high velocity, it is shown that ripples disappear due to the effect of large capillary
numbers, i.e. beyond the lubrication hypothesis. The wavelengths are found to diverge
at a critical speed, in agreement with theory. At low velocity, we discuss the effect
of gravity and the importance of separation of length scales.

2. Experiments
2.1. Materials and methods

A schematic of the experimental set-up is given in figure 2(a). Using a needle, we
deposit an oil droplet on a prewetted oil surface. The fluid used in the experiments
is a silicone oil of viscosity η = 12.125 Pa s. The surface tension of the material
is γ = 0.021 N m−1 and the density is ρ = 972 kg m−3. Thin films of different
thicknesses in the range 15 µm 6 h∞ 6 65 µm were acquired by spin-coating the
silicone oil on cleaned glass slides. The height of the films was measured with a
spectroscope at multiple locations to ensure flatness. We could control the spreading
velocity by changing the rate of extrusion of the syringe pump (Harvard PHD
ULTRATM 70-3006) connected to the needle. When extruding, we ensured that the
droplets were sufficiently large so that the presence of the needle had no influence
on the spreading dynamics. In those cases, the height of the droplets is of the same
order of magnitude as the capillary length, `γ =

√
γ /ρg ∼ O(1 mm), and much

larger than the film thickness. To achieve low spreading velocities, we deposited a
droplet manually or with the syringe pump on the film. Without further extrusion,
the droplets spread spontaneously because of capillary action, as well as their weight.
Due to the high viscosity of the chosen silicone oil, some of the experiments take
more than 30 h. The spreading velocity slowly decreases with time. However, in our
analysis we assume quasi-steady dynamics, which is well in line with classical work
(e.g. Hocking 1983). Our results will later confirm that this assumption is indeed
valid. In order to measure the wavelengths in the lower Ca range, we performed
imaging at frame rates as low as 0.001 Hz and made use of a low-magnification
lens (×1.25), which provided a wider field of view. At very small velocities, the
height of the droplet can become comparable to the height of the prewetted film.
The spreading velocity, v, was measured by dividing the distance the first extremum
travelled between frames by the time passed between the frames. Once the ripples
disappeared, we opted to measure the front velocity by setting the travelling point at
the first measured height line of the phase image (e.g. see figure 2c).
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FIGURE 2. (Colour online) (a) The experimental set-up for investigations into the
undulating surface of a thin film at the edge of a moving droplet. Droplets were gently
placed (or extruded) on a thin layer of the same liquid. Holograms are captured from
above using reflection DHM. Examples of phase images are shown for (b) Ca= 0.0125
and (c) Ca= 0.3562. In (b,c), the diagonal arrows indicate the direction of motion. Along
this diagonal, the height profiles seen in figure 1 are extracted. The phase images show
noisy parts in the lower left-hand corners, where the surface slope of the droplet is too
steep to be resolved. These parts correspond to the dashed lines in the profiles of figure 1.
The blue arrows indicate the direction of spreading.

To measure the ripples, we imaged the droplets from above, where the front of the
droplet invades a fixed field of view. Our main tool of measurement was a reflection
digital holographic microscope (LynceeTec DHMr-R1000). The device records
holograms, created through laser interference, with a CCD (charge coupled device)
camera (Mikrotron EoSens 4CXP). From these holograms, one can numerically
reconstruct intensity and phase information. Herein, the phase information provides the
height profile of the thin film. Figure 2(b,c) shows phase images corresponding to the
reconstructed height profiles shown in figure 1(b,c). Digital holographic microscopy
can offer a high resolution (of sub-nanometre) in line with the laser beam and in
contrast to some other optical systems, such as confocal microscopy, does not require
scanning motion (that limits the observable time scales of a phenomenon as well
as the resolution). Furthermore, DHM is non-invasive, as compared to, for example,
atomic force microscopy that requires physical contact between the probe and the
sample. This presents another advantage of DHM for the investigation of thin-film
flows. A disadvantage of the system for profilometry of thin films is its limitations
for non-shallow surfaces. For a given laser, the maximum detectable slope depends
on the numerical aperture of the objective lens used. Above a given slope, the
reflected beam is no longer collected by the lens and hence, instead of interference
fringes, noisy speckle-like patterns form. Examples of this limitation are shown in
figure 2(b,c), where the data corresponding to the dashed-grey part of the profiles are
noise. Therefore, depending on the application, one should find an optimal setting,
considering the field of view, the lateral resolution and the slope of interest. For a
more detailed description of DHM, see e.g. Kim (2010).

In our system, the vertical resolution in line with the laser beam is ∼1 nm. The
lateral resolution, limited by the used objective lens, ranges between 2.85 µm (×5
magnification) and 8.5 µm (×1.25 magnification). We record the holograms from
5 frames per second down to 1 frame every 15 min. The maximum slope varies
between 3.4◦ (×5 magnification) and 1.1◦ (×1.25 magnification). The configurations
above provide a suitable imaging set-up for our study, as all quantities of interest
could be well resolved.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

73
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.734


434 M. Jalaal, C. Seyfert and J. H. Snoeijer

2.2. Amplitude and wavelength of the ripples
We extract two main features from the experimentally measured height profiles:
the minimum height hmin and the ripple wavelength λ. Note that the waves are
exponentially damped, so that the position of the second minimum is difficult to
determine experimentally. We therefore measure half of the wavelength, λ/2, from
the distance between the minimum and the first maximum (see figure 1b). Our prime
interest is to investigate how hmin and λ evolve as functions of the capillary number
Ca= ηv/γ .

Figure 3(a) shows the normalised film thickness hmin/h∞ versus the capillary
number. Different symbols correspond to different film thickness, h∞. The minimum
film height in our experiments comes close to the predicted asymptotic value of
0.82h∞, but stays above that for all Ca. The deepest dimples roughly correspond to
hmin/h∞≈0.85 around Ca≈2×10−3. Intriguingly, however, the dimple height exhibits
a non-monotonic dependence with Ca. The ripples tend to flatten for both increasing
and decreasing spreading velocities, with hmin/h∞→ 1. This trend is observed for all
film thicknesses.

A remarkable feature appears at large speeds. Namely, we can clearly identify
a critical capillary number, Ca ≈ 0.295 ± 0.042 (the grey zone in figure 3), at
which the undulations suddenly disappear. At larger capillary numbers the droplet
monotonically joins the viscous film, and no ripples are observed. This transition can
also be observed in one single experiment, if the contact line velocity is high in the
beginning and, during the spreading of the droplet, will drop below the threshold.
Examples of an undulated and a monotonic contact line area can be found in the
profiles in figure 1(b,c).

The evolution of the wavelength is reported in figure 3(b). The prediction based
on linear analysis of lubrication theory without gravity can for example be found in
Bretherton (1961), and gives

λ=
4πh∞

35/6Ca1/3
≈ 5.03

h∞
Ca1/3 . (2.1)

We therefore report our measurement of the wavelength according to λCa1/3/h∞, as
a function of Ca. For small Ca, the rescaled wavelength indeed reaches a constant
value ≈5, in excellent agreement with (2.1). Interestingly, the rescaled wavelength
suddenly diverges when Ca approaches the critical value of Ca ≈ 0.295 ± 0.042,
at the point where the dimples disappear. Clearly, this feature is not covered by
the lubrication result (2.1), predicting a constant value. This may seem somewhat
counterintuitive, since the lubrication equation is usually more accurate when waves
are longer. However, one should bear in mind that the thin-film equation results from
an expansion Ca� 1 (Oron, Davis & Bankoff 1997). The diverging wavelength in
figure 3(b) appears at relatively large velocities, where Ca can no longer be considered
asymptotically small. Qualitatively, a capillary number of order unity corresponds to
the condition when the speed of the advancing contact line and the growth rate of a
ripple are comparable, and therefore the dimples do not have enough time to grow.

3. Linear analysis of the ripples
3.1. Interpretation

We now interpret these experimental observations from the equations of Stokes flow.
As far as we are aware, the non-monotonic behaviour of the dimple amplitude was not
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FIGURE 3. (Colour online) (a) The normalised value of the minimal film thickness
hmin/h∞ and (b) the normalised wavelength as a function of the capillary number
Ca= ηv/γ . Different symbols correspond to different film thickness h∞ (see legend). The
vertical grey regions (determined by statistical error) show the critical Ca∗ beyond which
dimples are not observed. The dashed blue lines in (a,b) indicate the asymptotic prediction
of lubrication theory without gravity. The solid line in (b) is the prediction of (3.5). For
this range of h∞, the Bond number varies from Bo = 0.0001 to Bo = 0.0020. For the
lowest value of Ca, the ratio Bo/Ca2/3 is approximately 0.92. The arrows indicate the
data points corresponding to the profile shown in figure 1(b). Note that the profile shown
in figure 1(c) is obtained for Ca>Ca∗ (the grey vertical line).

previously predicted. Here, we remark that, in general, hmin cannot be predicted in a
closed-form analytical expression. For example, the value hmin/h∞≈ 0.82 was obtained
by a numerical solution of the lubrication equation, matching to a large drop in the
absence of gravity. However, such a lubrication calculation is clearly not applicable at
large speeds, where Ca approaches values of order unity. Hence, predicting hmin will
require full numerical resolution of Stokes flow.

By contrast, explicit predictions for the wavelength λ can be obtained from a linear
analysis of the ripples, for arbitrary Ca. Such a linear analysis is indeed suitable,
given that the ripples decay exponentially and thus have a small amplitude compared
to the film thickness h∞. Throughout, our theoretical analysis is one-dimensional,
i.e. accounting only for the direction normal to the contact line, although the full
problem itself is axially symmetric (see e.g. figure 2). However, two different length
scales allow for the separation of the large-scale droplet region and the small-scale
contact line region. Near the contact line, where the relevant scale is set by the film
thickness, the one-dimensional approach is valid, since the curvature of the large-scale
droplet is negligible compared to h∞. The excellent correspondence between theory
and experiments in figure 3(b) will confirm the validity of this approach. When
applied to lubrication theory without gravity, this leads to (2.1). The linear analysis
for finite Ca, without gravity, was carried out by Taroni et al. (2012) for generic
free surface inlet and outlet problems in coating flows. In fact, Taroni et al. (2012)
identified a critical capillary number Ca∗ = 1/π ≈ 0.318 in the dispersion relation –
which coincides with the critical values of Ca found in our experiments (the grey
regions in figure 3). As we will show below, their analysis is indeed applicable to
our experiments.
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We furthermore introduce gravity into the theory, to study the possible effects on
the ripples at low Ca. This connects to works on withdrawing plates from a bath,
where a steeper angle of the plate was predicted to lead to a disappearance of ripples
due to the enhanced influence of gravity (Snoeijer et al. 2008). Indeed, we will find
that gravity will introduce a second critical velocity: owing to the scaling λ∼Ca−1/3

implied by (2.1), the wavelengths can indeed approach the capillary length, `γ . The
crossover to gravitational effects is expected when λ∼ `γ , which, using (2.1), can be
inferred from

λ2

`2
γ

∼
Bo

Ca2/3
, (3.1)

where Bo= ρgh2
∞
/γ is the Bond number. The ratio λ/`γ can approach unity for the

lowest spreading velocities in our experiment. Therefore, we derive the wavelengths of
the ripples in the following, for arbitrary Ca and Bo, and will discuss to what extent
they apply to our experiment.

3.2. The ripple wavelength at finite Ca and Bo
We now compute the ripple wavelength from the perturbation analysis of the Stokes
equation (i.e. neglecting inertia), but including gravity. The incompressible velocity
is expressed using the streamfunction, vx = ∂ψ/∂y and vy = −∂ψ/∂x, while we
introduce the generalised pressure p̄ = p + ρgy to account for gravity. Using the
standard approach (Leal 2010), we can split the problem by respectively taking the
curl and divergence of the Stokes equation, which leads to

∇
4ψ = 0 and ∇

2p̄= 0. (3.2a,b)

We describe the ripple as a small perturbation around the flat state. We place ourselves
in a reference frame where we move along with the capillary ripple at the edge of
the drop, so that the ripple appears as a stationary profile. In this co-moving frame,
the liquid flows to the left so that the unperturbed flat state implies h= h∞, ψ =−vy
and p̄= 0. The expansion then takes the form

h(x)= h∞ + εe−σx, ψ(x, y)=−vy+ εf (y)e−σx, p̄(x, y)= εq(y)e−σx, (3.3a−c)

and subsequently (3.2) implies

f = A cos(σy)+ B sin(σy)+Cy cos(σy)+Dy sin(σy), q= E cos(σy)+ F sin(σy).
(3.4a,b)

Note that by imposing the Stokes equation ∇p̄ = η∇2u, one can express {E, F} in
terms of {C,D}, so that (3.4) only contains four independent constants.

At the solid boundary we impose a no-slip boundary condition u=−vex, while at
the free surface u · n= 0. The dynamic boundary condition at the free surface reads
τ · n=−γ κn, where κ is the (linearised) interface curvature. Finally, the stress can
be written as τ =−(p̄− ρgy)I+ η(∇u+ (∇u)T). These are five boundary conditions,
which, after linearisation, constitute a problem for the four independent coefficients of
(3.4). A non-trivial solution arises when satisfying the conditions

2Ca(cos2 σ̄ − σ̄ 2)+ (1− σ̄−2Bo)(σ̄ − sin σ̄ cos σ̄ )= 0, (3.5)

where we introduced σ̄ = σh∞. For Bo = 0, one recovers the result of Taroni et al.
(2012), where further details of the calculation can be found.
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FIGURE 4. (Colour online) (a) The path of complex roots of (3.5), where Bo= 0. Arrows
show the migration of the roots on increasing the values of Ca. The red circle corresponds
to Ca= Ca∗. (b) The path of complex roots in the lubrication limit, from (3.6). Arrows
show the migration of the roots on increasing the values of Bo. The red circle denotes
Bo= Bo∗.

The wavelength of the ripples is encoded in the roots σ̄ of (3.5). The imaginary part
Im(σ̄ ) provides the wavenumber of the ripple, while the real part Re(σ̄ )> 0 describes
the decay towards the prewetted film. We therefore visualise the location of the roots
in the complex plane, and track their ‘migration’ upon varying the parameters Ca and
Bo.

Figure 4(a) shows the roots for increasing Ca when Bo = 0. At small Ca, the
roots behave as expected from the lubrication limit. Three roots emanate from the
origin, two of which have Re(σ̄ ) > 0. These provide the oscillations as given by
(2.1). At larger Ca, however, the two roots with Re(σ̄ ) > 0 return to the real axis and
merge at the point indicated by the red circle in figure 4(a). This occurs at a critical
capillary number Ca∗ = 1/π, at which Im(σ̄ ) = 0 for all three roots. For Ca > Ca∗
the third root dominates over the two discussed up until now. This third root has the
smallest Re(σ̄ ) of the three roots, which means that it has the slowest decay and
is thus the asymptotic solution. Since this root has Im(σ̄ ) = 0, a solution without
undulation remains. As the critical Ca∗ is approached from below, the wavelength
diverges asymptotically as λ/h∞ ∼ 1/(Ca∗ − Ca)1/3, as already reported by Taroni
et al. (2012). In fact, the prediction (3.5) provides an excellent description of the
experimental data for the ripple wavelength (figure 3b, solid line). The diverging
wavelength indeed coincides with hmin/h∞→ 1 observed experimentally. Hence, the
disappearance of the ripples at Ca∗ is due to the appearance of a critical point – a
feature that is not present in lubrication theory. Note, that the excellent agreement
between the theories and the experimental results also confirms the assumption of
quasi-steady dynamics.

We now turn to the case of small Ca, for which gravity starts to play a role. In
this regime, |σ̄ | � 1, and (3.5) reduces to

σ̄ 3
=−3Ca+ σ̄Bo, (3.6)

which is essentially the lubrication limit. There are now three roots for all parameters.
Figure 4(b) shows the migration of these roots as we increase the Bond number
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(the axes are rescaled according to (3.1)). Similar to what was previously observed,
the two relevant roots migrate towards the real axis, as Bo is increased. The two
ripple solutions disappear via a pitchfork bifurcation at Bo∗= 2−(2/3)Ca2/3

≈ 0.63Ca2/3,
indicated by the red circle in figure 4(b). This predicts again a diverging wavelength,
now in the very small Ca regime, for which Bo∗ becomes sufficiently small. The
scaling near the critical point is λ/h∞ ∼ Ca1/3/(Bo∗ − Bo)1/2, as is typical near a
pitchfork bifurcation.

The experiments at small Ca reveal hmin/h∞ → 1, and hence a disappearance of
the ripples. We, nonetheless, cannot experimentally confirm the divergence of the
wavelength in this limit (cf. figure 3b), even though at the lowest Ca we are near
the critical Bo. As the spreading velocity falls, the ripples become flatter, and the
wavelength increases. Therefore, the measurements become more challenging. Besides
the effect of gravity, we also suspect that hmin/h∞→ 1 is a finite size effect. Namely,
the low velocities are reached in the final stages of the spreading experiments, where
the height of the droplet becomes comparable with the thickness of the film. Hence,
we loose the separation of scales between the inner (‘contact line’) and outer (droplet)
regions (see also Cormier et al. (2012) and Pedersen et al. (2019)). For the smallest
Ca in our experiment, we indeed estimated that the drop height above the film
thickness is comparable to h∞, clearly showing a violation of length-scale separation.
This lack of scale separation also provides an explanation for why our experiments
do approach the asymptotic value hmin/h∞ ≈ 0.82 predicted by Tuck & Schwartz
(1990), but always remain slightly above. A full numerical solution of the governing
equations (Stokes equation or lubrication limit) accounting for the finite size and
gravity effects is a subject of future study.

4. Conclusions
In this paper, we systematically explored the shape of capillary ripples in a thin oil

film when a droplet of the same liquid spreads over the surface. Using a reflective
digital holographic microscope, we could measure the microscale features of the thin
film. Unexpectedly, we found that the amplitude of the ripple increases, reaches a
maximum around Ca≈2×10−3 and then decreases at larger capillary numbers. Above
Ca ≈ 0.3 the dimples completely disappear, in excellent agreement with the linear
analysis by Taroni et al. (2012), predicting a critical capillary number Ca∗ = 1/π.
Atypically for thin-film flows, these features cannot be explained by the lubrication
approximation. Since surface tension is responsible for the ripples, one can on a
qualitative level understand that ripples disappear at large Ca, for which the relative
importance of surface tension is diminished. A quantitative analysis shows that the
critical point gives a diverging wavelength λ∼ 1/(Ca∗−Ca)1/3, a scenario that is for
the first time reported experimentally.

For small Ca, our results highlight the possible importance of the length-scale
separation as well as gravity, as the height of the drop becomes comparable to the
film thickness and the wavelength of the ripples becomes close to the capillary length.
These effects can be of great importance for experiments where the structure of the
dimples is used to identify rheological fingerprints (Jacobs et al. 1998; Bäumchen
& Jacobs 2010). From a more general perspective, the experimental method used,
DHM, proves to be a powerful tool for the visualisation of surface profiles of thin
films in real time with height resolution that goes down to the nanometre scale. The
methodology can be used in further investigations of films on complex topographies
or of fluids with more complex rheology (Jalaal & Balmforth 2016; Laborie et al.
2017; Xu & Jensen 2017; Jalaal et al. 2018).
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